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Abstract 

The paper present a spline function class specifically suitable for the estimation of time and cost attributes 
in transport demand models with a long distance domain. The function class is designed to be monotonic 
decreasing in utility and have monotonic and marginal decreasing elasticities. The properties are obtained 
by calculating separate scaling factors and interception points at each spline knot. The resulting function 
class can handle a wide range of cost-damping structures, which cannot be absorbed using traditional 
linear-in-parameter forms or non-linear forms such as the Box-Cox function class. The function is particularly 
useful for models with a semi-long to long distance destination domain for which heavy damping in the tail 
is likely to be found. The function class is implemented in the new Danish National Model and we present 
simulation as well as estimation results from the National Model.   
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1 Introduction 

The aim of this paper is to introduce a new class of parametric functions specifically aimed at modelling 
cost and time attributes in transport models. These functions may be relevant for all types of transport 
models but in particular relevant for models with a wide destination domain as such models typically 
require additional functional flexibility. A feature of the function class is the ability to represent a wide 
range of cost-damping patterns (Daly, 2010) from lightly damped cost curves to super damped curves.  

In the literature piecewise linear approximations (linear splines) has been discussed in Ben-Akiva and 
Lerman (1985) in a logit modelling framework and more recently in Pinjari and Bhat (2006) in a mixed logit 
framework. Power series expansions are also discussed in Ben-Akiva and Lerman (1985) and have typically 
been applied in transport modelling contexts as a simple test of the base model being linear. Other work on 
functional forms includes early work on Box-Cox transformations in Gaudry and Wills (1978) and Hensher 
and Johnson (1981) and more recently in Gaudry (2010). Box-Cox function applications are found in Gaudry 
et al. (1989), Ben-Akiva et al. (1987), Mandel et al. (1994) and Lapparent and de Palma (2002). More 
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recently, Rich and Mabit (2015) investigate several combinations of linear-in-parameter but non-linear-in-
attribute forms which in several cases is shown to outperform the Box-Cox model.  

 

2 Methodology 

Spline functions are piecewise polynomial functions connected in knots. However, unconstrained spline 
functions will not apply to cost and time attributes in a utility maximization context as these functions will 
not in general be consistent with random utility theory.  

More specifically, the class of functions we are looking for should fulfill the following properties; 

i) Monotonous decreasing utility with respect to time and cost. 
ii) Monotonous and differential first-order derivative of utility with respect to cost and time. 
iii) Be consistent with random utility theory 

None of the properties will be fulfilled by ordinary unconstrained spline functions. Although splines are 
monotonous they do not ensure a decreasing utility as well as marginal decreasing sensitivity. Property ii) 
impose structure on the functional form and cause the corresponding elasticity curve to have a smooth and 
monotone pattern with respect to the input attributes. Moreover, these classes facilitate a flexible cost-
damping structure. Property iii) make sure that utility 𝑉 is decreasing in cost and time attributes such as 𝑥, 

e.g. 𝜕𝜕
𝜕𝜕

< 0. For simplicity we consider a linear-in-parameter function 𝛽𝛽(𝑥(𝑑)) of time and cost attributes 

𝑥(𝑑) on choice set 𝑑 where 𝛽 < 0. To simplify the notation we will suppress the notation of 𝑑.  

The function class we are looking for can be written as 

(1) 𝛽(𝑥, 𝑐1, … , 𝑐𝑄−1) =

⎩
⎪
⎪
⎨

⎪
⎪
⎧
𝛽1(𝑥, 𝑐1),                𝑐0 ≤ 𝑥 < 𝑐1
𝛽2(𝑥, 𝑐1, 𝑐2),            𝑐1 ≤ 𝑥 < 𝑐2
𝛽3(𝑥, 𝑐2, 𝑐3),       𝑐2 ≤ 𝑥 < 𝑐3

…
𝛽𝑞�𝑥, 𝑐𝑞−1, 𝑐𝑞�,    𝑐𝑞−1 ≤ 𝑥 < 𝑐𝑞

…
𝛽𝑄�𝑥, 𝑐𝑄−1�,        𝑥 > 𝑐𝑄−1

 

For this class we will have that following requirements 

(2) 𝛽𝑞(𝑥) ≤ 0 ∧
𝜕𝛽𝑞(𝑥)
𝜕𝑥

≤ 0 ∀𝑥 ≥ 0,∀𝑞 = 1, … ,𝑄  

 



(3) 

𝛽1(𝑐1, 𝑐1) = 𝛽2(𝑐1, 𝑐1, 𝑐2) ∧
𝜕𝛽1(𝑥)
𝜕𝑥

�
𝜕=𝑐1

=
𝜕𝛽2(𝑥)
𝜕𝑥

�
𝜕=𝑐1

𝛽2(𝑐2, 𝑐1, 𝑐2) = 𝛽3(𝑐2, 𝑐2, 𝑐3) ∧
𝜕𝛽2(𝑥)
𝜕𝑥

�
𝜕=𝑐2

=
𝜕𝛽3(𝑥)
𝜕𝑥

�
𝜕=𝑐2

…

𝛽𝑞�𝑐𝑞 , 𝑐𝑞−1, 𝑐𝑞� = 𝛽𝑞+1�𝑐𝑞, 𝑐𝑞 , 𝑐𝑞+1� ∧
𝜕𝛽𝑞(𝑥)
𝜕𝑥

�
𝜕=𝑐𝑞

=
𝜕𝛽𝑞+1(𝑥)

𝜕𝑥
�
𝜕=𝑐𝑞+1

 

2.1 Function candidates 

We will consider two different function candidates, which fulfills all of the requirements. The first candidate 
arise from a polynomial function expressed in logarithmic space. We define 𝑐0 = 0  and let 𝒄 =
�𝑐1, … , 𝑐𝑄−1� represent the vector of knot points. Hence, we are considering the function class shown in 
equation (4) below 

(4) Log-power spline class:     ℱ(𝑥, 𝒄) = ∑ 1𝑞(𝑥)�𝜃𝑞(𝒄)𝑙𝑙(𝑥)𝑞 + 𝛼𝑞(𝒄)�𝑄
𝑞=1  

Where the indicator function1𝑞(𝑥) is defined such that  1𝑞(𝑥) = 1 ⇔𝑥 ∈ �𝑐𝑞−1, 𝑐𝑞� and zero elsewhere.   

It is worth noting that a special case of the log-power polynomial with 𝛼 = �1
𝛾

, 0 … ,0� and 𝜃𝑞 = 𝛾𝑞 
𝑞!

 

∀𝑞 = 1, … ,𝑄 emerges as a Taylor expansion of a Box-Cox function (𝛾 representing the Box-Cox parameter) 
using L'hopital's rule. Hence, the function class on which the spline function is build have roots in the Box-
Cox model but when expressed as a spline it is quite different.  

To express the function as a spline we consider 𝑄 − 1 knot points 𝑐1, … , 𝑐𝑄−1. The function is defined in 
such a way that the 𝑙𝑙(𝑥)𝑄 function operates on the first part of the curve where 𝑐0 ≤ 𝑥 < 𝑐1. For 
𝑐1 ≤ 𝑥 < 𝑐2 we apply the function 𝜃𝑄−1(𝒄)𝑙𝑙(𝑥)𝑄−1 + 𝛼𝑄−1(𝒄) and continue successively such that the 
tail of the function is modelled using a pure logarithmic form. It is clear that the class can be extended 
easily by relaxing the requirement that 𝑞 are integers. In that case we would simply require that 
𝑞1 > 𝑞2 > ⋯ > 𝑞𝑄. However, for now we will maintain the simple formulation to ease the calculations. 

The second candidate arises from a sum of power function for which the power is gradually decreasing and 
always less than 1. Hence, we are considering the function class shown in equation (5) below 

(5) Power spline class:     ℳ(𝑥, 𝒄) = ∑ 1𝑞𝜃𝑞(𝒄)𝑥𝜋𝑞 + 𝛼𝑞(𝒄)𝑄−1
𝑞=1 , 1 ≥ 𝜋𝑄 ≥ ⋯ ≥ 𝜋1 ≥ 0  

The curvature of these two classes is not very different and the one class can always be parameterized in 
such a way that it will mimic the other class closely.  

Only 𝑄 − 1 spline parameters 𝜃(𝒄) and 𝛼(𝒄) are identified, hence the first 𝜃(𝒄) is normalized to 1 and the 
first 𝛼(𝒄) set to 0. In order to determine these parameters we start by making use of equation (1)-(3). The 
trick is to start finding all scaling parameters 𝜃(𝒄) and then subsequently work out the 𝛼(𝒄) intercepts. We 
start with the log-power class for the equation system can be solved successively, hence 



 (6) 
𝜕𝛽1(𝑥)
𝜕𝑥

�
𝜕=𝑐1

=
𝜕𝛽2(𝑥)
𝜕𝑥

�
𝜕=𝑐1

 
⇔

𝑄𝑙𝑙(𝑐1)𝑄−1

(𝑄 − 1)𝑙𝑙(𝑐1)𝑄−2 =
𝑄𝑙𝑙(𝑐1)
(𝑄 − 1) = 𝜃1(𝑐1, 0, … ) 

(7) 
𝜕𝛽2(𝑥)
𝜕𝑥

�
𝜕=𝑐2

=
𝜕𝛽3(𝑥)
𝜕𝑥

�
𝜕=𝑐2

 
⇔𝜃2(𝑐1, 𝑐2, 0, … ) �

𝑄 − 1
𝑄 − 2

� ln (𝑐2) =
𝑄𝑙𝑙(𝑐1)
(𝑄 − 2) ln (𝑐2) = 𝜃2(𝑐1, 𝑐2, 0, … ) 

 … 
 

(8) 
𝜕𝛽𝑞(𝑥)
𝜕𝑥

�
𝜕=𝑐𝑞

=
𝜕𝛽𝑞+1(𝑥)

𝜕𝑥
�
𝜕=𝑐𝑞+1

 
⇔

𝑄
(𝑄 − 𝑞 + 1)� ln (𝑐𝑟)

𝑞

𝑟=1

= 𝜃𝑞(𝑐1, … , 𝑐𝑞 , 0, … ) 

 
The equation system can be solved successively and it can be shown that for 𝑞 = 1, … ,𝑄 − 1 then 

(9) 𝜃𝑞(𝒄) =
𝑄

𝑄 − 𝑞 + 1
� ln (𝑐𝑟)
𝑞

𝑟=1

,∀𝑞 = 1, … ,𝑄 − 1 

For the power-spline class using similar manipulations it can be found that  

(10) 𝜃𝑞(𝒄) =
𝜋𝑄
𝜋𝑄−𝑞

�𝑐𝑟
𝜋𝑄+1−𝑟−𝜋𝑄−𝑟

𝑞

𝑟=1

,∀𝑞 = 1, … ,𝑄 − 1 

The next step is to find the interception parameters 𝛼1(𝒄), … ,𝛼𝑄−1(𝒄) in order to make sure that the utility 
functions are smooth and connected in all of the knots. These points can be found from the recursive 
equation below 

(11) 

𝛽1(𝑥, 𝑐1)|𝜕=𝑐1 = 𝛽2(𝑥, 𝑐1, 𝑐2)|𝜕=𝑐1
𝛽2(𝑥, 𝑐1, 𝑐2)|𝜕=𝑐2 = 𝛽3(𝑥, 𝑐2, 𝑐3)|𝜕=𝑐2

…
𝛽𝑞�𝑥, 𝑐𝑞−1, 𝑐𝑞��𝜕=𝑐𝑞 = 𝛽𝑞+1�𝑥, 𝑐𝑞 , 𝑐𝑞+1��𝜕=𝑐𝑞

 

By inserting the calculated scale parameters 𝜃1(𝒄), … ,𝜃𝑄−1(𝒄) these recursive equations reduces to  

(12) 

𝛽𝑙𝑙(𝑐1)𝑄 = 𝜃1(𝒄)𝛽𝑙𝑙(𝑐1)𝑄−1 + 𝛼1(𝑐1, 0, … )
𝜃1(𝒄)𝛽𝑙𝑙(𝑐2)𝑄−1 + 𝛼1(𝑐1, 0, … ) = 𝜃2(𝒄)𝛽𝑙𝑙(𝑐2)𝑄−2 + 𝛼2(𝑐1, 𝑐2, 0, … )

…
𝜃𝑞−1(𝒄)𝛽𝑙𝑙�𝑐𝑞�

𝑄−𝑞+1 + 𝛼𝑞−1(𝑐1, 𝑐2, … , 𝑐𝑞−1, 0, … ) = 𝜃𝑞(𝒄)𝛽𝑙𝑙(𝑐2)𝑄−𝑞 + 𝛼𝑞(𝑐1, 𝑐2, … , 𝑐𝑞 , 0, … )

 

Which for the general case can be stated more compactly as  

(13) 𝛼𝑞(𝒄) = 𝛼𝑞−1(𝒄) + 𝜃𝑞(𝒄)𝛽 ln�𝑐𝑞�
𝑄−𝑞 �1 +

𝜃𝑞−1(𝒄)
𝜃𝑞(𝒄)

ln (𝑐𝑞)� ,∀𝑞 = 1, … ,𝑄 − 1 

For log-power splines with 𝑄 = 2 and 𝑄 = 3 Table 1 below summaries the spline parameterization.  



𝑄 𝑞 𝜃𝑞 𝛼𝑞 

2 2 
1
2

ln (𝑐1) −𝛽 ln(𝑐1)2 

3 2 
3
2

ln (𝑐1) −
𝛽
2

ln(𝑐1)3 

3 3 3ln (𝑐1)ln (𝑐2) −
𝛽
2

ln (𝑐1)[3 ln(𝑐2)2 + ln(𝑐1)2] 

Table 1: Spline parametrization for the log-power spline class with 𝑄 = 2 and 𝑄 = 3. 

Each of the two spline classes in (4) and (5) is formulated in such a way that the underlying log-likelihood 
function is in fact differential for all 𝑥 ≥ 0. This implies that the optimal knots can be found from an 
ordinary Newton Algorithm and in principle be estimated simultaneously with the remaining parameters. 
However, as it appears from Table 1 even low-dimensional cases will be non-linear and tend to be relative 
“ugly”. Moreover, the optimization needs to be a constrained non-linear optimization in order to maintain 
the order of the knot points and make sure that  𝑐1 < 𝑐2 < ⋯ < 𝑐𝑄.  

3 Results 

Firstly we illustrate the curvature in a small-scale simulation context. We consider a spline of the order of 
𝑄 = 3. The corresponding spline parameterization was shown in Table 1. Below in Figure 1 we illustrate the 
curvature of the utility function and the corresponding elasticity curve for a simple case where 𝑥 < 550 
and 𝛽 = −0.05. 

 

Figure 1: Comparison between a base 𝛽 ln(𝑥)3 and spline-curves with different degrees of tail damping.  
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The real benefit of applying the spline function is that we are able to control more effectively what happens 
in the tail. In particularly we are able to impose a heavy damping characteristic from a certain threshold. 
This is not accommodated by any other simple functional form such as the Box-Cox or alternative linear 
approximations of the Box-Cox as presented in Rich and Mabit (2015).  

What happens on the first part of the curve is less interesting and less problematic as we can easily blend 
other function classes with the spline function. A good blending candidate is a pure logarithmic form as it 
will be active on the first part of the curve and will not violate the properties of the spline function as the 
log-terms with a power higher than 1 will out weight the logarithmic curve. 

3.1 Results from the Danish national model 

Until now we have assumed the underlying discrete choice model to be multinomial and operate on a 
destination choice domain. However, it may be more relevant to consider a nested-logit model by adding a 
mode-choice dimension. It is quite easy to see, that if the logsum parameters does not change with the 
choice of destination or mode, all of the calculations carries over and the spline parameters are similar to 
those found above. If this is not the case it will generally affect the scaling and thereby the interception 
points. The calculations are relative straightforward and the scaling parameters are essentially identical to 
the ones found above except for additional scaling from the logsum parameters.  

In the Danish national model we apply nested logit models with logsum parameters that does not change 
with the choice of destination and mode. The models are characterized by having a relative wide 
destination domain and it has been difficult to find appropriate function candidates applicable for the 
entire destination domain. As a result, we have turn to a log-power spline formulation which has turned 
out to be particularly well functioning for leisure travel and shopping travel as these trip purposes does 
have heavy damping in the tail. This has not been the case for business and commuting, which is far less 
damped. The core function implemented in the Danish National model (only for weekday travel and only 
for primary trips) is shown in (14) below 

(14) 𝛽𝑛(𝐺𝐺𝐺𝑚,𝑑|𝑛,𝛽, 𝑐1, 𝑐2) = � 1𝑞 �𝛽𝜃𝑞(c1, c2) ln�𝐺𝐺𝐺𝑚,𝑑|𝑛�
𝑄+1−𝑞 + 𝛼𝑞(c1, c2)�

3

𝑞=1
 

With 𝐺𝐺𝐺𝑚,𝑑|𝑛 = 𝑐𝑐𝑐𝑡𝑚,𝑑
𝜇𝑛

+ 𝑡𝑡𝑡𝑒𝑚,𝑑 where 𝜇𝑛 is the value-of-time for person 𝑙. The value-of-time is 

income dependent but is fixed prior to the estimation. The function in (14) is then further “blended” with 
simple log-functions to introduce a more flexible description for the shorter trips. Below we illustrate the 
immediate goodness-of-fit impact of using the log-power spline class compared to the previous model for 
which the base model was actually identical to the parametrization with 𝑐1 = ∞ and 𝑐2 = ∞ which is 
shown to the right.  



 

Figure 2: Log-Likelihood performance of leisure trip segment as a function of different knot point 
parameters. 

As can be seen, there is a relative massive improvement in likelihood corresponding to close to 200 
likelihood points. It should be said that the previous model with 𝑐1 = ∞ and 𝑐2 = ∞ was in fact a well-
tested model, which replicated the distance profile of the segments closely. 

The implication for the model sensitivity of choosing a near-optimal combination of 𝑐1 and 𝑐2 in contrast to 
choosing 𝑐1 = ∞ and 𝑐2 = ∞ is significant. The overall mean of the elasticities will not be affected to a 
great deal as only a small share of the trips exceed 𝑐1 and 𝑐2. However, for the longer trips the spline-
function prevents the elasticities to “sky-rock” as it introduces a maximum elasticity.  

This have several implications, firstly, for large-scale infrastructure projects for which the share of long-
distance trips are high, using a proper spline-form will significantly reduce the elasticities for these trips. 
Also, the elasticity will tend to move from being sensitive to distance to being sensitive to the choice of 
mode. Hence, whereas a form which is too aggressive in the tails (such as the 𝑐1 = ∞ and 𝑐2 = ∞ model) 
will be too active in the destination choice (and thereby the implicit choice of distance) a spline-form will 
lower the distance sensitivity and have more sensitivity in the choice of mode. Figure 3 and Figure 4 
illustrate the impact on the elasticity curve. 
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Figure 3: Elasticity curve for public cost and time for leisure travel for spline model versus normal model 
with 𝑐1 = ∞ and 𝑐2 = ∞.  

 

Figure 4: Elasticity curve for car cost and time for leisure travel for spline model versus normal model with 
𝑐1 = ∞ and 𝑐2 = ∞.  
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As seen there is a significant difference, not only in the tail of the distribution but also on semi-long 
distances. Even the mean is relative different. 

For the most distant destinations above 300 KM the elasticity curve is actually declining. This can happen as 
a result of mode-shifts but it can also happen because of shifts in the destination choice. The above 
simulations are based on a cost increase of 10% and this will generally cause the average distance to 
decline. Hence, there will be a move from right to left. If there are very few trips for some of the longest 
distance intervals the share of these will tend to go down on the expense of shorter trips and this 
movement will result in a backward bending curve.  

4 Conclusion 

The paper present a new function class based on a restricted non-linear spline functions. The function class 
is particularly suited for transport models with a long to semi-long destination domain as it is RUM 
consistent and allow for flexible cost-damping patterns. The damping can range from lightly damped on 
certain parts of the curve to super-damped on other parts. This feature is not supported by know functional 
forms such as Box-Cox. 

We illustrate the potential of the function class by applying it to the New Danish National Model for which 
it has been implemented. The new function class result in massive goodness-of-fit improvement for certain 
trip segments (leisure and shopping) and the elasticity curve are shown to be very different.  
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