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1 Introduction
In this paper we aim at integrating the selection of a nesting structure to the maximum
likelihood framework of the parameter estimation. Given a finite set of nesting structures,
the traditional approach is to estimate them and select a posteriori the most appropriate
one based on some fit statistics and informal testing procedures. However, the number of
possible nested structures grows as a function of the number of alternatives.

Our approach simultaneously solves the problem of selecting the optimal nesting struc-
ture and estimating its corresponding parameters with maximum likelihood. We call this
discrete-continuous maximum likelihood (DCML). We are able to linearize the logarithm
in the objective function so that it results in a mixed integer linear problem. We show
that this approach is computationally feasible using an example with stated preference
data with three alternatives.

In order to model the nesting structure, we use a mixed logit model as follows:

Uin = Vin +
M∑

m=1
σmbimξim + νin, (1)

where Vin is the deterministic part of the utility function for alternative i and individual
n. Vin is a linear-in-parameters function of a vector of parameters to be estimated (β),
observed attributes of the alternatives (ain) and socioeconomic characteristics of the in-
dividual (sn), Vin = f(ain, sn, β). ξim

iid∼ N(0, 1) and νin
iid∼ Gumbel(0, 1). bim are binary

variables that indicate if an alternative i belongs to a nest m.

2 Mathematical model
Objective function In order to apply maximum likelihood, we want to maximize the
following function

log
(

N∏
n=1

I∏
i=1

Pn(i)din

)
, (2)
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where Pi(n) is the probability that individual n chooses alternative i, and din takes value
1 if individual n chooses alternative i and 0 otherwise. N is the number of individuals
and I is the number of alternatives. Using the framework developed by Pacheco et al.
(forthcoming) we can use simulation of the error terms and avoid the non-linearities
caused by the expression of the probabilities. This is done by working with the values
of the utility functions instead of with the probabilities. Then the objective function
becomes

N∑
n=1

I∑
i=1

din log
(

1
R

R∑
r=1

winr

)
, (3)

where r is an index that stands for the draw and R is the number of draws or scenarios.
winr takes value 1 if Uinr > Ujnr, ∀j 6= i and 0 otherwise.

The only remaining non-linearity is the logarithm that appears in the objective func-
tion. Since ∑R

r=1 winr can only take integer values from 1 to R, we can linearize it by
introducing binary variables γinp that take value 1 if ∑R

r=1 winr = p and 0 otherwise.
Then, Equation (3) is equivalent to

N∑
n=1

I∑
i=1

din

R∑
p=1

γinpLp, (4)

where Lp = log(p), p = 1, ..., R is a pre-processed vector of R components.
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The discrete continuous maximum likelihood problem can be formalized as follows:

max
N∑

n=1

I∑
i=1

din

R∑
p=1

γinpLp

subject to Uinr = f(ain, sin, β) +
M∑

m=1
τimξimr + νinr ∀i, n, r (5)

τim ≤ umbim ∀i,m (6)
τim ≤ σm ∀i,m (7)
τim ≥ σm − u(1− bim) ∀i,m (8)
lnr ≤ zinr ∀i, n, r (9)
zinr ≤ lnr +Minryin ∀i, n, r (10)
Uinr −Minr(1− yin) ≤ zinr ∀i, n, r (11)
zinr ≤ Uinr ∀i, n, r (12)

I∑
i=1

winr = 1 ∀n, r (13)

winr ≤ yin ∀i, n, r (14)
zinr ≤ Unr ∀i, n, r (15)
Unr ≤ zinr +Mnr(1− winr) ∀i, n, r (16)

(R + 1)δ1
inr − 1 ≥

R∑
r=1

winr − p ∀i, n, p (17)

(R + 1)δ2
inr − 1 ≥ p−

R∑
r=1

winr ∀i, n, p (18)

δ1
inr + δ2

inr − 2γinp ≤ 1 (19)
R∑

p=1
γinp = 1 ∀i, n (20)

M∑
m=1

bim = 1 ∀i (21)

bim = 0 ∀m > i (22)
bim ∈ {0, 1} ∀i,m (23)
winr, δ

1
inr, δ

2
inr ∈ {0, 1} ∀i, n, r (24)

γinp ∈ {0, 1} ∀i, n, p (25)
σm ∈ R+ ∀m (26)
τim ∈ R+ ∀i,m (27)
β ∈ R (28)

Where the parameters of the model are:

• sn: the socioeconomic characteristics of individual n.
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• ain: the attributes of alternative i for individual n.

• yin: the availability of alternative i for individual n. It takes value 1 if it is available
and 0 otherwise.

• din: the choice of individual n. It takes value 1 if she chose alternative i and 0
otherwise.

• ξimr and νinr: draws of the respective distributions.

The decision variables of the model are:

• β: the parameter estimates in the utility function.

• σm: it represents the variance of nest m in the error component logit model.

• winr: it takes value 1 if alternative i is chosen by individual n in scenario r.

• bim: it takes value 1 if alternative i belongs to nest m and zero otherwise

And Minr, Mnr, lnr and um are upper and lower bounds to be defined.

Constraints Constraints (5) are the utility functions, as explained in Equation (1),
where r stands for the draw number and the product bimσm has been linearized using
τim. Constraints (6)-(8) are used to linearize bimσm. Constraints (9)-(12) are equivalent
to zinr = Uinr if yin = 1, zinr = lnr if yin = 0, which sets the utility of a given
alternative to a lower bound if the alternative is not available. Constraints (13) express
the fact that each customer chooses one alternative. Constraints (14) say that only
available alternatives can be selected by individuals. Constraints (15)-(16) are equivalent
to Unr = maxi zinr, which means that the chosen alternative is the one with highest
utility. Constraints (17)-(20) are equivalent to γinp = 1 ⇐⇒ ∑R

r=1 winr = p and are used
to linearize the objective function. Constraints (21) say that each alternative belongs to
exactly one nest. Constraints (22) are used as a symmetry-breaking constraints, so that
the binary variables are well defined. Finally, constraints (23) to (28) define the space of
solutions.

To show that the approach is computationally feasible, we use a stated preferences
mode choice case study collected in Switzerland in 1998. The respondents provided infor-
mation in order to analyze the impact of the model innovation in transportation repre-
sented by the Swissmetro, a mag-lev underground system, compared to the usual transport
modes of car and train.
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