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Abstract: The paper considers the interaction between traffic control policies 
and route choice. 
 
The main purpose of this paper and previous work  
 
This paper is designed to illuminate the interaction between various signal 
control policies and travellers’ route choice decisions. A long term objective 
of the paper is to help identify and / or design distributed urban traffic control 
systems which make the best of limited urban network capacity while taking 
reasonable account of route choices and being reasonably “fair”. 
 
The paper considers models of traffic signal control and route choice which 
explicitly involve  
   queues, flows and signal green-times  
when there are responsive signal timing systems in place and travelers may 
change route.  
 
Our main objective is to display some characteristics of certain distributed 
control systems when these interact with routeing decisions under a variety of 
assumptions. The distributed control systems include the distributed 
backpressure control systems designed by Varaiya (2013) and Le et al (2013), 
and the non-backpressure control system designed by Smith (1979, 1987).  
 
The following particular results will be proved: 

1. While the Varaiya control is queue-stabilising (see Varaiya (2013)) the 
routes determined by the Varaiya backpressure algorithm are typically 
not user-equilibrated; and, further, the control is not queue-stabilising 
when route choices are allowed for.  

2. While the Le et al control is queue-stabilising (see Le et al (2013)) the 
routes determined by the Le et al backpressure control are not typically 
user equilibria; and, further, the control is not queue-stabilising when 
route choices are allowed for.  

3. P0 control is queue stabilizing when the routes are in user equilibrium; 
and, further, the control is queue-stabilising when route choices are 
allowed for.  

 
The above results will be shown to hold within a quasi-dynamic vertical 
queueing environment. (This is a dynamic environment in which the inflows 
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are stationary deterministic or stationary stochastic processes and queue 
evolution is realistic (see Thompson and Payne (1975), Bliemer et al (2012) 
and Nesterov and de Palma (2003)); but vehicles are very short.) The paper 
will extend both the negative and positive results 1-3 above to embrace  

(a) a peak period where the inputs are not stationary;  
(b) different signal control models and strategies; and 
(c) spatial queueing and blocking back as opposed to vertical queueing.  

These extensions in certain cases are quite simple but in other cases are quite 
complicated. 
 
Specifically, in relation to (b) above, (i) the back-pressure idea allows a whole 
family of models depending on what (monotone increasing) function is used to 
map queue length to stage pressure; (ii) there is some subtlety and various 
choices in how a macroscopic fluid-like control is mapped onto discrete (in 
time) decisions of when the stage should be changed; and (iii) in this vein 
there are several different modelling choices for how within-cycle queuing 
dynamics should be locally time-averaged. We will explore these issues in the 
paper. 

Schlaich and Haupt (2012) have implemented a dynamical (route-choice)-
(green-time) system within VISUM software with the equisaturation policy. 
See Taale and van Zuylen (2001) for a review of the assignment and control 
problem. See also Yang and Yagar (1996).  
 
Summary of the paper 
 
The hEART paper will have three sections.  
 
Section 1. STATICS.  
 
This section will consider the three controls above from a steady state 
equilibrium viewpoint. This will assume that travellers are accurately routed 
along their cheapest routes and the three policies are precisely satisfied. So 
here we are concerned with consistency:  
   are the control policies consistent with user equilibrium? 
It will be shown that neither the Varaiya nor the Le et al policies are certainly 
consistent with user equilibrium. This will be done by giving a feasible 
[network + demand] with no (flow, green-time) pair where the green-time 
satisfies the control policy and the flow is a user-equilibrium. 
 
Finally, it will be shown - initially by considering a simple network with one 
OD pair and 2 alternative branches (similar to that depicted in figure 1 below) 
- that route choice combined with backpressure control strategies can lead to 
multiple user equilibrium solutions that coexist at the same input parameter 
values. These solutions include (flow, green time) patterns that represent an 
extremely inefficient use of the infrastructure. Moreover, without a more 
detailed dynamic analysis (see section 2), it is impossible to say a priori which 
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of the equilibria would be selected in practice, so the performance of such 
networks can be considered to be highly unpredictable.  
 
We also provide the results of some initial numerical studies for more 
complicated networks - specifically, random planar graphs - which show that 
such coexistence effects are widespread and not just a feature of pathologically 
simple examples. In fact, broadly speaking, as networks grow in size, the 
number and structure of such coexisting equilibria can become bewilderingly 
complex.   
 
Section 2. DYNAMICS.  
 
This section will consider disequilibria. Dynamical systems, involving route-
swapping, queues which grow and shrink, and green-time swapping, will be 
considered and their stability properties analysed for each of the three policies. 
In the detailed model described in section 2, route switches will follow a 
development of the proportional switch re-routeing method (PAP) of Smith 
(1984c) to imitate how travellers change routes. The whole dynamical system 
will not be entirely realistic as flows may exceed capacity within these 
systems; so the dynamics here must take place within a computer model. It 
will be shown that with P0 the dynamical system must be stable under certain 
natural conditions and that the Varaiya and the Le et al policies may or may 
not be stable under those conditions.  
 
The dynamical structures which arise imply differing types of stability for 
some of the equilibrium (flow, green time) patterns found in Section 1. This 
means that the tools of bifurcation theory can be used to begin to understand 
how coexisting equilibria arise as parameters are swept. Specifically, in a 
symmetric 2 branch network, the backpressure policies can cause the desirable 
symmetric distribution of flow to lose stability via a subcritical pitchfork 
bifurcation. Dynamically, there is sometimes a region of bistability where the 
unstable bifurcating "branch" of solutions acts as a separatrix that divides 
those solutions converging to the symmetric state from those solutions 
converging to a large amplitude symmetry-broken alternative. The fate of 
dynamical trajectories in such regimes thus depends very heavily on the initial 
data.  
 
 
Numerical bifurcation theory provides a set of tools for tracing out solution 
branches which in larger networks can undergo further secondary bifurcations. 
Tracing out branches in the graph (parameter, solution) space turns out to be 
the most efficient way of finding the very many competing equilibria in larger 
networks and we will provide some worked-through examples. 
 
Section 3. NEAR REALISTIC AND REALISTIC DYNAMICS.  
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This section will show that the dynamics in section 2 may be distorted by 
letting a parameter tend to infinity; the dynamical system in section 3 then 
becomes arbitrarily close to realistic dynamics where link exit capacities are 
not exceeded. It will be shown that the Section 2 stability/instability results 
hold here too. In this section *** we hope to show *** that “in the limit” the 
realistic dynamics will again possess the same stability results. In any case the 
instability results involving the Varaiya and Le et al policies do hold in “the 
realistic limit”.  
 
In this abstract we give some mathematical detail for section 1 alone.  
 
SECTION 1. SOME DETAIL. 
 
Here we show that the Varaiya policy is sometimes not compatible with user 
equilibrium. (In Varaiya (2013) route choices are not necessarily user 
equilibria under the max-pressure control.) We will use the simple example 
network in Figure 1. 
 
 

 
 

 
 
 
 
 
 
 
 
Figure 1. A four route signal controlled network; links 1, 2 and 3 have 
saturation flow 1 v/sec; link 4 has saturation flow3 v/sec.  Stage 1 contains 
links 1, 2 and 3; stage 2 contains link 4. 
 
Consider the network in figure 1 in a steady (quasi-dynamic) state with 
queueing delays. Let   

 si  =  the saturation flow at the link i exit (in v/sec);   
C = the freeflow cost/time of travel via routes 1, 2, 3 and 4 (seconds;     
        constant);  

 bi  =  the bottleneck delay at the link i exit (secs, for I – 1, 2, 3, 4);   
 gi  =  the green-time at the link i exit (secs);    

Xi =  the flow on route i (v/sec); 
 G1 =  the proportion of time that stage 1 is green; and 
 G2 =  the proportion of time that stage 2 is green. 
Further, assume that there is a green-time constraint. This is: G1 / G2 ≤ 4/3.  
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Initially we suppose vertical queueing; so that the cost of traversing route i is 
C + bi. This will be relaxed.  Assume also that queue volumes, experienced 
delays and green-times are related by:  
 b1=Qi/gisi 
where gi is the green-time proportion felt by link i. This equals either G1 or G2. 
 
Since the free-flow travel times along the four routes are equal (to C secs), at 
a user- equilibrium all bottleneck delays will be equal.  
 
Suppose now that there are queues on the network, that the network is in a 
user-equilibrium state and that the green times given to stages 1 and 2 are 
according to Varaiya (2013). Assume that link 5 has a very high capacity and 
that we think of there being zero queue on link 5 so that the backpressure is 
zero. (We could regard any queue on link 5 as being already at the 
destination.)  
 
Then as we are at a user equilibrium all four bottleneck delays bi = Qi /sigi  are 
equal and so:  

Q1 /s1g1  = Q2 /s2 g2 = Q3 /s3 g3 = Q4 /s4 g4 .  
Then, using the given saturation flows,  
 Q1 / G1  = Q2 / G1 = Q3 / G1 = Q4 / 2G2. 
So 

Q1=Q2=Q3 =(Q4 /2)(G1 / G2) < (Q4 /2)(4/3)=(1/3)(2Q4) 
by the green-time constraint. Adding the three inequalities:  
 Q1 + Q2  + Q3  < 2Q4  
or: 
 s1Q1 + s2Q2  + s3Q3  < s4Q4   
 
Thus at any equilibrium  

stage 2 pressure = s4Q4 > s1Q1 + s2Q2  + s3Q3 =  stage 1 pressure;  
so all green goes to stage 2; and that remains as such swaps will keep the 
above inequality. 
 
The capacity of this network at equilibrium can therefore not exceed 2 v/sec at 
a user equilibrium when the Varaiya backpressure control is utilised. If the 
demand is greater than this then user equilibrium and the control policy cannot 
co-exist (with positive queues). A similar argument in the paper will show the 
same thing for the Le et al backpressure control. 
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