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Abstract 

A matrix estimation method using the semi dynamic assignment model STAQ is developed exploiting its methodological 
advantages over full DTA models. The matrix estimation problem is formulated as a bi-level problem and is solved on the node 
level taking flow metering into account. In the lower level the method uses marginal simulation of the node model within the 
assignment model to approximate the response function. The implicit relations between link flows and turn demand as defined by 
the directional capacity proportional node model are analyzed and made explicit. In the upper level an objective function 
minimizing differences between estimated and observed link flows and differences between prior and posterior ODmatrix is 
used, both components using a GLS distance function. The two components in the objective function are weighted and 
normalized. A method to prevent overshooting due to approximation errors is proposed as well as a method to correct the prior 
ODmatrix in case of insensitivity of the link flow due to supply constraints inconsistent with observed link flows. Test runs are 
conducted showing that the method finds (non-unique) solutions to the matrix estimation problem when only differences in link 
flows are taken into account, but may fail to converge when also differences between prior and estimated ODmatrix are taken 
into account.  Further investigation suggests that secondary interaction effects should be included in the response function to 
solve the problem in these cases. 
 
© 2015 The Authors. Published by Elsevier B.V. 
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1. Introduction 

The majority of strategic transport model systems used today use classical static traffic assignment (STA) 
models. STA models assume separable monotonously increasing travel time functions, yielding computationally fast 

 

 
* Corresponding author. Luuk Brederode Tel.: +31627369830; fax: +31570666888. 

E-mail address: lbrederode@tudelft.nl 



2 Luuk Brederode et al./ Transportation Research Procedia 00 (2015) 000–000 

and scalable models with desirable convergence properties needed for strategic large scale transport model systems. 
In these systems, the same STA models are used to derive the relation between origin-destination (OD) travel 
demand and link flows (the so called assignment matrix) for estimation of the OD (travel demand) matrix. Matrix 
estimation methods using STA models have been studied extensively and are readily available, see e.g. Cascetta 
(2001) and references herein.  

However, link flows and speeds from STA models do not correspond to empirically supported traffic flow theory 
that describes the relation between flow, speed and density in the form of a fundamental diagram. This is mainly 
caused by the lack of a true capacity constraint and a congested branch in travel time functions used in STA models. 
This becomes clear when the relation between flow and speed from a cost function from a STA model is compared 
to this relation in a fundamental diagram. The cost function and fundamental diagram behave similarly whenever the 
road segment is in uncongested state, where larger flows correspond to lower speeds (and higher densities). Critical 
differences however occur in congested state, where the cost function allows flows to exceed capacity, while in the 
fundamental diagram flows are monotonically decreasing when the density exceeds the critical density.  

Therefore, STA models cannot cope with capacity constraints, nor represent the physical effects of congestion 
(flow metering and queue formation). This means that matrix estimation procedures using an assignment matrix 
from an STA model are not able to correctly incorporate flows observed on links in congested state, as these will be 
interpreted as uncongested flows by definition.  

Macroscopic dynamic traffic assignment (DTA) models typically use a fundamental diagram and therefore 
incorporate capacity constraints and physical effects of congestion. However, these models are poorly scalable, data 
intensive (i.e.: they need dynamic travel demand matrices), have convergence issues and suffer from a decreased 
stability and tractability, mainly because the (implicit) travel time functions in a fundamental diagram are non-
separable across both space and time. 

This paper focuses on matrix estimation for strategic transport model systems using a model that combines 
advantages of STA and DTA models: Static Traffic Assignment with Queuing (STAQ, Brederode et al. 2010, 
Bliemer et al. 2012). Following the unified framework for traffic assignment models described in Bliemer et al. 
(2014) STAQ is typified as a semi-dynamic model. It consists of a node- and a link- model and makes use of route 
fractions from a route choice model. STAQ accounts for flow metering and queue formation, but does not use a time 
dimension to propagate traffic through the network. Instead, all demand is assigned to the network in a single time 
period where a vehicle may either reach its destination or remain in a traffic queue. Queues start to grow from nodes 
where the (reduced) supply on downstream links is restrictive, while the node model distributes the available supply.  

Similar semi-dynamic models (but without spillback) are described in Kohler and Strehler 2010, Smith 2012 and 
Bliemer et al. 2013. In Smith et al. 2013 a similar semi-dynamic model with spillback is described, however without 
a proper node model. Other semi dynamic models with spillback (e.g.  Bifulco and Chrisalli 1998, Lam and Zhang 
2000, Bundschuh 2006, 4Cast 2009) use link exit capacities, but this approach unrealistically locates queues inside 
the bottleneck links contrary to upstream of the bottleneck. In this paper STAQ is used, but findings may apply to 
any (semi-)dynamic model that uses a node model that accounts for supply constraints.  

1.1. Contributions 

To the best of our knowledge, this contribution is the first to propose a matrix estimation method using a semi-
dynamic model. We show how matrix estimation for semi dynamic models is unique in that it can benefit from both 
low data requirements due to the absence of a time dimension (similar to STA models, but contrary to DTA models 
where multiple time slices are estimated) as well as the inclusion of traffic count observations in the congested 
regime (similar to DTA models, but contrary to STA models where queue formation is not modelled). Also, our 
proposed method exploits the properties of the STAQ model leading to the following methodological advantages:  
• The assignment matrix (capturing the relation between link flows and OD-flows) is directly derived from the 

reduction factors on turn level, one of the variables in STAQ. 
• The response function with respect to flow metering is numerically approximated by a marginal simulation of 

the node model, without the need to (iteratively) run the full simulation model. 
• The upper and lower bounds of demand-change for which the first order approximation of the response function 

is valid, can be derived.  
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Furthermore, this paper is the first to make the relations between demand and supply existing in the directed 
capacity proportional node model explicit and shows that interaction effects between demand on different paths 
plays a major role in matrix estimation when using such a node model.  

2. The matrix estimation problem 

The (travel demand) matrix estimation problem is often formulated as a bi-level optimization problem where in 
the upper level differences between observed and modelled link flows and OD-demands are minimized, while in the 
lower level the traffic assignment problem is solved using a STA or DTA model. The matrix estimation problem 
using STA models is a Cournot-Nash game that is solved by alternatingly solving the lower and upper level 
problem, whereas the matrix estimation problem using DTA models is a Stackelberg game that can only be solved 
when the response function (i.e. the response of the link flows to changes in OD-demand) is incorporated into the 
upper level objective function.  

Consider a general network ( , )G N A= where N denotes the set of nodes and Adenotes the set of directed 
links. Let R N⊂ and S N⊂  be the set of origins and destinations respectively and RS R S= × the set of all OD-
pairs. Furthermore, let A A⊂ɶ  be the set of links for which flow has been observed (from now on ‘observed links’). 
The matrix estimation problem can now be formulated as:  

[ ]*
1 0 2arg min arg min ( , ) ( ( ), )F f f= = +

D D
D D D y D yɶ  (1) 

where F denotes the upper level objective function to be minimized, *D , D and 0D denote vectors containing 
posterior, current and prior (or observed) OD demand respectively for all OD pairs in RS, ( )y D and yɶ  denote 
vectors of estimated and observed link flows inAɶ  and 1f and 2f  denote distance functions measuring the differences 
between observed and estimated demand and flows. In the upper level, Equation (1) is solved given some response 
function ( )y D  from the lower level. For methods that use separable cost functions (typically STA models), 

( ) ( )=y D M D D  (2) 

where, the assignment matrix ( )M D is a matrix of size A RS×ɶ  that follows from the assignment model, and is 
incorporated from the lower level into the upper level. For methods that use non-separable cost functions, such as 
DTA and semi dynamic assignment models, 

( )
( ) ( )

d

d

 
= + 
 D

M D
y D M D D

D
 (3) 

where also changes in the assignment matrix due to changes in the demand are accounted for (by the differential 
function). Note that in DTA models vectors D and ( )M D are expanded by a time dimension T denoting the 
number of time intervals modelled.  

2.1. Relation with the network loading and route choice model 

In the matrix estimation problem, the assignment matrix expresses the interaction effects between supply and 
demand on the network, which originate on locations where demand exceeds the network supply. STAQ is a 
network loading model describing such interaction effects. Within the network loading model, nodes represent 
(possible) spatial discontinuities in travel demand (i.e. merge/diverge) and/or link capacities. These discontinuities 
can cause the formation of boundaries between traffic states in the form of shockwaves. The node model describes 
macroscopic behaviour of drivers confronted with such discontinuities on nodes. As such, the node model defines 
the locations where congestion is initially formed along with the congestion severity. Furthermore it defines how 
shockwaves are ‘distributed’ over ingoing and outgoing links (from now ‘inlinks’ and ‘outlinks’) whenever they 
encounter a node. These shockwaves are passed on to the link model in the form of turn based reduction factors, the 
link model propagates these reduction factors over links.  

These turn based reduction factors can be translated into path based reduction factors by:  
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ˆ
ap

ap ij
ij IJ

α α
∈

= ∏  (4) 

where ijα is a turn based reduction factor on a turn from inlink i to outlink j determined by the node model and apIJ  
is the set of turns used by path p when travelling from origin to link a. The path based reduction factors ˆapα describe 
the fraction of traffic on path p that is not held up by supply constraints upstream from link a and can be combined 
with route fractions from the route choice model to determine elements in the assignment matrix by:  

ˆ
a

rs rs
a p ap

p P

m ψ α
∈

= ∑  (5) 

where rs
am is the fraction of demand from OD pair rs that flows over link a (and represents one element in M ), rs

pψ
is the fraction of demand from OD pair rs that chooses to use path p and (determined by the route choice model) and 

aP  is the set of paths using link a. Note that due to properties of the node model used in STAQ, reduction factors for 
all turns on an inlink of node are equal by definition, thereby also defining a relation between turn based and link 
based reduction factors.  

In this paper we develop a method to solve the matrix estimation problem on the node level, thus taking into 
account interaction effects between demand on turns and supply on outlinks of a node, causing flow metering. 
Interaction effects on the level of links and paths are considered exogenous in the remainder of this paper. This 
means that route fractions and reduced supply of outlinks due to spillback from other supply constrained nodes 
downstream are assumed to be given. Then we can express OD demand on the path level using 

rs
p rs pD D ψ=  (6) 

and the assignment entails merely a run of the STAQ propagation model translating path demands into link flows 
and speeds. Note that for notational convenience, in the remainder we will omit superscript rs from path variables 
(as a path implies the origin and destination), unless strictly necessary. 

Note that route fractions and reduced supply are both explicit variables from the STAQ assignment model, and 
that the method described in this paper allows for future extensions to incorporate interaction effects caused by these 
phenomena, through the relations between reduction factors on the level of turns, paths, links and OD pairs 
described by equations (4) and (5). 

3. Proposed method: lower level 

In order to solve the bi-level problem, both upper levels and lower levels are solved iteratively. In each iteration: 
• in the lower level one STAQ assignment is run yielding the assignment matrix and corresponding link flows. 

Furthermore, several marginal runs of the node model within STAQ are performed, yielding the approximated 
sensitivity of the assignment matrix to changes in OD-demand without the need to (iteratively) run the full 
simulation model.  

• in the upper level, the assignment matrix and its approximated sensitivity from the lower level are used to find 
the OD matrix that minimizes differences between modelled and observed link flows and differences between 
estimated and a prior OD matrix.  

A general description of STAQ is already given in section 1, along with references to detailed descriptions. A 
general overview of the method used in the lower level is described in section 3.1. The method involves marginal 
simulation using only the node model within the assignment method as described in section 3.2. A description of the 
node model used in STAQ is given in section 3.3, whereas. Section 3.4 describes how this node model defines the 
relation between demand, flow and the assignment matrix on turn and link level using a numerical example. Based 
on insights from section 3.4, properties of the node model relevant for the matrix estimation problem are described 
in sections 3.5.  
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3.1. Approximation of response function 

In line with the state of the art matrix estimation methods for DTA models Frederix (2012) derived the first order 
Taylor approximation of the response function as: 

0, 0,
1 1 1

ˆ ( )
ˆ ( ) ( )

a a

tkk k k
apk tk t t t t

a ap p p p pt
t t p P tp P p P p

d
y D D D D

dD

α
α ′ ′

′= = ∈ = ′∈ ∈

 
 = + −
 
 

∑∑ ∑∑ ∑∑
0

0

D

D
D  (7) 

where k
ay  denotes the inflow of link a during time period k, 0,

t
pD  and t

pD  are the prior and posterior demand for 
path p departing in time period t respectively, ˆ tk

apα (one element in the assignment matrix given fixed route fractions) 
is the fraction of 0,

t
pD  that enters link a during time period k, and P  is the set of all paths. The second term in (7) 

describes the first order effects.  
In STAQ, the time dimension is absent and response function (7)  simplifies to: 

0, 0,
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0
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that is separable across time periods, but inseparable across all paths. This means that the derivatives in the second 
term usually are approximated through complete runs of the assignment model, as done in finite difference methods 
and SPSA (Spall 1998). This entails both very large calculation times and tedious tuning of algorithmic parameters 
(Cipriani et all 2012).  

Using STAQ, such methods can be avoided by use of the turn based reduction factors ijα  that are endogenous 
variables of STAQ. These reduction factors represent the ratio between the demand and realised flow on a turn ij  
and are calculated by the node model. Derivatives of the reduction factors on turn level to demand on path level (

/ij pd dDα ) can be derived as follows. First, /ij pd dDα is approximated using the node model. This approximation 
only requires several runs of the node model that comes at negligible computational cost compared to full simulation 
runs as required in other methods. Then, the derivative of an element in the assignment matrix (given fixed route 
fractions) can be calculated using the product rule: 

ˆ /

apap

ap ij p
ij

ij IJij IJp ij

d d dD

dD

α α
α

α∈∈

  
=     

  
∑∏  (9) 

Note that changes in the assignment matrix as a result of changes in demand may itself result in additional 
changes in demand (which we will call secondary interaction effects). By using partial derivatives only to each 
single OD pair we assume that such secondary interaction effects are negligible. Also, because of the marginal 
simulation on node level, the proposed method cannot be used to calculate derivatives to demand on paths that do 
not use link a. 

3.2. Marginal simulation: the node model 

Below, the notation that will be used to describe the node model is presented. Consider a node n  connected to a 
set of inlinks nI  and a set of outlinks nJ  forming the set of turn movements using the node n n nIJ I J= × . 
Furthermore, we define the set of outlinks directly related to inlink i as { | 0}i ijJ j D= >  and the set of inlinks 
directly related to outlink j by { | 0}j ijI i D= > . 

For all n N G∈ ⊂ a node model ( )nΓ ⋅  is defined that calculates the vector of turn-flows ny over n  as a 
function of the vector of travel demand for each turning movement on the node (nD ), the vector of link capacities 
of inlinks ( nC ) and the vector of supply constraints on the outlinks of the node ( nR ) defined by link geometry or 
spillback from downstream  supply constraints. This yields: 
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( , , )

where: { },

{ },

{ } and

{ }

n n n n n

n ij n

n ij n

n i n

n j n

y ij IJ

D ij IJ

C i I

R j J

= Γ
= ∀ ∈
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= ∀ ∈
= ∀ ∈

y D C R

y
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R

  (10) 

The (reduced) demand on turn level for turns over the considered node is calculated by summing all (reduced) 
demand of paths using that turn:   

ˆ
ij

ij ij p
p P

D Dα
∈

= ∑  (11) 

where pD is calculated by the route choice model using (6) and ˆijα is calculated using (4) as part of the propagation 
model combining results from upstream node models. Once solved, turn based reduction factors can be derived by: 

/ij ij ijy Dα =  . (12) 

Using the node model a point derivative of ijα to any ijD can be approximated by running the model twice 
around the current value of ijD . These point derivatives are then used as an approximate of ( ) /d dA D D  in the 
upper level. It is important to note here, that by approximating derivatives we determine all the partial derivatives 
(forming the Jacobian), but we choose to omit approximating secondary interaction effects, since we assumed that 
these effects are negligible (section 3.1). This means that we omit the fact that when simultaneously changing 
multiple elements in D, the effect on A might not be simply the sum of the effects of changing D sequentially per 
OD pair.  

Further note that supply constraint values in nR are equal to or lower than the link capacity of the outlink, 
depending on the state of the outlink defined by the link model. For the sake of simplicity, in this paper, constraints 
imposed by geometry of the node itself (the so called internal node constraints) are assumed to be non-existent.  

3.3. The node model used in STAQ  

The node model used in STAQ is adopted from Tampère et al (2011) who describe a set of requirements for 
realistic first order macroscopic node models that yield consistent solutions, along with the specification of a node 
model that complies to these requirements (which is adopted in STAQ). One of the requirements is that the node 
model should contain supply constraints limiting the amount of traffic that can flow into an outlink by the capacity 
or reduced supply of that outlink. If supply constraints are active, the limited supply of an outlink must be 
distributed over the different turning movements towards this link according to so called supply constraint 
interaction rules (SCIR).  

Smits et al. (2014) define a generic class of first order node models based on the requirements by Tampère et al. 
(2011) and point out that adding a specific set of SCIR leads to a specific node model. They identify SCIR for 
different node models found in literature and point out that the node model described by Tampère et al (2011) is 
equivalent to the  model described in Flötteröd and Rohde (2011) and uses directed capacity proportional 
distribution as SCIR. This means that whenever turning movements from multiple inlinks are competing for supply 
of one outlink, the available supply is distributed proportional to the directed capacity of the competing turn 
movements defined as:  

i

ij
ij i

ij
j J

D
C C

D
∈

=
∑

  (13) 
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As Smits et al (2014) point out, due to the SCIR in this node model, each turning movement can only be 
affected by one constraint. Therefore the proportionality only holds for inlinks that are not affected by another 
(supply or demand) constraint. 

Following one of the other requirements (the conservation of turning fractions) the node model assumes FIFO 
which means that the SCIR implicitly also determines the indirect effects of supply constraints on turning 
movements sharing an inlink with turning movements affected by the supply constraint. This means that, because of 
FIFO, ijα is equal for all turning movements that share the same inlink, thus ij iα α=  and we  can define 

{ }n i ni Iα= ∀ ∈α .  
The solution algorithm for the directed capacity proportional node model that is proven to converge to the unique 

solution of directional supply constrained SCIR can be found in Tampère et al. (2011), Flötteröd and Rohde (2011) 
and Smits et al (2014). For convenience of the reader, the algorithm using notation from this paper can be found in 
appendix 1. The solution algorithm shows that it is needed to sequentially handle each outlink, because available 
supply in an iteration k

jRɶ and the sets of turns competing for this supply k
jI are dependent on demand constraints 

(by lines (10) and (12) of the algorithm) or more restrictive supply constraints (by lines (21) and (24)) handled in 
previous iterations k. 

Within one iteration of the algorithm, turn flows are determined for turns on one or more inlinks constrained by 
the most restrictive outlink in that iteration ĵ  by: 

ˆ

ˆ

ˆ ˆ .

k
j

k
ijj k

ij ijj j
ij

i I

R C
y C i I

C
β

∈

= = ∀ ∈
∑

ɶ

  
(14) 

Then, reduction factors for these inlinks can calculated using:  

ˆ .
ij k

i j
ij

y
i I

D
α = ∀ ∈   (15) 

3.4. Approximating derivatives using the node model 

From section 3.3 we conclude that the supply constraints of the node model, together with the SCIR actually 
define the relationship between ny  and nD  and ultimately nα and nD . For the node model used in STAQ, these 
relations are implicit, but can be made explicit within one iteration of the solution algorithm as shown in equations 
(14) and (15). In order to be able to use the node model to numerically approximate /ij pd dDα , some properties of 
these implicit relationships are of importance. To get insight into the implicit relations, we use the numerical 
example presented in section 2.1.4 of Tampère et al. (2011) as a starting point. This example is summarized in Fig. 
1, which displays both input and output of the node model. For all inlinks (marked O1-O4 in grey) input consists of 
link capacities (displayed in italics) and demand for each turn (‘turn demands’, displayed in normal font). For all 
outlinks (marked D1-D4 in grey), input consists solely of link capacities (displayed in italics). Output consists of 
flows per turn from each inlink (displayed bold-green (when demand constrained) or bold-red (when capacity 
constrained)) and total flows per outlink (displayed in bold-black). 

In line with the solution algorithm, we ‘explain’ the numerical example by handling all outlinks sequentially 
starting with the most restrictive, distributing remaining supply over competing inlinks in each iteration. Comparing 
total turn demand towards each outlink with the capacity of the respective outlink shows that only outlink D3 is 
capacity constrained and as such is the most restrictive outlink with competing turns O1D3, O2D3 and O4D3. When 
distributing the supply of D3 proportional to the directional capacities of its competing turns, demand on turn O1D3 
turns out to be less than its rightful share. Therefore turn O1D3 is demand constrained and all turn demand from 
inlink O1 can be accommodated (1 1α = ). The remaining capacity on outlink D3 (850) is distributed over O1D3 and 
O4D3 proportional to the directional capacities of these turns. This yields 4 1α <  and 2 1α < . Inlink O3 is demand 
constrained, therefore 3 1α = . 

To demonstrate the mechanisms resulting from the directional capacity constrained distribution as SCIR we now 
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vary the demand on turn O1D4 from 0 to 800 (its maximum possible value, given the inlink capacity and demand of 
other turns on the inlink). Resulting values of nα are displayed in Fig. 2. From this figure, we see that 

14/ 0id dDα = whenever 14 304D ≤ . The reason for this is that for this range of 14D inlink 1 stays demand 
constrained and demand towards the only constraining outlink (D3) is not influenced by 14D . For 14305 390D≤ ≤  
inlink 3 becomes capacity constrained by outlink 4, whereas inlink 1 stays demand constrained and inlinks 2 and 4 
stay supply constrained by outlink 3 (which is still the most constraining outlink overall). This means that any 
increase of 14D  in this range does not reduce the available supply available for inlink 1 (since it is demand 
constrained) whereas the turn flow from inlink 2 remains constant (since it is supply constrained by the more 
restrictive outlink 3). Therefore, all extra demand from inlink 1 is directly translated to turn flows, reducing the 
available supply for inlink 3 ( 4 14

kdR dD= −ɶ ). In terms of derivatives of equations (14) and (15), this means that for 
this range of 14D :  

4 4

34 34 34 3 34

14 4 14 34 44

and 0.00167

k k

k
i i

i I i I

dy dy C d C

dD C dD D CdR

α

∈ ∈

= = − = − ≈ −
− ∑ ∑ɶ

  
(16) 

which is the slope of the linear decrease of the green line between 305 and 390 in Fig. 2.  
 

Fig. 1 numerical example of node model used in section 2.1.4. of Tampère et al 
 

For 14391 456D≤ ≤  outlink 4 becomes the most constraining outlink, constraining both inlinks 2 and 3. Outlink 3 
remains constraining inlink 4, whereas inlink 1 remains demand constrained. This means that for outlink 4, any 
increase of 14D  in this range does not reduce the available supply for inlink 1 (since it is demand constrained), but 
does reduce available supply for inlinks 2 and 3. 

Similar to the previous situation, all extra demand from inlink 1 is directly translated to turnflows, reducing the 
available supply for inlinks 2 and 3 ( 4 14

kdR dD= −ɶ ). In terms of derivatives of equations (14) and (15), this means 
that for this range of 14D : 
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4 4

24 24 24 2 24

14 4 14 24 44

and 4.25 04

k k

k
i i

i I i I

dy dy C d C
E

dD C dD D CdR

α

∈ ∈

= = − = − ≈ − −
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; 
(17) 

4 4
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and 5.32 04

k k

k
i i

i I i I

dy dy C d C
E

dD C dD D CdR

α

∈ ∈

= = − = − ≈ − −
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, 
(18) 

which correspond to the slopes of the linear decrease of the green and red lines between 391 and 456 in Fig. 2. 

 
Fig. 2: reduction factors nα  when varying 14D  

 
The reduction factor of inlink 4 increases linearly due to the decreased competition of demand from inlink 2 

(since it is now constrained by outlink 4). To calculate 43 14/dy dD  we translate 43y  in terms of 14D : 

3
3

2 2
4 4

3
3 43

43
3

3 1 1
3 3 13 23 3 13 4 23

2 1
1 14 23 4 14 23
3 13 3 13

4 4

,where

( )

i
i I

i i
i I i I

R C
y

C

R R y y R D C

R C R D C
R D R D

C C

β
∈

∈ ∈

=

= − − = − −

−
= − − = − −

∑

∑ ∑

ɶ

ɶ ɶ

ɶ ɶ
ɶ ɶ

 (19) 

which is recursive calculation of (14) over iterations, taking lines (10), (12), (21) and (24) of the algorithm described 
in appendix 1 into account. Using (19) we can calculate 43 14/dy dD  as:  
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which correspond to the slopes of the linear increase of the purple line between 391 and 456 in Fig. 2. 
For 14457 800D≤ ≤  inlink 1 also becomes capacity constrained by most constraining outlink 4, whereas inlink 

4 stays supply constrained by outlink 3. There are no demand constrained inlinks anymore. This means that for 
outlink 4, any increase of 14D only changes the distribution of the supply constraint between inlinks 1, 2 and 3 from 
inlinks 2 and 3 to inlink 1. Considering inlink 3:  

1
4

1
4 34

34
4i

i I

R C
y

C
∈

=
∑

ɶ

, (21) 

taking the derivative to 14D (see appendix 2 equation a1 for derivation) yields:  

[ ]
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2
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* * ( )

( ) ( )( )

dy R C C D D

dD D C C C D D C C

− +
=

+ + + + +

ɶ

 (22) 

which, when divided by 34D , describes the slope of the green line between 457 and 800 in Fig. 2. A similar 
derivation (see appendix 2 equations a2 and a3) holds for inlinks 1 and 2, yielding derivatives of the same form: 
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  (24) 

The derivatives are nonlinear function ' ': ij i jf dD dy→  in the form of 
2

1 2 14 3/( )c c D c+ , where 1c , 2c  and 3c  are 
constants composed of the supply of the considered outlink, directional capacities of other turns towards this outlink, 
the turn demands on turns sharing the inlink with 14D  and the capacity of that inlink.  
 The only remaining inlink 4 is constrained by outlink 3, but this is not the most restrictive constraint. Therefore, 
some of the capacity of outlink 3 is already used by turns from inlinks 1, 2 and 3 before the constraint of outlink 3 
becomes active. In terms of equation (14), this means that, due to the effect of turns restricted by outlink 4 its 
enumerator changes nonlinearly in a positive sense ( ˆ 14/ 0k

j
dR dD >ɶ ), since competition by turns O1D3 and O2D3 

decreases due to the increased share of turn O1D4, leaving more room on outlink D3 for turn O4D3. The 
denominator in equation (14) is a constant, since turn O4D3 is the only turn ‘competing’ for outlink D3 (i.e.: the 
denominator only contains the directed capacity of O4D3). The derivative now becomes (see appendix 2 equation 
a4):  

( )
[ ]

1
4 13 2 23 1 24 3443

2
14 1 14 12 13 14 24 12 13 14 34( ) ( )

R D C C C C Cdy

dD C D D D D C D D D C

+ +
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ɶ

 (25) 
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which, when divided by 43D ,describes the slope of the purple line between 457 and 800 in Fig. 2. Note  that (22) is 
also in the form 

2
1 2 14 3/( )c c D c+ , where the constants are now also composed of the capacity of inlink O2 and the 

directed capacity of O2D3, besides the constants  that where already included in the derivatives of turn flows 
towards the most restrictive outlink 4.  
Based on the solution algorithm and the example described in this section, we conclude that: 

• Function ( )i i jDα ′ ′ exists on the domain 
/{ }

0,
i

i ijj J j
C D ′′∈

 −
 ∑  

• Function ( )i i jDα ′ ′  is continuous on its entire domain, can be constructed piece-wise, and is differentiable 
almost everywhere. At each interval of i jD ′ ′ , iα is determined by the same constraint, and at each non-
differentiable point, a switch between active constraints occurs. 

• Function ( )i i jDα ′ ′ is either monotonously increasing or decreasing on its entire domain, depending on the effect 

that i jD ′ ′ has on ˆij
C in relation to 

ˆ
ˆ

j
iji I

C
∈∑ . An increasing function can only occur when i i ′≠ .  

• On an interval where turn ij is demand constraint, / 0 and / 0 , , ,ij i j i i jdy dD d dD i j i j IJα′ ′ ′ ′ ′ ′= = ∀ ∈  
• On an interval where turn ij is supply constrained by an outlink to which at least one demand constrained turn 

exist, function ' '( )i i jDα  has a linear form. 
• Whenever turn ij is supply constrained by an outlink to which no  demand constrained turns exist, ( )i i jDα ′ ′  has 

the form of 2
1 2 3/( )i jc c D c′ ′ + . 

These properties of ' '( )i i jDα are of importance for the matrix estimation problem, since they can be exploited by 
the optimization method used in the upper level. 

3.5. Interdependencies of turnflows in the node model 

The example described in section 3.4 demonstrates that directed capacity proportional SCIR combined with the 
FiFo assumption introduces interdependencies between demand on the different turn movements on a node when 
there are supply constrained outlinks. More specific the flow of each supply constrained turning movement ij on 
node n is dependent on: 
• The demand on turns that share the inlink with the considered turn (due to the FiFo assumption); 
• The demand on turns competing for supply of the most restrictive outlink (due to the SCIR); 
• The demand on turns sharing an inlink with turns competing for the most restrictive outlink. (due to the FiFo 

assumption); and 
• The demand on demand constrained turns towards the most restrictive outlink (due to the SCIR).  

Assuming a node with four arms and banned u-turns, twelve different turn movements exist. In the worst case 
there are three inlinks constrained by the most restrictive outlink. In that case, for all turns from these restricted 
inlinks, the flow is dependent on demand on all eleven other turns: two turns that share the same inlink, three turns 
that compete for supply of the most restrictive outlink and six turns that share an inlink with turns competing for 
supply of the most restrictive outlink. This means that we would need to include /i i j i jD Dα ′ ′ ′′ ′′∂ ∂  for all 
combinations of turns into the response function to describe the (first order) interaction effects, which means that we 
add another dimension to the derivative of the assignment matrix making the matrix estimation problem harder to 
solve for the upper level.  

4. Proposed method: upper level and bi-level problem as a whole 

In this section  the methods used solving the upper level problem and the bi-level problem as a whole are 
described. 

4.1. Solving the upper level 

The choice for a method for solving the upper level is influenced by the properties of the distance functions 1f
and 2f , which in turn are chosen dependant on properties of the variables in the objective function (observed link 
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flows yɶ  and OD demand 0D ). Note that these are aggregate variables observed over some period(s) of time. 
Therefore, the observed values in vector yɶ  are in fact instances of some probability distribution. This is also the 
case for observed OD demand, since this is also an aggregated value which, on top of that, is only measured 
indirectly through surveys or derived from some distribution model. Although, when known, these distributions can 
be taken into account when solving the upper level, this is not subject of this paper. We therefore choose the mean 
squared error (MSE) as distance function for both components, since it does not use any additional data on the 
distribution of the observed flow values or prior matrix. Furthermore, we introduce an extra parameter that allows 
for weighing of the two components in the objective function. Using MSE and weighing parameter w , the objective 
function to be minimized in equation (1)  now reads:   

2 2
0,min min ( ) (1 ) ( ( ) )rs rs a a

rs RS a A

F w D D w y yθ
∈ ∈

 = − + − − 
 
∑ ∑

D
D

ɶ

ɶ  (26) 

where θ is a normalisation parameter the normalises the scale of the second component relative to the first 
component. The method used for estimation of θ will be described in paragraph 4.2. 

Furthermore, equation (1) is subject to the following constraints: 

ˆ
a

ap p a
p P

D C a Aα
∈

≤ ∀ ∈∑ , (27) 

0pD p P≥ ∀ ∈ . (28) 

Constraint (27) ensures that link capacities for all links are not exceeded, whereas (28) is a non-negativity constraint 
on path demand. In addition to these natural constraints, lower and upper bounds to the trip production per origin 
could be added:  

r rs r

s S

D D D r R
∈

≤ ≤ ∀ ∈∑ , (29) 

The lower and upper bounds in constraint (29) are usually related to prior and/or observed trip productions allowing 
for a specified maximum (absolute or relative) deviation. The optimization problem defined by (26), (27), (28) and 
(29) is a quadratic optimization problem with linear constraints. To solve the problem, the generalized reduced 
gradient method (GRG2, Lasdon et al. 1975) is used.  

4.2. Weighting of objective function components  

Parameter w is used to define the relative importance of the two components 1f and 2f in objective function F . 
Typically it is set based on the level of confidence associated with the two types of observed data (prior matrix and 
count values). However, since these two types of data have a different scale (summation of link flows over number 
of observed links versus summation of OD demand over number of OD pairs) they must be normalized to allow the 
weighting parameter to be given a meaningful interpretation expressing the relative importance on a scale of zero to 
one.  

One of the most common ways to normalise1f and 2f  (see e.g. Alpcan 2013), is by calculating the range 
between the optimal (so called Utopia) and pseudo-worst (so called Nadir) points in objective space for each 
component of the objective function. Using these points, the scale of each component relative to the other can be 
calculated and used for normalisation within the weight variable.  

The objective function value of the Utopia point of the first component of F (denoted as1
Uf ) is zero, which is 

the case when *
0=D D . The objective function value of the Utopia point of the second component of F (denoted 

as 2f ) is also zero which is the case when( ) 0a ay y a A− = ∀ ∈D ɶɶ ; which can only be the case when observed flows 
are consistent with link capacities (thus link capacity constraint (27) does not prohibit count values to be reached). 
Since inconsistent observations should be removed prior to matrix estimation, in the remainder it is assumed that 
this condition is satisfied.  
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The objective function value of Nadir points 1
Nf and 2

Nf can be calculated by solving 

2
1 1 0,max( ) max ( )N

rs rs
rs RS

f f D D
∈

 = = − 
 
∑

D
 and (30) 

2
2 2max( ) max ( ( ) )N

a a
a A

f f y y
∈

 = = − 
 
∑

D
D

ɶ

ɶ  (31) 

separately, both subject to constraints (27), (28) and (29). Note that whereas (30) can be solved directly, solving (31) 
would require an iterative solution algorithm involving running the lower level several times. Given the sole purpose 
of normalisation, this would take too much calculation time. Therefore an approximation '

2
Nf is used instead, 

omitting constraint (29) and neglecting the interdependencies of link flows through the assignment in the lower 
level. In that case in the Nadir point, each observed link either operates at capacity or does not accommodate 
demand at all, simplifying (31) to: 

' 2 2
2 max ( ) ,N

a a a
a A

f C y y
∈

 = − ∑
ɶ

ɶ ɶ . (32) 

Then, the scale of 2f relative to 1f can be calculated by 

1 1 1
' '

2 2 2

N U N

N U N

f f f

f f f
θ −= =

−
 (33) 

which is used in (26). In the remainder of this paper, constraint (29) is not used, allowing for approximation of the 
Nadir point using (32). The effect of constraints based on trip production is left for future research.  

4.3. Convergence and consistency between lower and upper level 

Sections 3 through 4.3 discussed the methods used for solving the upper and lower level. In order to solve the 
whole bi-level problem, solutions of the two levels need to be consistent. This means that the estimated demand in 
the upper level should be stable over iterations, and the approximated link flows used in the upper level should be 
replicated by the ‘true’ assignment in the consecutive lower level.  

Because the derivative in the second component of the response function (8) is an approximation, the upper level 
optimization can ‘overshoot’ the optimum and may never find the optimum. There are three causes for this 
overshooting. Firstly, by equation (9) /i pd dDα is based on point approximations of /i i jd dDα ′ ′  whereas this 
function consists of piece wise differentiable intervals (section 3.4). This means that the point approximations are 
only valid within their respective interval. Secondly, the approximation of ( )i i jDα ′ ′  is linear, whereas the true 
function is only linear when at least one of the turns toward the restricting outlink is demand constrained (section 
3.4). Thirdly, we omit to include secondary interaction effects in the response function, whereas from section 3.5 we 
know that potentially all turns on the node model may interact.  

We propose to improve the first order approximation by reducing approximation errors due to the piece wise and 
possibly non-linear form of ( )i i jDα ′ ′ by constraining the change ∆D that can be made to D within one (upper 
level) iteration. We relate ∆D  to the error of the linear approximation of ( )i i jDα ′ ′  for each OD pair in D by 
setting some upper bound αε on the tolerated approximation error. The method is illustrated by Fig. 3 that displays 

4 43( )Dα in the example from section 3.4. 
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 Fig. 3: reduction factor 4α  when varying 43D  

 

In this example, αε was set to 0.05. We use two binary searches starting from 0
43D that compare the difference 

between approximated and true 4 43( )Dα , one in downward and one in upward direction yielding lower bound 43D

and upper bound 43D respectively. Since we know that 4 43( )Dα is monotonously decreasing, the binary searches 

are guaranteed to find the lower and upper bounds. Note that the binary searches need to recalculate the node model 
at each candidate point, at the cost of computation time. The example demonstrates that this method detects both 
approximation errors due to non-linearity of the function (at the upper bound) as well as approximation errors due to 
piece wise form of the function (at the lower bound).  This method is implemented in a prototype and tested in 
section 5. 

Dependent on the extent to which this improvement solves the problem of overshooting, two further 
improvements may be researched in the future. Firstly, the point approximation of /i i jd dDα ′ ′ could be replaced by 
using the actual function that is valid for the respective interval i jD ′ ′ (for which the first order derivatives are already 
derived in 3.4). For this method, the non differential points of ( )i i jDα ′ ′ (the boundaries of the intervals) must be 
known. These can be found using a binary search in a similar way as described above. When applied for each 
interval, this improvement would rule out any approximation errors due to the piece wise and potentially non-linear 
form of ( )i i jDα ′ ′ . To also overcome the last cause of overshooting, secondary interaction effects could be described 
by adding interaction terms to the approximations. In theory these two future improvements can fully accommodate 
for all three causes of overshooting. Note however, that it might not be possible to analytically derive the secondary 
interaction effects as a function, and that the number of partial derivatives to calculate (and include in the upper 
level) increases from the number of turning movements (on node level) or paths (on network level) to the square of 
these, which probably limits scalability of the method. Further research is needed to develop methods described in 
this section. Therefore, in section 5.2 we test to what extent the first solution solves the overshooting problem, and 
based on the outcome decide whether the other improvements should be pursued in further research.  

4.4. Insensitivity of link flows due to supply constrained turns 

As described in section 3.4, each outlink can either be demand or supply constrained and flow into a constrained 
outlink will remain equal to the supply constraint of that outlink as long as the supply constraint is active: 

if then 0 { | }
n

j
i ij j n n

i I ij

dy
D R ij IJ j J

dD
α

∈
= = ∀ ∈ ∈∑ . (34) 

This property is a direct result of the existence of supply constraints in the node model and is responsible for the 
metering of traffic flow as a result of bottlenecks or spillback of traffic from other bottlenecks.  
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For matrix estimation, a problem arises when the considered outlink j is an observed link (i.e. j A∈ ɶ ). In this 
case the upper level cannot alter the flow on this link. Whenever this is the case, prior demand on paths using linkj
and observed flow on linkj are inconsistent. Either the prior demand is too high (the supply constraint forj is not 
active in reality) or the observed flow on the considered link is too low (the supply constraint forj  is active in 
reality). Depending on which information is thought of as the most reliable, either the considered link should be 
removed fromAɶ or the prior demand on paths using the considered link should be adjusted.  

In case the observed link flow is considered more reliable, the prior demand level of one or more turns needs to 
be changed to a value that lies within a demand range where (34) does not hold for one or more turns towards link a. 
To find the closest (upper or lower) bound of this range of sensitive demand we, propose to use a binary search on 
each turn in nIJ , starting from its prior demand level in downwards direction. Note that although when (34) holds, 

( )j ijy D is insensitive, but the function ( )i i jDα ′ ′  can still be sensitive change reflecting a change in the (directed 

capacity proportional) distribution of the supply of the outlink when ijD  changes. Therefore in the binary search the 

variable /
j

ij i ji I
dy dD′ ′∈∑ is evaluated, where a value not equal to 0 indicates that a sensitive range has been found.  

Then, the turn for which the prior demand is closest to its sensitive range is selected and the prior demand value 
for this turn is ‘set’ to a value just within the sensitive range. Furthermore, we add this value as an upper bound to 
the demand of the adjusted turn in the upper level. By adjusting the prior demand of the turn with original prior 
demand closest to its sensitive range, deviation of the original prior demand matrix is minimized. Also, since we are 
looking for the closest sensitive range, we can stay away from using more costly searching techniques for global 
optima to find the sensitive range.  

Note that the two different states of a turn or outlink on a node are closely related to the two different states 
defined in the fundamental diagram of a link. In fact, the change of a demand constrained to a supply constrained 
turn causes the inlink of the turn to change from a free flow to a congested state and vice versa. In that sense the 
adjustment of the demand using the method described above can be considered as equivalent to the adjustment of 
the prior matrix to make sure the prior assignment results in the correct regime for each observed link as described 
by Frederix (2012). This dissertation also describes the necessity to stay in the correct regime, adding the upper 
bound on the turn demand can be seen as a method to ensure that this condition is maintained. 

5. Application of proposed method on node level 

In this section we add observed link flows on two of the outlinks of the example from section 3.4 and solve the 
matrix estimation problem to demonstrate the matrix estimation method described in sections 3 and 4 using a 
prototype implementation of the methods described in sections 3 and 4. Because we consider a network consisting 
of only one node, nI I=  and nJ J=  meaning that all variables on turn level are equivalent to the variables on path 
level, and application of equation (4) can be omitted.  

In section 5.1 we solve the problem for the situation where only the count values are considered by setting w=0 
in (26)†. In section 5.2 we increase w to demonstrate the normalisation described in 4.2 and to force the upper level 
to make a trade off between differences in observed and modelled link flows and differences between estimated and 
prior matrix. This incurs more simultaneous changes to ODpairs and thus interaction effects, which is a good case to 
test the method constraining ∆D  per iteration as described in section 4.3.  

 
 
 
 
 

 

 
†
 Note that setting w=1 does not make sense, since the ODmatrix is the variable to be optimized and can directly be set in the upper level.  
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5.1. Example optimizing only on observed values 

In this section we solve the problem for the situation where observed values 1 498y =ɶ  and 4 1590y =ɶ  are added 
to the example from section 3.4 and only count values are considered by setting w=0 in (26). Using the prior demand 
from section 3.4, yields outlinks in the correct regime. The stopping criterion for the iterative method was set on the 
differences between the objective function < 1E-06. We varied the starting solution (starting from 0D or the Nadir    
( 1

Nf ) solution) and method constraining ∆D per iteration (unconstrained or a binary search with αε =0.01 or 0.05 
). Results are shown in Fig.  4, the number of iterations performed and objective function values in Table 1. 

Fig.  4: posterior demand and link flows compared to prior demand and count values 

 

Scenario 
unconstrained, 
start@D0 

unconstrained, 
start@Nadir 

ε < 0.01, 
start@D0 

ε < 0.01, 
start@Nadir 

ε < 0.05, 
start@D0 

ε < 0.05, 
start@Nadir 

iterations needed 2 3 2 2 2 2 

objf_1 (prior) 298042 1071083 687375 687487 430958 424353 

objf_2 (counts) 1.020 0.003 0.026 0.026 1.785 1.671 

Objf 3.669E-07 1.1928E-09 9.508E-09 9.512E-09 6.419E-07 6.009E-07 
Table 1: number of iterations and objective function values after optimization 

 
These results show that all scenarios yield solutions that are usable in practice: differences in count values are 

well within ranges that would be considered of as uncertainty of the observed values. Considering differences 
between observed and estimated flow values and objective function, constraining ∆D leads to better solutions at the 
cost of more difference between prior and posterior matrix (but in the scenarios in this section this component of the 
objective function is ignored). Choosing a different starting solution and and/or constraining method result in 
different solutions, indicating that the problem has multiple solutions, due to the problem being underspecified. 
Starting  from Nadir yields better solutions for all scenarios contradicting expected behaviour. However, this can be 
a coincidence due to an arbitrary stop criterion value, further note that the unconstrained scenario starting from 
Nadir does require an extra iteration.  

Furthermore, runs starting with a prior matrix yielding outlinks operating within their insensitive range where 
conducted, which showed that the method proposed in 4.4 operates as expected. In some runs however, in later 
iterations the algorithm ended up in the same insensitive range again, indicating that the constraints might need to be 
persisted during the entire run.    

5.2. Varying weights in upper level and test of constraints forcing convergence 

In this section we test scenario’s in which we set w>0, to show the effect of normalisation and to test the method 
for constraining∆D  per iteration as described in section 4.3 to prevent overshooting. The risk of overshooting is 
proportional to the number of interdependencies that are affected by changes to the demand made by the upper level, 
which is on its turn, proportional to the number of interdependencies that exist in the network and the amount of 
change that needs to be made to the OD matrix. This means that a network with a more dependencies (i.e. lots of 
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supply constrained outlinks) will be more sensitive to overshooting, especially when the upper level simultaneously 
changes demand on multiple OD pairs (which can be caused by a high weight on the prior matrix causing the upper 
level to distribute changes over all sensitive OD pairs, large numbers of (inconsistent) traffic counts and/or traffic 
counts on multiple outlinks). We changed the example by setting w=0.5, which proved to add enough 
interdependencies to demonstrate performance of the convergence method from section 4.3.  

Setting w=0.5 should result in components 1f and 2f contributing equally to the objective function; i.e.: the ratio 
between 1f and 2f should converge towards 0.5. Fig.  5 shows values of objective function components 1f and 2f  
and the objective function total F for a run without constraints on ∆D  over iterations. From this figure, a repetitive 
cycle can be seen where the components converge towards a ratio of 0.5 during three subsequent iterations, but 
shoots out of convergence every fourth iteration (this first occurs in the second iteration), where after the process 
repeats. Although the method is not converging (objective function values do not substantially decrease), this does 
show that the normalisation scheme works. Other runs using values of w in the interval <0,0.6] all resulted in similar 
graphs in which the ratio of 1f and 2f converges to w during converging iterations, although the frequency of 
shooting out of convergence differed. Whenever w was set to a value greater than 0.6, the algorithm did converge. 
Apparently in these situations, the high weight on the prior matrix fixes the state of all turns by keeping demand 
within the original interval of piece wise functions ( )i i jDα ′ ′ .  

Fig.  5: value of objective function and its components for unconstrained run with w = 0.5 

 
Applying a constraint on ∆D  using the binary searches with 0.01αε =  yields slightly better convergence as 

indicated by Fig.  6, but the objective function value still does not substantially decrease. When looking at the course 
of A (Fig.  7) it becomes clear that the tolerance of 0.01 is violated in every iteration. This indicates that secondary 
interaction effects  are a major contributor to the change of alpha and thus must be included to solve the problem in 
this case. 
 

Fig.  6: value of objective function and its components for constrained run with w = 0.5 and 0.01αε =  
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Fig.  7: value of alpha for constrained run with 0.5w=  and 0.01αε =  

 
Trying  to force convergence, we conducted additional runs in which we constrained ∆Ddirectly and setting 

∆Ddepending on the  quality of the approximation, where the difference between the first order approximation and 
the second order approximation around D  was used as a (rough) quality measure for the approximation. We also 
conducted runs in which we applied the method of successive averages in combination with the constraints. These 
runs did show improvement in convergence, but did not result in lower objective function values, confirming that 
secondary interaction effects should be included to solve this problem. 

6. Discussion 

From the theoretical insights from sections 3.5 and the examples in section 5.2 it becomes clear that secondary 
interaction effects are a major part of the response function and should be included in its approximation. To the best 
of our knowledge, this insight has not been recognized before. Possible reasons for this are that, although not 
explicitly, ‘conventional’ methods that use complete runs of the assignment model perturbing multiple OD pairs at 
the same time (e.g. SPSA) do capture these effects. Furthermore, these effects might reside in the shadow of other 
interaction effects on real life networks such as route choice and spillback and departure time choice in the case of 
DTA models, which were deliberately excluded from this paper. Other reasons why this problem might be 
overlooked is the general underspecification of most matrix estimation applications and the relative few occurrences 
of the problem in a large scale network, but is exposed by looking at the level of nodes in this paper. 

If the use of explicit reduction factors for matrix estimation is to be pursued, further research is needed on how to 
efficiently determine, calculate and include relevant secondary (or even higher order) interaction effects. A further 
enhancement could be to use exact derivatives for each interval of ( )i i jDα ′ ′ marking a switch between active 
constraints, instead of using linear approximated point derivatives.   

Once such a method is found, the method should be generalized from node to path level. Although the 
theoretical framework for this generalization is already described in section 2.1, the translation from turn to paths 
will lead to practical problems such as possible inconsistency of constraints on different nodes on a path or (non-
obvious) inconsistency between observed link flows.  

Consecutively, the method should be generalized to include effects of spillback on the network level. Since 
spillback effects can already be captured on the node level by the ( )i i jDα ′ ′  relation through 4Rɶ , the challenge here 
is to develop some marginal simulation method to transfer spillback effects over links whenever demand is altered 
by the matrix estimation method in such a way that spillback effects substantially change. The event based submodel 
that handles spillback within STAQ (the so called ‘queuing phase’) would be a good starting point for development 
of such a method. Finally, the method needs further generalisation to include route choice.  
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7. Conclusions 

Using STAQ (or other semi dynamic assignment models with a node model that accounts for supply constraints) 
for matrix estimation has some methodological advantages over full DTA models. The lack of a time dimension and 
direct use of turn based reduction factors calculated by STAQ makes the problem more tractable, whereas the 
possibility to use marginal simulation only using the node model potentially decreases required calculation time and 
makes the solution method more scalable.   

The matrix estimation problem for STAQ is a bi-level optimization problem in the form of a Stackelberg game. 
In order to solve it, the response of the lower level must be included in the upper level optimization in the form of 
partial derivatives of the assignment matrix to the demand. Most methods in literature approximate the response 
using complete runs of the assignment model entailing both large calculation times and tedious tuning of algorithmic 
parameters. The method proposed in this paper approximates the response function of a path by solving only the 
node models of nodes encountered on that path.  

In this paper the matrix estimation problem is only solved on the node level, thus taking into account interaction 
effects between demand and supply on a node, causing flow metering. Interaction effects on the level of links and 
paths (i.e. route choice and spillback) were considered exogenous and their influence is left for further research. 
Also, we assumed that secondary interaction effects (additional changes in demand due to changes in the response 
function as a result of changes in demand) are negligible. This means that we neglected the fact that when 
simultaneously changing demand for multiple OD pairs the response might not be simply the sum of the effects of 
changing each OD pair sequentially. 

To be able to use the node model in the lower level, the relationship between link flows and turn demand for a 
node were made explicit. The supply constraints of the node model, together with its SCIR actually define this 
relationship through the inlink based reduction factors. It was shown that the reduction factor of an inlink as a 
function of demand on some turn on the node is continuous on its entire domain, can be constructed piece-wise, and 
is differentiable almost everywhere. At each interval of the piece wise function, a reduction factor is determined by 
the same constraint, and at each non-differentiable point, a switch between active constraints occurs. Within each 
interval, the reduction function is linear when the inlink is demand constrained or supply constrained by an outlink 
to which at least one demand constrained turn exists; otherwise this function has the form of 2

1 2 3/( )ijc c D c+ . 
Furthermore it was shown that the function is either monotonously increasing or decreasing on its entire domain and 
that the directed capacity constrained node model introduces secondary interaction effects between potentially all 
turns on a node. This means that when simultaneously changing demand for multiple OD pairs the response might 
not be simply the sum of the effects of changing each OD pair sequentially. 

For the upper level a common objective function is proposed containing a first component minimizing 
differences between estimated and observed link flows and a second component minimizing differences between 
prior and posterior demand matrix, both components using MSE as a distance function. A weighing parameter was 
added to the objective function, which was normalized using true Utopia points for the first component and 
approximated and true Nadir points for the first and second component respectively.  

To improve convergence, we proposed to constrain the amount of change that can be made to the OD matrix 
within one iteration related to the approximation error due to the linear approximation and piece wise character of 
the relation between turn demand and reduction factors. For this, a binary search was used to translate a tolerance on 
the approximation error into lower and upper bounds for the elements in the OD matrix to be used in the next 
iteration.  

For cases where the response function is insensitive due to inconsistency between prior matrix and observed link 
flow a method was added that changes the prior demand forcing consistency before starting the matrix estimation 
procedure.  

Several test runs where conducted using a prototype, showing that the method yields solutions usable in practice 
when only differences between observed and estimated link flows are considered. In this case, adding constraints to 
the amount of allowed demand-change per iteration leads to slightly better solutions. Runs with added constraints 
and runs using a different start solution yield different solutions, indicating that the problem is underspecified in this 
case. Test runs using weights in the interval <0,0.6] show that the normalisation of the objective function works as 
intended, but that the algorithm does not converge due to switches between active constraints within the node 
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model. Apparently, higher weights restrict turn demand enough to keep the original active constraints intact as these 
runs do leading to convergence. In the case of w>0 applying a constraint on the amount of allowed demand-change 
yields slightly better convergence, but the objective function value still does not substantially decrease. It is shown 
that the tolerance that was set on the change of reduction factors was violated in every iteration indicating that 
secondary interaction effects  are a major contributor to the change of alpha and thus should be included to solve the 
problem in these cases.  

Further research is needed on how to efficiently determine, calculate and include relevant secondary (or even 
higher order) interaction effects. Furthermore the proposed method needs to be generalized to path and network 
level and extended incorporating route choice.  
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Appendix: solution algorithm for node model with directed capacity proportional SCIR 

(0) Given: nD , nR , nC  
(1) Initialise: { }1 | 0j ijI i D j J= > ∀ ∈  # set of considered inlinks per outlink in iteration 0 

1 | 0ij
i I

J j S
∈

 = > 
 
∑  # set of considered outlinks in iteration 0 

1
j jR R j J= ∀ ∈ɶ  # available supply per outlink in iteration 0 

1k =  # iteration number 
(2) 

0

ij
ij i

ij
j J

D
C C ij IJ

D
∈

= ∀ ∈
∑

 # directional capacity per turn 
(3) While 1kJ + ≠ ∅  # Start of loop over outlinks 
(4) |

k
j

k
jk k

j j
ij

i I

R
j J I

C
β

∈

= ∀ ∈ ≠ ∅
∑

ɶ

 # determine potential outlink restricting factors  
(5) { }ˆ min ,1k k

jj j
β β=  # determine most restricting constraint 

(6) { }ˆ arg min k
jj β=  # determine causative outlink 

(7) If  ˆ ˆ|k k
i ij j

i A D Cβ∃ ∈ ≤  # if there exist demand constrained inlink(s) 
(8) ˆ ˆ|k k

i ij j
i A D Cβ∀ ∈ ≤ do: # for these demand constrained inlink(s) 

(9) ij ijy D j J= ∀ ∈  # fix turnflows to turndemand    
(10) 1k k

j j ijR R D j J+ = − ∀ ∈ɶ ɶ  # reduce available supply of affected outlinks  
(11) kj J∀ ∈  do: # for all still considered outlinks 
(12) 1 \ { }k k

j jI I i+ =  # remove from set of inlinks competing for j 
(13) If 1k

jI + = ∅ : # if set of considered inlinks is now empty 
(14) 1 \ { }k kJ J j+ =  # remove outlink from set of considered outlinks 
(15)   End if 
(16) Next j  
(17) Next i  
(18)  Else if ˆ ˆ

i

k k
ij ij j

j J

D C i Iβ
∈

> ∀ ∈∑  #there are only supply constrained inlinks left 
(19) ˆ

k

j
i I∀ ∈  do: # for all inlinks constrained by most restrictive outlink 

(20) ˆ
k

ij ijj
y C j Jβ= ∀ ∈  # fix turnflows to match available supply 

(21) 1
ˆ

k k k
j j ijj

R R C j Jβ+ = − ∀ ∈ɶ ɶ  # reduce available supply of affected outlinks 
(22) kj J∀ ∈ do: # for all still considered outlinks 
(23) If  ˆkj j≠  # if not the most restrictive outlink 
(24) 1

ˆ\k k k
j j j

I I I+ =  # remove inlinks constrained by most restrictive outlink 
(25) If  1k

jI + = ∅  # if set of considered inlinks is now empty 
(26) 1 \ { }k kJ J j+ =  # remove outlink from set of considered outlinks 
(27) endif 
(28) Else if ˆkj j=  # if most restrictive outlink 
(29) 1 ˆ\ { }k k kJ J j+ =  # remove outlink from set of considered outlinks 
(30) Endif 
(31) Next j  
(32) Nexti  
(33) Endif 
(34) k:=k+1 
(35) Endwhile 
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Appendix: calculation of derivatives for numerical example when 457 14D≤ ≤ 800 
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