Extended abstract prepared for hEART2014

Considering Overtaking and Common Lines in the Bus Bunching Problem

Ronghui Liu*1, Jan-Dirk Schmöcker2, and Achille Fonzone3

1 Institute for Transport Studies, University of Leeds, UK
2 Department of Urban Management, Kyoto University, Japan
3 Transport Research Institute, Edinburgh Napier University, Napier University, U.K.,

\[
t_{mn} = m \tau + n(k \tau + T) + \alpha \frac{(n+m-2)!}{(n-1)!(m-1)!} \left[\frac{k}{k-1} \right]^{m-1} \left[\frac{1}{1-k} \right]^{n-1}
\]

(1)

\[
p_{nm(i)} = \int_0^\infty \hat{f}(\tau_{nm(i)}) \prod_{j \in L^m_{nm}, m(j) \neq m(i)} \text{Prob} \left(E(\tau_{nm(j)}) > \tau + E(g_{nm(i)}) \right) \, d\tau
\]

(2)

\[
k_{nm(i)} = \frac{\sum_{s} A_{nm(i)}^s p_{nm(i)}^s}{B_{nm(i)}}
\]

(3)

Fig. 1 Time of bus 1 (blue) and bus 2 (red) traversed through bus stops.

Fig. 2. Top: Two bus lines sharing the same stops, bottom: separate stops for both bus lines.

* Corresponding author: Tel: +44 113 343 5338, Fax: +44 113 343 5334, Email: r.liu@its.leeds.ac.uk.