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Abstract 

This paper addresses the Stochastic User Equilibrium assignment with mixed pre-trip en-route path choice 
behavior. This problem is relevant for urban transit networks: when travelers begin their journey they may not 
completely know the status of service, say bus arrivals at stops, and may only choose a travelling strategy at 
origin. Under mild assumptions such strategies can be modelled as hyperpaths, thus user choice behavior can be 
modelled through Random Utility Models applied to the set of (elementary) hyperpaths, such as Probit and 
Gammit; these models allow for general co-variance matrices but their application requires Montecarlo 
techniques. Several MSA-based algorithms have been presented and compared on a simple network using both 
Mersenne Twister pseudo-random numbers and Sobol quasi-random numbers. 
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1. INTRODUCTION 
 
The User Equilibrium (UE) paradigm was introduced by Wardrop (1952) for deterministic 
path choice behaviour. Daganzo and Sheffi (1977) extended the User Equilibrium to path 
choice behaviour described through a random utility model, calling it Stochastic User 
Equilibrium (SUE). The user equilibrium problem was formulated as fixed-point problem 
based on the inverse cost function by Daganzo (1983); Cantarella (1997) provides a general 
fixed-point modelling framework, which does not need the inverse cost function. 

The Method of Successive Averages (MSA) is extensively used for specifying solution 
algorithms for SUE suitable for large scale applications (see Cantarella, 1997, for more details 
and convergence conditions). Recently Di Gangi at al. (2015) proposed and discussed several 
MSA-based algorithms for solving SUE based on path choice models with general covariance 
matrices but requiring Montecarlo simulation for their solution, such as Probit (Daganzo, 
1983) or Gammit (Cantarella and Binetti, 2002). 

The equilibrium assignment to a transit network can be based on either of two different 
approaches to path choice behaviour modelling. 

 
• Mixed pre-trip and en-route strategies, typical for high frequency systems; pre-trip a user 

chooses a travel strategy, while en-route the user chooses a line to board at each stop, 
leading to the so-called frequency-based assignment, will be addressed in this paper. 

• Fully pre-trip, typically for low frequency systems; pre-trip a user chooses a sequence of 
runs leading to the so-called scheduled-based assignment; this is often the case for extra-
urban trips, on trains, air flights, … and will be addressed in a future paper. 

 
In early studies the user strategy was restricted to the case of overlapping lines with 

equivalent speeds, which in turn were replaced by a common line with a frequency equal to 
the sum of single lines frequencies. Then, in successive studies the case of overlapping transit 
lines with different speeds was addressed by introducing the concept of optimal strategy 
(Spiess, 1984), which may be modelled through a hyperpath under mild assumptions (Nguyen 
and Pallottino, 1988), leading to methods of  deterministic user equilibrium assignment to a  
congested transit network (Wu and Florian, 1993; Wu et al., 1994). The general fixed-point 
approach reported in Cantarella (1997) for SUE was further analysed for high frequency 
transit systems by Cantarella and Vitetta (2001). 

In this paper we will extend SUE MSA-based algorithms described in Di Gangi et al. (2015) 
to deal with urban transit networks, where routing choice alternatives can be modeled 
through hyperpaths. Several probabilistic choice models, corresponding to different 
distributions for perceived cost, are analysed. In section 2 models for SUE frequency-based 
assignment are reviewed, extending notations of the above cited Di Gangi et al. (2015), and in 
section 3 SUE assignment solution algorithms are described. In section 4 implementation 
issues and some numeric results for a test system are discussed. Some conclusions and 
indications for further research are reported in the last section. 

2. SUE ASSIGNMENT MODELS 
Models for traffic assignment to transportation networks simulate how demand and supply 
interact in transportation systems. These models enable the calculation of performance 
measures and user flows for each supply element, resulting from origin-destination demand 
flows, path choice behaviour, and the reciprocal interactions between supply and demand. 
Assignment models combine two sub-models: the supply model and the demand model. In 
this section fixed-point models for SUE frequency-based assignment are briefly reviewed (for 
more details see Cantarella, 1997). 
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In the following user travelling between the same origin-destination pair with common 
behavioural features are grouped into a user class i, with a demand flow di ≥ 0, a  (non-empty 
and finite) set of (elementary) available paths  Ki  and a corresponding set of hyperpaths. 

2.1 SUPPLY MODEL 
Transportation supply models express how user behaviour affects network performances. 
They are usually based on congested network models, that is a graph G(N, A) with a 
transportation cost ca and a flow fa associated to each arc a in set A. Let  
 
Bi  be the arc-path incidence matrix for user class i with entries bak = 1 if arc a belongs to path 

k, bak = 0 otherwise; 
hi ≥ 0 be the path flow vector for user class i, with entries hk, k ∈ Ki; 
f ≥ 0  be the arc flow vector, with entries fa, a ∈ A; 
c  be the arc cost vector, assumed below with non negative entries ca ≥ 0, a ∈ A; 
gi  be the path cost vector for user class i, with entries wk, k ∈ Ki. 
 

The following three equations completely describe the transportation supply : 
f = Σi  Bi  hi (1)  
c = c(f) (2)  
gi = BiT c    ∀i (3)  

The function in equation (2) is called the arc cost function. A journey starts from an origin and 
arrive in a destination traversing arcs of different kinds: access/egress or pedestrian, waiting, 
boarding, alighting, on-board. The arc cost functions depend on the arc type (Fig. 1). Examples 
are given in section 4. 
 

 

 

 
Figure 1. Arcs and nodes modelling a bus stop  

 

 
  

Origin/Destination node 

access/egress or pedestrian arcs 
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boarding arcs 
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2.2 DEMAND MODEL 

At the origin a user chooses a strategy, defined by a set of diversion nodes and a set of 
boarding options, say lines, at each diversion node − PRE-TRIP CHOICE BEHAVIOUR; each strategy 
is a set of partially overlapping paths (possibly a single path), which may be represented by a 
hyperpath (for more details see Nguyen and Pallottino, 1988) under mild assumptions. Then, 
at each diversion node, that is each waiting node, the user chooses the line to board among 
those considered in the pre-trip strategy − EN-ROUTE CHOICE BEHAVIOUR; the sequence of en-
route choices defines the path actually followed to destination, among all paths belonging to 
the hyperpath chosen at origin.  
 

EN-ROUTE CHOICE BEHAVIOUR MODELLING. Let  
 
ηaj  ∈ [0,1] be the en-route diversion probability for arc a and hyperpath j, such that: 
 

ηaj  ∈ ]0,1] if a∈j and it is a boarding arc (with sum equal to 1 for all arcs exiting from the 
same waiting node); 

ηaj = 1 if if a∈j and it is not a boarding arc; 
ηaj = 0 a∉j; 

 
The diversion probability ηaj  can be modelled according with the adopted rules at a waiting 
node, the most common being “take the first bus arriving at the stop”. The waiting time can be 
computed consistently, see section 4 for more detail and some examples. Let 

 
qkj = Πa∈k ηaj ∈ [0,1] be the probability of following path k within hyperpath j, if the en-route 

choices at diversion nodes are stochastically independent. It is worth noting that a path 
may well belong to several hyperpaths. By definition qkj > 0   ⇔   k ∈ j; qkj = 0   ⇔   k ∉ j. Let 

 
Q be the path-hyperpath probability matrix for user class i with entries qkj. 
 

PRE-TRIP CHOICE BEHAVIOUR MODELLING. Let 
 

Ui be the hyperpath perceived utility vector for user class i, modelled as a random vector 
according to Random Utility Theory; 

vi = E[Ui] be the expected value of Ui or the hyperpath systematic utility vector for user class i; 
pi ≥ 0, with 1T pi = 1, be the hyperpath choice vector for user class i. 
 
The systematic utility is given by the sum of some generic and additive cost attributes, such as 
access/egress or pedestrian, boarding, alighting, on-board times, which do not depend on the 
hyperpath, and hyperpath specific cost attributes, say waiting times, which depend on the 
hyperpath, since they depend on the set of boarding options, lines, in the hyperpath. Let 
 
xiG be the vector of hyperpath generic costs; 
xiS be the vector of hyperpath specific costs. 
 
The vector of hyperpath generic attributes can be computed from the path costs as: 

xiG = QiT gi          ∀i (4) 
and the hyperpath systematic utility vector is given by (omitting weighting coefficients for 
simplicity’s sake) the hyperpath utility function: 

vi = − xiG – xiS    ∀i (5) 
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The hyperpath choice probability vector, pi, is a function of the systematic utility, derived 
from the random utility theory: 

pi = pi(vi)  (6) 
If the perceived utility distribution parameters (not considering the mean) do not depend on 
systematic utility values the hyperpath choice function (6) is monotone increasing, with 
symmetric positive semi-definite Jacobian, with respect to vi (Cantarella, 1997). 

Examples of the choice function (6) are, apart the well-known Logit, the Probit (Daganzo, 
1983) or the Gammit (Cantarella and Binetti, 2002) choice models based on MultiVariate 
Normal  or Gamma distributions of hyperpath perceived utility  respectively. These models 
allow for general structure of the co-variance matrix but cannot be expressed in a closed form, 
thus MonteCarlo techniques are used for applications (as described in sub-section 3.1). Well 
established Probit model shows a drawback (as all Logit choice models based on Gumbel 
distribution) since it allows positive perceived utility values too. Nielsen (1997) explores 
different ways of reducing this problem with symmetrical truncation of Normal or the use of 
Log-Normal distribution for perceived arc costs. Sheffi (1985) and Nielsen (1997) suggested 
the use of Gamma distribution for perceived costs. More recently Gammit choice models 
based on Gamma distribution have been deeply analysed by Cantarella and Binetti (2002). 

For practical purposes to apply the Probit or the Gammit model, hyperpath perceived 
utilities Ui can be specified through arc perceived costs W as:  Ui = −QiT BiT W, expected values 
of arc perceived costs being the arc costs, E[W] = c. If the arc perceived costs are 
independently Normal or Gamma distributed with diagonal covariance matrix ΣW, the 
resulting hyperpath perceived utilities are still Normal or Gamma (for more details see 
Moschopoulos, 1985), distributed with covariance matrix QiT BiT ΣW Bi Qi with non null 
covariance for each pair of partially overlapping hyperpaths. Specifications of W are given 
below. Let 
 
co,a > 0 be the zero-flow cost arc on arc  a ∈ A, such that ca(f) ≥ co,a ∀ f  [this condition surely 

occurs for monotone increasing cost functions]; 
τ  > 0  be the dispersion parameter, assumed below less than 1 [for τ  = 0 the hyperpath 

choice behaviour is deterministic]; such that Var(Wa) = τ co,a, under this assumption the 
perceived utility distribution parameters (not considering the mean) do not depend on 
systematic utility values the hyperpath choice function (6). 

 
- for Probit 

Wa ∼ (ca − co,a) + Normal(µ = co,a, σ = τ co,a) = ca + Normal(µ = 0, σ = τ co,a) 
- for Gammit 

Wa ∼ (ca − co,a) + Gamma(µ = co,a, σ = τ co,a) = (ca − co,a) + Gamma(α= co,a/τ, β = τ) 
where β = τ is common to all arcs. 

 
DEMAND FLOW CONSERVATION. Let  
 

di ≥ 0  be the demand flow vector for user class I, assumed fixed in this paper; 
yi ≥ 0  be the hyperpath flow vector for user class i. 
    
The hyperpath flow vector is given by: 

yi = di pi  (7) 
and the path flow vector by: 

hi = Qi yi (8) 
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2.3 DEMAND - SUPPLY INTERACTION MODEL 
The (stochastic) arc flow function with constant demand is obtained by combining supply 
model equations (1) and (3) with the demand model as described by equations (4-8):  

f(c; d) ≡ ∑i di Bi Qi pi(−QiT BiTc) (9)  
The (stochastic) arc flow function specifies the so-called stochastic network loading (SNL) that 
is the assignment to uncongested networks. With the generally adopted random utility, the 
arc flow function is continuous with continuous first partial derivatives with respect to the arc 
cost vector, and under mild assumptions monotone non increasing with symmetric negative 
semi-definite Jacobian. This function is also useful to specify equilibrium models, as shown 
below. 

The multi-user equilibrium assignment to a transportation network with constant demand 
can be specified by the system of non-linear (vector) equations (1-8); it can be easily 
recognized that the number of equations is equal to the number of unknowns.  

In order to make the analysis of the model easier, it is common practice to combine all 
equations into one single (vector) equation leading to a fixed-point model with respect to arc 
flows. The same model is obtained by combining the arc flow function (9) with the arc cost 
function (2): 

f* =  f(c(f*) (10)  
If the network is connected and if all the involved functions (arc cost, hyperpath utility, 
hyperpath choice) are continuous, the existence of a solution can easily be proved. If the arc 
flow function is monotone non-increasing, and if arc cost function is monotone strictly 
increasing at most one solution (weak uniqueness) can easily be proved (weaker conditions 
are also available). Existence or uniqueness of the arc flow vector also guarantees existence or 
uniqueness of the arc cost vector, as well as of the path/hyperpath flow and cost vectors (for 
more details on the above issues see Cantarella, 1997). 

3. SOLUTION ALGORITHMS 
The fixed-point problem (10) is usually solved by iteratively computing the arc cost function 
(2) and the arc flow function (9) within the averaging scheme of the MSA. Below first it is 
described how the arc flow function can be computed, without explicit enumeration of paths 
and hyperpaths; then, several MSA-based algorithms for solving the fixed-point model (10) 
are reported. 

3.1 COMPUTING THE ARC FLOW FUNCTION 

When a closed form is not available for the choice behaviour model (an unbiased estimate 
of) the arc flow function (9) can be computed through a Montecarlo technique (Burrell, 1968; 
Sheffi, 1985) by successive averaging several demand loading to the shortest hyperpath. As 
already said, to apply this approach the hyperpath perceived utility distribution should be 
based on independently distributed arc perceived costs as described in sub-section 2.2.  

The main steps of the procedure are: 
 

k = 0 
fSNL

0 := 0 
repeat: 

k += 1 
c* = pseudo-realisation of perceived costs 
fk

AON = shortest hyperpath loading with costs c* 
fk

SNL= [(k-1) fk-1
SNL

 + fk
AON] / k 
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until (fk-1
SNL ≅ fk

SNL)  or a prefixed number of iterations is reached 
[It seems worth stressing that the Montecarlo technique is used as a numerical tool to 
compute the hyperpath choice probabilities, or better the corresponding arc flows, but the 
whole model is still macroscopic. Thus, no kind of microscopic discrete simulation is actually 
carried-out.]  

 
PSEUDO-REALISATION OF PERCEIVED COSTS. 
Details of the realisation of the arc perceived costs are given below. Let 
 
Φa(⋅) be the distribution function of the arc perceived cost arc on arc a ∈ A, as in the examples 

described in sub-section 2.2; if this function cannot be expressed in a closed form (as for 
Normal) or has a complicated closed form (as for Gamma), approximation functions are 
used (Abramowiz and Stegun, 1970). 

 
Hence given a random number r, uniformly distributed over interval [0, 1], a realisation of the 
arc perceived cost on arc a is given by Φa

−1(r).  
 
Value r can actually be generated with a Pseudo-Random Number Generator (PRNG). In 
literature various procedures are proposed for PRNG (i.e.  Sánchez et al., 2005; Wichmann and 
Hill, 2006; Marchi et al., 2009); the aim is, in general, to cover the space in the most uniform 
way possible. In this paper, two approaches for PRNG have been considered: the Mersenne 
Twister (Matsumoto and Nishimura, 1998) pseudo-numbers and the Sobol sequences of 
(often called) quasi-random numbers (Sobol, 1967).  Figure 2 shows 256 Sobol a) and 
Mersenne-Twister b) numbers. In general, the Sobol numbers cover the space more evenly 
than the Mersenne Twister numbers. For this reason, the convergence of algorithms using 
these sequences is likely faster.  
 

 

 
a) 

 

 
b) 

Figure 2. Realizations or random numbers: Sobol (a) versus Mersenne Twister (b) 

SHORTEST HYPERPATH LOADING 
Given a vector of arc costs the arc flows resulting from a shortest hyperpath loading can be 
computed through a generalisation of backwards label-setting shortest paths algorithms 
(Nguyen and Pallottino, 1988) and the forward loading of demand flows to the shortest 
hyperpath tree to each destination, without explicit enumeration of paths and hyperpaths. 

3.2 SOLVING THE FIXED-POINT MODEL 

The solution of the fixed-point model (10) can be carried out with a MSA algorithm where arc 
flows or costs are updated at each iteration, leading to the Flow Averaging (MSA-FA) or the 



7 
 

Cost Averaging (MSA-CA) algorithm (see Cantarella, 1997 for convergence analysis and 
references); their steps are showed in Figures 3 and 4, where: 

 
k  is the iteration counter; 
αk  is the step size. 

 
ck = c(fk-1),  

fSk = f(ck),  

fk = fk-1 + αk ⋅ (fSk − fk-1), 

k = k + 1 

Figure 3. MSA-FA algorithm steps 

fk = f(ck-1),  

cSk = c(fk),  

ck = ck-1 + αk ⋅ (cSk − ck-1), 

k = k + 1 

Figure 4. MSA-CA algorithm steps 

A convergence index often used for MSA-FA is the average absolute difference over flows: 
(∑a  |fS,ak − fak-1| / fak-1) / n, where n is the number of arcs. A similar index may be defined for 
MSA-CA. Others indices may be defined based on the maximum difference, possibly excluding 
arcs with very low flows.  

 
The step size αk play a key role in the MSA algorithms, influencing their convergence. In 

this paper, six variations of the MSA_FA are evaluated (see Table 1), varying the nature of step 
size and the averaging scheme with respect to the arc flows. 

 
• In basic MSA algorithm the step size is αk =  1/k, k being the iterations counter. 

 
• In the Restarting MSA (RMSA, Cantarella et al. 2014) the step size is evaluated as αk =  1/k, 

but k is not the iteration counter since it is re-initialized after a certain number of 
iterations. The method used to evaluate k is shown in Figure 5: initially, it is established a 
value of kini and a step ∆k; while the value k is less than the step, the value of k is increased 
by one, else the value of the step ∆k is increased by one and k is set equal to kini. 

 
kini = 1 

k = kini 

∆k amplitude 

while k  < ∆k: 

k +=1 

else: 

∆k +=1 

k = kini 

Figure 5. Evaluating  the step size in RMSA algorithm 
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• In double RMSA (R2MSA) (Di Gangi et al., 2015) the value of the step size is αk = 1/k, and k 

is re-initialized after a certain number of iterations to a variable value. As shown in Figure 
6, it is initially established a value of kini and amplitude ∆k; while the value (k - kini) is less 
than the amplitude, the value of k is increased by one, else both the value of  amplitude ∆k  
and kini are increased by one and k is set equal to kini. 
 
 

kini = 1 

k = kini 

∆k amplitude 

while (k - kini) < ∆k: 

k +=1 

else: 

∆k +=1 

kini +=1 

k = kini 

Figure 6. Evaluating  the step size in R2MSA algorithm 

• In Weighted MSA (WMSA) the value of the step size is αk =  kδ  /  Σh=1,k hδ , being δ an 
integer and k the current iteration. As in Liu et al. (2007), the values of parameter δ 
determines the weight assigned to the later iterations: increasing the value of δ, decreases 
the weight of flow in the iteration. 
 

• In Restart WMSA (RWMSA) the value of the step size is αk =  kδ  /  Σh=kini,k hδ , and the value 
of k is computed as in RMSA (Figure 5). 
 

• In double RWMSA (R2WMSA) the value of the step size is αk =  kδ  /  Σh=kini,k hδ , and the 
value of k is computed as in R2MSA (Figure 6). 

 
 

Table 1. The values of step size in SUE 

Algorithm αk 

MSA 1/k 

RMSA 1/k, with k evaluated as in Figure 5 

R2MSA 1/k, with k evaluated as in Figure 6 

WMSA kδ  /  Σh=1,k hδ   being d a constant value 

RWMSA kδ /  Σh=1,k hδ , with k evaluated as in Figure 5 

R2WMSA kδ /  Σh=1,k hδ , with k evaluated as in Figure 6 

 
Some studies consider a constant step size (i.e. Powell and Sheffi, 1982; Bar-Gera and 

Boyce, 2006), others (i.e. Polyak  and Juditsky, 1992; Liu et al., 2009) deal with the definition 
of a variable step size. 

Any of the above described MSA-based algorithms may be implemented through flow-
averaging (FA) or cost averaging (CA).  
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4. NUMERICAL RESULTS 
In this section some examples of the application to the test system reported in the Fig. 7 of 
MSA-FA algorithms for solving SUE will be discussed; a comparison with MSA-CA algorithms 
as well as theoretical considerations on convergence will be addressed in a future paper. 

The system in Fig.7 has one origin destination pair, eight transit lines, 7 hyperpaths with 
one path, and 8 hyperpaths with several overlapping paths. In particular, dotted lines and 
white nodes represent the underlying pedestrian network, black nodes represent bus stops, 
continuous line represent on-board arcs, where from the little squared nodes depart/arrive 
boarding/alighting arcs.  The definitions of the lines are depicted in Fig. 8, where the number 
in square brackets indicates the free-flow travel time of the on-board arc of the line expressed 
in minutes. The features of each line, in terms of frequency and headway, are summarized in 
Tab. 2. 

Table 2. Features of transit lines 

 
Line 1 2 3 4 5 6 7 8 

Frequency [bus/h] 12 6 5 4 4 6 10 360 
Headway [s] 300 600 720 900 900 600 5 720 

 
A specific arc cost function is used for each type of arc mentioned above (Fig. 1). Let 
 

ta (sec) be the free flow time on arc a; 
fa be the flow on arc a; 
qa be the capacity on arc a; 
ϕl be the frequency of line l; 
α > 0, β > 0, γ ∈ [0, −2+√8 = 0.828], δ > 1, θ > 0 be parameters to be calibrated.  

(In the following α = 0.1, β = 0.2, γ = 0.7, δ = 2, θ = 0.5.) 
 
For boarding arcs, cost usually also depends on flow fa’ on the corresponding alighting arc a’:  

 ca = ta [1 + α ((fa + γ (fa’ − fa))/ qa)δ] 
For on-board arcs, cost usually depends on flow to model crowding discomfort: 

  ca = ta [1 + β (fa / qa)δ] 
For alighting arcs:  

 ca =20 sec 
For waiting arcs, cost depends on the considered hyperpath j, being a specific attribute:  

 caj = θ / Σl∈j ϕl  
For access/egress or pedestrian arcs as well as connector arcs flow independent cost is 
assumed given by the travel time with speed equal to 1 m/sec.  

All the above  arc cost functions respect the existence and uniqueness conditions, if the 
parameters respect the above conditions. 

 
Total demand is 1000 passengers per hour and the bus capacity (for each line) is 100 

(seated or standing) passengers. As already said, hyperpath choice behaviour is modelled 
through the Probit or the Gammit random utility model. In both cases, the dispersion 
parameter τ is equal to 0.2. 
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Each MSA-based algorithm stops either if the convergence index (defined in sub-section 
3.2) is less than 0.001 or the number of iterations reaches 1000. Two values of the number of 
Montecarlo repetitions for computing the arc flow function are considered, 10 and 20.  

The bar diagrams in Fig. 9 and Fig. 10 show results obtained for the convergence index, for 
each combination of hyperpath choice model (Gammit or Probit), type of numbers (Random 
or Sobol) and MSA algorithms. Tables 3 and 4 show the number of MSA iterations performed. 

 
Table 3. Number of MSA iterations with 10 Montecarlo repetitions 

choice 
model PRNG MSA Algorithm 

MSA WMSA RMSA RWMSA R2MSA R2WMSA 

GAMMIT RANDOM 1000 1000 1000 1000 1000 1000 
SOBOL 45 5 12 5 13 5 

PROBIT RANDOM 1000 1000 1000 1000 1000 1000 
SOBOL 45 5 12 5 13 5 

 
Table 4. Number of MSA iterations with 20 Montecarlo repetitions 

choice 
model PRNG MSA Algorithm 

MSA WMSA RMSA RWMSA R2MSA R2WMSA 

GAMMIT RANDOM 1000 1000 1000 1000 1000 1000 
SOBOL 44 5 12 5 13 5 

PROBIT RANDOM 1000 1000 1000 1000 1000 1000 
SOBOL 45 5 12 5 13 5 

 
 
It can easily recognize that all algorithms based on Sobol quasi-random numbers greatly 

outperform those based on Mersenne Twister pseudo-numbers; moreover all variants of basic 
MSA allow greatly reducing the number of iterations. It seems that Weighted MSA may 
outperform Restart MSA, while Double MSA algorithms do not improve over the others. 
Anyhow further analysis is needed to better compare MSA variants. 

5. CONCLUSIONS 
In this paper SUE assignment for transit systems, considering pre-trip / en-route path choice 
behaviour is studied. This problem is relevant for urban transit networks, where travelers 
may not completely know the status of service, say bus arrivals at stops, and may choose only 
a travelling strategy at origin. Under mild assumptions such strategies can be modelled as 
hyperpaths; then, hyperpath choice behavior can be modelled through Random Utility Models 
applied to the set of (elementary) hyperpaths, such as Probit and Gammit; these models allow 
for general co-variance matrices but their application requires Montecarlo techniques. Several 
MSA-based algorithms have been presented and compared on a simple network using two 
different Pseudo-Random Number Generators: Mersenne Twister and Sobol, showing that all 
algorithms based on Sobol quasi-random numbers greatly outperform the others, and that 
MSA variants outperform basic MSA. 

In a future paper a comparison of MSA-FA with MSA-CA algorithms as well as theoretical 
considerations on convergence will be addressed. Other methods to generate pseudo-random 
numbers needed to Montecarlo technique will also be analyzed. Results of an application to a 
real-size network will also be discussed.   

Also worth of further research effort is the analysis of low frequency transit systems where 
a user chooses a sequence of runs leading to the so-called scheduled-based assignment; this is 
often the case for extra-urban trips, on trains, air flights, … . 

 



11 
 

 

Figure 7. The transit test system 

 

 
 

Figure 8.  The transit lines 
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Figure 9. Values of the convergence index - internal SNL iteration = 10 

 
Figure 10. Values of the convergence index - internal SNL iteration = 20 
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