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Summary

In this work, shock wave theory is used to model traffic evolution within
urban road segments between signalized intersections. The shock wave evo-
lution depends algebraically on the boundary conditions at the signalized
intersections, and on the fundamental diagram (FD) of each road segment,
whereby e.g. the FD free flow speed can be seen as a control variable. Thus,
the vehicular velocities, densities and queue evolutions can be described with-
out the need for differential equations and their solution, noting that the traf-
fic is characterized by cells, each with constant velocity and density, whose
boundaries are the shock waves.

The free flow speeds may be set by dynamic speed advisory control with
the aim to optimize vehicles energy consumption and total time spent in
the road network. In future work other variables such as green splits and
phase differences between the intersection signals will be used for control
and optimization purposes.

State of the Art

The principal theoretical work on kinematic waves was done by Lighthill
and Whitham [1955]. Given flow and density upstream and downstream
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from the shock wave, its propagation velocity was calculated analytically.
Furthermore, it was stated that such a velocity represents the slope of the
chord joining the two points on the flow-density curve (i.e. fundamental
diagram) which correspond to the states ahead of and behind the shock wave.
The importance of this finding is that if the traffic states are known, then
their future evolution can be easily predicted by describing the boundary (i.e.
shock wave speed) between them. This insight was used by Richards [1956]
for the study of shock waves on highways, and by Daganzo [1994] in the Cell
Transmission Model (CTM) derivation and analysis.

The first attempt to use shock wave theory for traffic control was pre-
sented by Hegyi et al. [2008] in order to propose a quick control scheme to
resolve jams on highways by means of variable speed limits.

Shock waves principles were also used for alternative highway traffic mod-
eling approaches. In Canudas de Wit [2011] the proposed variable-length
CTM-like model aims to capture the traffic conditions on an arbitrarily long
road segment by describing the dynamics of the shock wave and its upstream
and downstream traffic states. An adaptation of this model to the energy
optimization by variable speed advisories in an urban traffic framework, with
boundary flows enabled by cyclic traffic signals, was proposed by De Nunzio
et al. [2014]. However only the evolution of upstream congestion bound-
aries was considered, and downstream rarefaction waves were neglected. In
Canudas de Wit and Ferrara [2016] an improved variable-length model with
downstream rarefaction was used for speed control on a ring road.

Contribution of this work

An algebraic model of the traffic evolution within urban road sections, i.e.
modeling of traffic light induced phenomena, is proposed. The model is able
to provide a solution of traffic density and flow distributions without solving
differential equations, and therefore the computational burden is drastically
reduced. This is particularly desirable for large-scale traffic optimization.
An energy consumption model and a travel time model have been adapted
to the proposed traffic model and used for performance optimization in an
urban scenario.
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Figure 1: Urban road section and model notation.

Model Description

In urban traffic, it is reasonable to assume that flows are generated by traffic
lights or intersections, and hence inflows and outflows of a road segment
are pulses starting at discrete time instants. Then, under such conditions,
with the road segment decomposed into cells, see Fig. 1, during a finite time
interval, each cell state will be defined by one point on the fundamental
diagram (FD), see Fig. 2. Hence the slope between the FD points of two
neighboring cells will be constant over the said finite time interval. According
to the shock wave theory, this slope gives the propagation speed of the front
or boundary between the cells. Hence, there is no need to solve differential
equations to find neither the value of cell states which remain constant during
the existence of the specific cell, nor the evolution of the cell boundaries which
move at a constant speed determined algebraically.

Let us consider an urban road section as in Fig. 1. It is reasonable to
assume that the considered road section represents an elementary segment of
the traffic network, meaning that no exogenous flows are allowed within the
segment. The inflow and outflow are only enabled by the two traffic lights
at the two ends of the section.

The road section may be intuitively split up into cells, j = 1, . . . , k, of
variable length lj [m] corresponding to different traffic states ρj [veh/m].
Each traffic state (or density) remains constant within its spatial domain,
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Figure 2: Fundamental diagram. ρm is the stand-still or jam density, ρcr
is the critical, or sweet-spot density, where the state changes from free flow
to congested flow. ϕmax is the sweet-spot flow. v [m/s] stands for free flow
velocity, and w [m/s] is the backward wave front propagation speed.

delimited by moving boundaries, e.g. boundary or front pj [m] in Fig. 1.
According to the shock wave theory, over an infinitesimal time step dt [s] the
front pj will move by

dpj =
ρj+1v(ρj+1) − ρjv(ρj)

ρj+1 − ρj
dt (1)

where the symbols are defined in the caption of Fig. 2. Hence, the length lj
of each cell is calculated by the difference of continuously moving fronts. In
Fig. 2, the fundamental relations between speed, flow and density are shown.
Note that the speed of the front in equation (1) depends only on the upstream
and downstream traffic densities which remain constant. Therefore equation
(1) may be rewritten in its algebraic form as:

pj(t) = pj0 +
ρj+1v(ρj+1) − ρjv(ρj)

ρj+1 − ρj
· (t− tj0) (2)

where pj0 and tj0 are the starting position and time of the moving front
pj, respectively. Typically, traffic dynamics and behavior present several
shock waves generated for instance by traffic lights turning green or red,
or by the intersection of two other shock waves. In order for these events
to be predictable and for traffic dynamics to be described algebraically, the
following assumptions must hold:

• the FD of the road section is known;
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• the initial traffic conditions are known;

• the traffic signals timings are known.

Note that signalized intersections may present very complex phases and
movements during a traffic light cycle, therefore the inflow to a particular
road section may be determined by several simultaneous and/or consecutive
movements. Thus, the green light duration enabling boundary flows may
be thought of as an equivalent duration which comprises all the movements
entering or leaving the section.

Performance metrics

Let us introduce two optimization criteria of interest: mean vehicle energy
consumption and travel time. Based on the modeled traffic conditions, ve-
hicle trajectories can be determined by taking into account: traffic signals
timings which enable boundary flows, and traffic densities and cells bound-
aries which determine travel speed and acceleration. The performance met-
rics will be evaluated on the trajectory of the vehicles completing the trip in
the considered road section. If the traffic conditions are at an equilibrium
(i.e. equal boundary flows), the performance may be evaluated solely on the
vehicles entering the section during a traffic light cycle time.

Let us consider the following simple expression for the power request
P (t) [W] at the wheels

P (t) = Ft(t)v(t) (3)

where v(t) [m/s] is the vehicle speed. The traction force Ft(t) [N] at the
wheels is

Ft(t) = m
dv(t)

dt
+ a2v(t)2 + a1v(t) + a0 +mg sin(α) (4)

where m [kg] is the vehicle mass, ai, i = 0, 1, 2 are given constants, g [m/s/s]
is the acceleration due to gravity, and α [rad] is the slope of the road. In
each cell j, traffic density and speed are constant, therefore the power request
within each cell becomes a constant P̄ (v(ρj)), with no acceleration term. At
the interface between adjacent cells, the speed difference triggers additional
energy consumption which can be expressed as:

Etrans =

∫ v(ρj+1)−v(ρj)
a

0

P (τ) dτ (5)
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where the interval of integration represents the time necessary to complete
the speed transition at constant acceleration a. Finally the single vehicle
energy consumption over the necessary travel time T to leave the section, is
expressed as:

Ek =

∫ T

0

c∑
j=1

P̄ (v(ρj)) dt+
c−1∑
j=1

Etrans (6)

where c is the number of cells in the road section at each time instant along
the vehicle trajectory.

Hence, the mean energy consumption of the N vehicles entering the road
section during a cycle time according to the current inflow is calculated as:

Ē =
1

N

N∑
k=1

Ek (7)

The number of vehicles N is known and equal to:

N = ϕin · Tg (8)

where ϕin is the flow entering the road section, and Tg is the upstream green
light duration.

The mean travel time is defined as the average of the time required to
complete the trip over the road section by all vehicles k = 1, . . . , N . It can
be expressed as:

T̄ T =
1

N

N∑
k=1

(tf,k − t0,k) (9)

where t0,k is the time at which vehicle k enters the road section, tf,k is the
time at which vehicle k leaves the road section. Such an exit time tf,k can be
calculated by tracking the vehicle trajectory until its position xk reaches the
end of the road section. The vehicle trajectory may be computed as follows:

xk(t+ dt) = xk(t) + v(ρ(xk(t))) · dt (10)

or algebraically by computing the intersection points with the equations of
the moving fronts. The intuition is that the speed is constant within a
certain cell and it changes when the vehicle trajectory crosses the closest
downstream moving front. The pattern repeats itself until the vehicle leaves
the road section. An illustration of some vehicle trajectories is given in Fig. 3.
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Figure 3: Vehicles trajectories within the road section. Stops and idling time
are also captured by the proposed model.

Optimization problem

The objective of this work is to find the optimal speed limit that, given
some traffic conditions, minimizes a combination of the aforementioned per-
formance criteria: energy consumption and travel time. The optimization
problem could be formulated as follows:

min
v

J = λ
Ē

Ēmax

+ (1 − λ)
T̄ T

T̄Tmax

s.t. ρ̇ = 0

ṗ =
ρj+1v(ρj+1) − ρjv(ρj)

ρj+1 − ρj

vmin ≤ v ≤ vmax

(11)

where λ is the optimization weight setting the trade-off between the objec-
tives, and Ēmax and T̄ Tmax are the normalization factors that ensure com-
parability of the objectives. The dynamic equations of density and moving
boundaries, to be calculated for every cell and for every boundary, can be
reduced to their algebraic equivalent form as previously described.
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Figure 4: Comparison of the CTM solution and the algebraic fronts solution
of the proposed model in a distance-time diagram. The densities are color
coded.

Results

Let us consider the following FD parameters: ρm = 0.13 veh/m, w = 6 m/s,
v = 15 m/s. An illustrative comparison between the CTM solution and the
proposed model, for an urban road section with upstream and downstream
traffic lights equally timed, and for a given initial traffic condition, is shown in
Fig. 4 in a distance-time diagram. The initial traffic state was set to have an
empty cell upstream, a fully congested cell downstream, and an initial queue
length of 100 m (i.e. the initial leftmost point of the congested cell in yellow in
Fig. 4). It is noted in the CTM solution that the density, and hence velocity,
are constant in each cell in the following way: a red light causes stand still,
a stand still density upstream, and zero velocity and density downstream. A
green light causes a rarefaction wave at ρcr. These state values are implicit
in the proposed shock wave solution.

Let us assume that the free flow speed v equals the given but variable
speed limit. We find that changing the speed limit within the road section
has significant impact on both objectives, depending on the particular traffic
density distribution and traffic light timings. The value of the objectives for
different values of the speed limit, from 5 to 15 [m/s], and for different initial
queue lengths, from 150 to 0 [m], is shown in Fig. 5.

The results suggest that the energy consumption is very high when the
road section is congested and the speed limit is kept at the standard value of
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Figure 5: Mean energy consumption and travel time over a cycle time as a
function of the speed limit and the initial length of the queue in the considered
road section.

approximately 15 m/s. The long queue induces several accelerations towards
a high speed limit, which proves inefficient in terms of energy expenditure.
Energy consumption decreases when the queue is reduced and, trivially, when
the speed limit is decreased.

Travel time is a somewhat competing performance metric, showing that
travel time is minimized for high values of the speed limit. However, the
results surface is not fully monotone due to the traffic lights offset effect. In
order to have an insight into the solution of the optimization problem in (11),
the evaluation of the objective function for λ = 0.5 is displayed in Fig. 6. It is
interesting how the overall performance is minimized for different speed limits
depending on the initial queue length inside the road section. For instance,
for a highly congested section with an initial queue length of l = 150 m,
the performance is optimized for a speed limit of v = 9 m/s, showing a
performance gain of about 14% with respect to the case of a standard speed
limit of v = 15 m/s.

Conclusions

In this work, an adaptation of the shock wave theory to urban traffic mod-
eling was proposed. The dynamic traffic model may be defined by simple
algebraic equations which describe the evolution of the boundaries between
adjacent traffic states (i.e. cells). The model proves to effectively reproduce
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Figure 6: Overall traffic performance over a cycle time as a normalized
weighted sum of mean energy consumption and travel time. The perfor-
mance is represented as a function of the speed limit and the initial length of
the queue in the considered road section. The graph represents the evaluation
of the objective function in (11) for λ = 0.5.

the traffic evolution in urban environment with the same precision shown by
well-established and reference macroscopic models, such as the CTM. The
proposed modeling approach is able to describe traffic not only in highly-
congested cases but also when the queue at the traffic light is completely
dissipated. Furthermore, the underlying assumption of regular traffic de-
mand during the upstream green phases can be easily relaxed by introduc-
ing additional moving fronts whenever the density of the entering vehicles
changes.

The algebraic formulation of the model presents significant advantages in
terms of computation time and scalability, which will favor the application to
large-scale modeling and optimization. In future work, the impact of varying
traffic light timings on the performance will be assessed, with the goal of
suggesting an optimization based on two decision variables: speed limit and
green lights offset or duration. Furthermore, multiple sections concatenation
effects are expected to have an impact on the network overall performance
and need to be studied.
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