
The Network Pricing Problem with congestion

Desirée Rigonata∗, Lorenzo Castellia, Martine Labbéb
a Dipartimento di Ingegneria e Architettura, Università degli Studi di Trieste, Italy

bDépartment d’Informatique, Université Libre de Bruxelles, Belgium

August 15, 2014

Abstract
The Network Pricing Problem (NPP) is a bilevel network optimisation problem where prices have to be

set on the arcs of a network in order to maximise the profit of the arcs’ owner. The bilevel structure of the
NPP implies that these prices will be influenced by the distribution on the network of one or more users that
want to travel on it at the minimum cost. The NPP usually assumes that arc costs are independent of flows.
When arc costs do depend on flows, the network is usually referred to as congested. In the present work,
we illustrate two asymptotically converging algorithms to solve the NPP in the case of congested networks,
hereafter referred to as the Congested Network Pricing Problem (CNPP). In particular, we propose to
identify an equilibrium point for the CNPP using the Frank-Wolfe algorithm by reformulating the bilevel
CNPP into a sequence of approximating single level linear problems. One of the algorithms uses these linear
approximations to solve only the second level problem (that is, the problem of the users) while the other
applies the linearisation procedure to the whole CNPP.

1 Introduction
Bilevel programs belong to a class of Stackelberg sequential games with two players, where a leader plays

first, taking into account the possible reactions of the second player, called the follower. Bilevel programs
first appeared in an article by Bracken & McGill (1973), while the complete formulation was first introduced
by Shimizu & Aiyoshi (1981). An annotated bibliography containing more than one hundred references on
bilevel programming has been compiled by Vicente & Calamai (1994), while the books by Shimizu et al.
(1997) and Luo et al. (1996) are devoted, in full or in part, to this subject. Generically non differentiable
and non convex, bilevel problems are, by nature, hard. Even the linear bilevel problem, where the objective
functions and the constraints are linear, was proved to be NP-hard by Jeroslow (1985). Hansen et al. (1992)
prove strong NP-hardness. Vicente et al. (1994) strengthen these results and prove that merely checking
strict or local optimality is strongly NP-hard.

The Network Pricing Problem (NPP) describes the interaction between the owner of a subset of a network
(i.e. a highway system) who wants to maximise the profit from his business by imposing tolls on his arcs
and the users of the network (i.e. people who want to travel on it) who want to minimise the cost for using
the network. As demonstrated by Labbé et al. (1998) this problem in its general form is strongly NP-
hard. However a linearisation scheme illustrated in the same work leads to a mixed integer programming
formulation that involves a small number of binary variables. This formulation can be solved using standard
algorithms such as branch and bound that will lead to an exact solution in reasonable time for small instances
of the problem, or allows for efficient heuristic procedures to be developed, as shown by Brotcorne et al.
(2000, 2001). Such algorithms lead to far better results on large network since they are able to exploit the
particular structure of the network in order to quicken the solving procedure. Heilporn (2008) in her Ph.D.
thesis gives a detailed analysis of the geometric structure of the problem and the particular cases that have
so far been proved to be easier to solve. A recent comprehensive survey on the NPP is available in Labbé &
Violin (2013).

NPP usually assumes that arc costs are independent of flows. The present work instead introduces a
variant to NPP where arc costs do depend on flows. We will then refer to this problem as the Congested
Network Pricing Prooblem (CNPP). We show that by taking congestion into account, the first level problem
remains a profit maximisation problem, while the second level problem becomes a user equilibrium problem
known as Traffic Assignment Problem.

∗Corresponding author. Ph.D. candidate

1

The Traffic Assignment Problem has been covered by a vast amount of literature over the past decades
and many resolutive algorithms have been developed for it. The most widely known is probably the Frank-
Wolfe (FW) algorithm (Frank & Wolfe 1956), also known as Conditional Gradient method (Bertsekas 1995),
which is a generic algorithm for solving convex problems with linear constraints. It has been the preferred
algorithm for Traffic Assignment resolution for decades, mostly because of its ease of implementation and
low memory consumption, despite the drawback of a slow convergence rate when approaching the optimal
solution. Even though over the years several more efficient algorithms were developed specifically for solving
the Traffic Assignment Problem, such as column generation (Larsson & Patriksson 1992, Damberg et al.
1996), gradient projection (Jayakrishnan et al. 1994), and origin/destination based methods (Bar-Gera
2002, Boyce et al. 2004, Bar-Gera & Boyce 2006, Pro 2009, Gentile & Noekel 2009), this work relies on a
FW approach since FW is still the reference algorithm for performance comparison for all recently proposed
algorithms. The FW linearisation scheme was also used by Brotcorne et al. (2001) in the design of a primal-
dual heuristic to solve the NPP. In their work however arc costs are still supposed to be independent of
flows.

In particular, in this work we propose and test two heuristic algorithms for the CNPP resolution. The
first algorithm, called One Step algorithm, applies a Frank-Wolfe-like procedure to the whole CNPP, thus
generating a succession of linear approximations through which both flows and tolls are obtained at the same
time, while the objective still aims to converge to a user equilibrium. The second, which we call Two-Steps
algorithm, is a Gauss-Seidel-decomposition-type algorithm. It solves the CNPP by iteratively solving first
the followers’ problem (through Frank-Wolfe) with respect to arc flows and then the leader’s problem with
respect to the toll vector. A similar algorithm was used by Julsain (1998) to find an equilibrium point on a
congested telecommunication network.

The present work is structured as follows. Section 2 introduces the original uncongested Network Pricing
Problem, whereas Section 3 presents the bilevel bilinear formulation of the Congested NPP, together with
the description of the procedure to determine a single level mixed-integer non-linear formulation. In section
4 two heuristic algorithms for the CNPP are illustrated. Preliminary experimental results are provided in
Section 5. Finally, in Section 6 we draw some conclusions.

2 The Network Pricing Problem
As described in Labbé et al. (1998), in the Network Pricing Problem (NPP) the context is that of a

transport network (e.g. a road network), where the leader is the owner of a subset of the network (e.g.
the highways), who wants to maximise his or her profit by imposing tolls on the arcs he owns, while the
followers are the users of the network, that is, the people who want to travel on it with the minimum travel
cost. We assume that for every user there always exists at least one alternative route that does not pass
through any of the arcs owned by the leader (a toll-free path). This is to avoid the situation where a user
has no alternatives but to travel on one of the tolled arcs, thus allowing the leader to impose an arbitrarily
high toll on it. Furthermore, as in Labbé et al. (1998), we assume a favourable scenario for the leader, that
is, when a user is faced with two alternative routes of equal cost, he always chooses the one that gives the
higher profit for the leader.

Notation
• G = (N ,A∪ B) defines a transport network where N denotes the set of nodes and A∪ B is the set of

arcs; A is the subset of tolled arcs and B the subset of toll-free arcs.

• Each arc of A has a travel cost composed of a fixed part ca and an unknown toll ta. Vector t whose
components are ta, a ∈ A represents leader’s decision variables.

• Each arc of B bears only a fixed travel cost, identified by da.

• K denotes the set of commodities, where each commodity k is associated with an origin/destination
pair (ok, dk);

• bk is defined as:

bki =

1 if i = ok

−1 if i = dk

0 otherwise
∀i ∈ N , ∀k ∈ K (1)

• ηk represents the number of users of commodity k (demand vector).

• xka represents follower’s decision variables and denotes whether arc a ∈ A ∪ B has been chosen to
connect the origin/destination pair (ok, dk) or not.

2

The NPP can thus be formulated as a bilevel program with bilinear objective functions and linear
constraints, where the variables xka denote the optimal solution of the second level problem parametrised by
the upper level toll vector t.

max
t,x

∑
k∈K

∑
a∈A

ta · xka · ηk (2)

s.t.min
x

∑
k∈K

(
∑
a∈A

(ca + ta) · xka +
∑
a∈B

da · xka) (3)

∑
a∈i−∩A

xka +
∑

a∈i−∩B

xka −
∑

a∈i+∩A

xka −
∑

a∈i+∩B

xka = bki ∀i ∈ N , ∀k ∈ K (4)

0 ≤ xka ≤ 1 ∀k ∈ K, ∀a ∈ A ∪ B (5)

where i− ∈ N and i+ ∈ N are respectively the entering and exiting arcs for node i ∈ N .
The structure of the follower’s problem is that of a shortest path problem, a well known optimisation

problem for which many efficient solving algorithms exist (one is the well known Dijkstra’s algorithm). Note
that no constraint is given on the toll vector t. As discussed in Labbé et al. (1998) negative tolls can be
seen as incentives that the leader offers to the users to gain more traffic on his arcs. In the same work the
authors illustrate that, on certain network configurations, allowing for negative tolls ultimately increases the
final revenue for the leader.

3 The NPP with Congestion
In this section we will describe a variant to NPP, which takes congestion levels into account. We will

refer to this as the Congested Network Pricing Problem (CNPP). The peculiarity of considering congestion
lays in the fact that arc costs are no longer considered as constants. Instead, they depend upon arc flows:
they get higher as flow levels approach the capacity of the arcs (which are fixed) and get lower as flow is
moved to other arcs. This implies that where the NPP had fixed arc costs ca and da, the CNPP has arc
cost functions and here lies the difficulty of the model. The problem of user travel cost minimisation in this
context becomes what is referred to in literature as User Equilibrium, a condition under which no individual
is able to reduce their costs by choosing an alternative route over the network (as stated by Wardrop’s first
principle, Wardrop (1952)).

Our particular case deals with a road transport network, such as a highway system, so that the first level
problem remains a profit maximisation problem and the second level problem becomes a Traffic Assignment
Problem.

3.1 Cost functions
Cost functions express the cost of a path or arc based on the performance of the network. Assuming

separable functions and the absence of non-additive path costs, we define a generic arc cost function such
that each arc of the network has a cost that is a function only of the flow on the arc itself (originally proposed
in Wardrop (1952)):

Ca(fa) = tr0a ·

[
1 + α ·

(
fa
qa

)β]
∀a ∈ A ∪ B (6)

where

fa =
∑
k∈K

xka · ηk ∀a ∈ A ∪ B, (7)

and ∀a ∈ A ∪ B, tr0a is the travel time in unconstrained conditions (i.e. optimal traffic and weather
conditions), qa is the capacity of the arc, and α and β are parameters that have to be calibrated. Note that
for every arc a ∈ A we will also have to consider the toll ta; such toll is added to the cost Ca resulting in the
total arc-cost Ca(fa) + ta.

The function defined by Equation (6) is not linear, continuous, strictly positive and strictly increasing.

3

3.2 Second level of the CNPP: traffic assignment
Introducing arc-cost functions in the followers’ problem leads to a formulation known as minimum cost

multi-commodity flow convex problem (LeBlanc et al. (1975)) or Traffic Assignment problem (Petersen (1975),
Patriksson (1994)):

min
x

{∑
a∈A

∫ fa

0

(Ca(ωa) + ta)dωa +
∑
a∈B

∫ fa

0

Ca(ωa)dωa

}
(8)

s.t.
∑

a∈i−∩A

xka +
∑

a∈i−∩B

xka −
∑

a∈i+∩A

xka −
∑

a∈i+∩B

xka = bki ∀i ∈ N , ∀k ∈ K (9)

fa =
∑
k∈K

xka · ηk ∀a ∈ A ∪ B (10)

0 ≤ xka ≤ 1 ∀a ∈ A ∪ B, ∀k ∈ K (11)

where i− ∈ N and i+ ∈ N are respectively the entering and exiting arcs for node i ∈ N . Equation (8)
expresses the objective function of the problem, which is nonlinear because of the cost function adopted.
Equation (9) imposes a number of linear constraints which is equal to the number of network nodes in order
to express, together with Equations (10 and (11), conservation of flows at the nodes.

3.3 First level of the CNPP: leader profits
The first level of the CNPP deals with how the leader maximises his or her profit by imposing fees on

the toll arcs and dependently on the distribution of the followers on the network at the equilibrium.
For the uncongested NPP the objective of the leader’s problem is the following:

max
t,x

∑
k∈K

∑
a∈A∪B

ta · xka · ηk (12)

This is a non-linear objective function, since it contains a bilinear term. Since only arc flows are involved
in the leader’s objective, and no arc costs, the leader’s objective for the CNPP is the same of the NPP,
the only meaningful difference being the following non-negativity constraint on the toll vector, which has
to be imposed to ensure that the follower’s objective remains strictly non-decreasing and positive. This is
necessary to ensure convergence of the solving algorithms (see Sheffi (1985) and Bertsekas (1995)):

ta ≥ 0 ∀a ∈ A (13)

The resulting bilevel problem is thus the following:

max
t,x

∑
k∈K

∑
a∈A∪B

ta · xka · ηk (14)

min
x

{∑
a∈A

∫ fa

0

(Ca(ωa) + ta)dωa +
∑
a∈B

∫ fa

0

Ca(ωa)dωa

}
(15)

s.t.
∑

a∈i−∩A

xka +
∑

a∈i−∩B

xka −
∑

a∈i+∩A

xka −
∑

a∈i+∩B

xka = bki ∀i ∈ N , ∀k ∈ K (16)

fa =
∑
k∈K

xka · ηk ∀a ∈ A ∪ B (17)

0 ≤ xka ≤ 1 ∀a ∈ A ∪ B, ∀k ∈ K (18)
ta ≥ 0 ∀a ∈ A (19)

With cost/flow interdependence as expressed by Equation (6) and vector bk defined by Equation (1).

3.4 From bilevel CNPP to single level CNPP
Similarly to the procedure described in Labbé et al. (1998)) for the uncongested NPP, it is possible to

reformulate the bilevel CNPP into a single level problem by exploiting strong duality, and more specifically
by replacing the second level (followers’) problem with its Karush Kuhn Tucker Conditions (KKT). This
is a legitimate operation, assuming that objective and constraints are ∈ C1 and have the characteristics
described in Section 3.2 (see Sheffi (1985) and Bertsekas (1995)). Be such the case, a vector x that satisfies
the KKT conditions, is known to be optimal for the generic convex program:

4

min f(x) (20)
s.t. h(x) = 0 (21)
g(x) ≥ 0 (22)

where f(x) and h(x) are convex and g(x) are linear. Its Lagrangian is defined as:

L(x, λ, µ) = f(x) + λTh(x)− µT g(x) (23)

At a minimum point x, we have ∇L(x, λ, µ) = 0 which implies that the following conditions hold:

∇xL : ∇f(x) + λT∇h(x)− µT∇g(x) = 0 (24)
∇λL : h(x) = 0 (25)
∇µL : g(x) ≥ 0 (26)

In addition, the following complementarity condition must hold:

µT g(x) = 0 (27)

In a typical instance of a Traffic Assignment problem, which is our second level problem, the corresponding
constraints are:

h(x) = 0⇒
∑

a∈i−∩A

xka +
∑

a∈i−∩B

xka −
∑

a∈i+∩A

xka −
∑

a∈i+∩B

xka = bki ∀i ∈ N , ∀k ∈ K (28)

g(x) ≥ 0⇒ 0 ≤ xka ≤ 1 ∀a ∈ A ∪ B, ∀k ∈ K (29)

Consequently, the partial derivatives are:

∇xL : Ca(fa) + ta + λki − λkj − µka = 0 ∀a = (i, j) ∈ A ∪ B,∀k ∈ K (30)

where fa =
∑
k∈K

xka · ηk ∀a ∈ A ∪ B (31)

∇λL :
∑

a∈i−∩A

xka +
∑

a∈i−∩B

xka −
∑

a∈i+∩A

xka −
∑

a∈i+∩B

xka = bki ∀i ∈ N ,∀k ∈ K (32)

∇µL : 0 ≤ xka ≤ 1 ∀a ∈ A ∪ B, ∀k ∈ K, (33)

and complementarity condition is:
µTa x

k
a = 0. (34)

Hence, we obtain the following one-level reformulation for the CNPP:

max
t,x

∑
a,k

ta · xka · ηk (35)

s.t.
∑

a∈i−∩A

xka +
∑

a∈i−∩B

xka −
∑

a∈i+∩A

xka −
∑

a∈i+∩B

xka = bki ∀i ∈ N , ∀k ∈ K (36)

Ca(fa) + ta + λki − λkj − µka = 0 ∀a = (i, j) ∈ A ∪ B, ∀k ∈ K (37)

µka · xka = 0 ∀a ∈ A ∪ B, ∀k ∈ K (38)

fa =
∑
k∈K

xka · ηk ∀a ∈ A ∪ B (39)

0 ≤ xka ≤ 1 ∀a ∈ A ∪ B, ∀k ∈ K (40)

µka ≥ 0 ∀a ∈ A ∪ B, ∀k ∈ K (41)

λki free ∀i ∈ N , ∀k ∈ K (42)

where Ca(fa) is the derivative of the cost function expressed by Equation (6).

5

3.5 From bilinear CNPP to Mixed Integer non-linear CNPP
The problem obtained so far still contains bilinear terms in both the objective and the complementary

constraint. What we want to obtain in this section is a single level non-linear problem with a mixed-integer
formulation.

3.5.1 Simplification of the objective (ta · xka term)

In the present section we substitute the ta ·xka term in the objective with terms derived from the equality
constraints of the problem in order to obtain an equivalent formulation that will be non-linear in only one
variable.

From the first KKT condition (Equation 37) we have that:

µka = Ca(fa) + ta + λki − λkj ∀a = (i, j) ∈ A, ∀k ∈ K (43)

µka = Ca(fa) + λki − λkj ∀a = (i, j) ∈ B, ∀k ∈ K (44)

Thus the second KKT condition (Equation 38) can be formulated as:

(Ca(fa) + ta + λki − λkj) · xka = 0 ∀a = (i, j) ∈ A, ∀k ∈ K (45)

(Ca(fa) + λki − λkj) · xka = 0 ∀a = (i, j) ∈ B, ∀k ∈ K (46)

by substituting µka with Equations (43) and (44). Hence,

ta · xka = −Ca(fa) · xka + (λkj − λki) · xka ∀a = (i, j) ∈ A, ∀k ∈ K (47)

So the objective (Equation 35) becomes:

max
λ,x

∑
a∈A

∑
k∈K

−(Ca(fa) · xka + (λkj − λki) · xka) · ηk (48)

To eliminate the bilinear term (λkj − λki) · xka, we notice that the following equality holds:∑
a∈A

∑
k∈K

(λkj − λki) · xka =
∑
k∈K

∑
i∈N

λki · (
∑

a=i−∈A

xka −
∑

a=i+∈A

xka) (49)

From the flow conservation constraint (Equation 36) we have that∑
a=i−∩A

xka −
∑

a=i+∩A

xka = bki −
∑

a=i−∩B

xka +
∑

a=i+∩B

xka ∀i ∈ N , ∀k ∈ K. (50)

Hence from Equations (49) and (50) it follows that:

∑
k∈K

∑
i∈N

λki · (
∑

a=i−∩A

xka −
∑

a=i+∩A

xka) = (51)

∑
k∈K

∑
i∈N

λki · bki −
∑
k∈K

∑
i∈N

λki · (
∑

a=i−∩B

xka +
∑

a=i+∩B

xka) ∀i ∈ N ,∀k ∈ K (52)

Finally, since Equation (46) states that:

Ca(fa) · xka = (λkj − λki) · xka ∀a = (i, j) ∈ B, ∀k ∈ K, (53)

we can thus substitute the
∑
a∈A

∑
k∈K(λkj − λki) · xka term in the objective function, which becomes:

max
λ,x

∑
k∈K

(∑
i∈N

λki · bki −
∑
a∈A

Ca(fa) · xka −
∑
b∈B

Ca(fa) · xka

)
· ηk. (54)

6

3.5.2 Linearisation of the µk
a · xka term

The problem obtained so far still contains the nonlinear constraint µka ·xka = 0 deriving from the comple-
mentarity slackness condition. We linearise it by introducing a binary variable zka , defined as:

zka =

{
1 if µka 6= 0

0 if µka = 0
(55)

Since we need to impose that µka is zero if xka 6= 0 and vice versa, we can write the KKT conditions as,

Ca(fa) + ta + λki − λkj ≤M · zka ∀a = (i, j) ∈ A ∪ B, ∀k ∈ K (56)

xka ≤M · (1− zka) ∀a = (i, j) ∈ A ∪ B, ∀k ∈ K, (57)

where M is an arbitrary Big-M constant. However, for the problem not to be unbounded it also has to hold
that:

Ca(fa) + ta + λki − λkj ≥ 0 ∀a = (i, j) ∈ A ∪ B, ∀k ∈ K (58)

xka ≥ 0 ∀a = (i, j) ∈ A ∪ B, ∀k ∈ K. (59)

Thus the final one-level mixed-integer non-linear reformulation for the CNPP is:

max
λ,x

∑
k∈K

(
∑
i∈N

λki · bki −
∑
a∈A

Ca(fa) · xka −
∑
b∈B

Ca(fa) · xka) · ηk (60)

s.t.
∑

a∈i−∩A

xka +
∑

a∈i−∩B

xka −
∑

a∈i+∩A

xka −
∑

a∈i+∩B

xka = bki ∀i ∈ N , ∀k ∈ K (61)

Ca(fa) + ta + λki − λkj ≤M · zka ∀a = (i, j) ∈ A ∪ B, ∀k ∈ K (62)

Ca(fa) + ta + λki − λkj ≥ 0 ∀a = (i, j) ∈ A ∪ B, ∀k ∈ K (63)

xka ≤M · (1− zka) ∀a = (i, j) ∈ A ∪ B, ∀k ∈ K (64)

fa =
∑
k∈K

xka · ηk ∀a ∈ A ∪ B (65)

0 ≤ xka ≤ 1 ∀a = (i, j) ∈ A ∪ B, ∀k ∈ K (66)

zka ∈ {0; 1} ∀a ∈ A ∪ B, ∀k ∈ K (67)
ta ≥ 0 ∀a ∈ A, ∀k ∈ K (68)

λki free ∀i ∈ N , ∀k ∈ K (69)

3.6 Complexity of the CNPP
The complexity of the CNPP, as formulated above, depends on the chosen cost function. In particular,

for the cost function introduced in Section 3.1, this complexity relies on the choice of the positive real
parameters α and β. We can distinguish three situations that can occur and that are of some interest:

1. α = 0

In this case the congestion-dependent term α ·
(
fa
qa

)β
equals zero, and the CNPP instance becomes a

standard NPP one. In fact, while the constraints and leader’s objective face no change, the follower’s
objective becomes:

min
x

∑
a∈A∪B

∫ fa

0

(Ca(ωa) + ta)dωa = (70)

= min
x

∑
a∈A∪B

∫ fa

0

(tr0a + ta)dωa = (71)

= min
x

∑
a∈A∪B

(tr0a + ta) · xa (72)

This leads to a formulation that is identical to the one illustrated in Section 2 for the uncongested
NPP. The case β = 0 is similar and does not offer any interesting insight.

7

2. α > 0 and β = 1

In this case, the CNPP reduces to a quadratic problem (note that the constraints are all linear).

3. α > 0 and β > 1

In this case, the CNPP is heavily non linear and we can expect it to be much harder to solve than the
uncongested NPP. Several solving approaches are possible, such as penalising the nonlinear constraint
in the objective (thus obtaining a convex polyhedron as feasible region) or designing heuristic proce-
dures that use local approximations of the nonlinear term to generate a succession of approximating
subproblems. Two procedures of this latter type will be presented in the next Section.

4 Solving algorithms

4.1 One step algorithm (OS)
The algorithm we propose in the present section involves the linearisation scheme introduced in Labbé

et al. (1998) for the standard NPP formulation. The idea is to use the conditional gradient (Frank-Wolfe)
algorithm to solve the first and second level problem at the same time, by means of a succession of linear
approximations of the CNPP that are aimed to converge to the User Equilibrium. In order to do so, both
sets of problem variables, that is, the flows xka and the tolls ta, are determined at the same time. We want the
tolls to effectively influence the flows distribution at the second level across the iterations (and vice versa),
so that the final result will not subordinate one variable to the optimality of the other (which is instead the
case of the Two Steps algorithm, illustrated in section 4.2).

4.1.1 Changes to the cost functions

In order to formulate a linear approximating problem for the CNPP, we need to modify the cost function
previously defined by Equation (6). We decompose the toll as follows: t(j)a = (t

(j−1)
a + ∆t

(j)
a), where t(j−1)

a

is the toll resulting from the previous iterations and ∆t
(j)
a is the variation to that toll that is calculated at

the current iteration (j). The cost function used in the algorithm will then be:

C(j)a (f (j−1)
a) =

tr0a ·

[
1 + α ·

(
f
(j−1)
a
qa

)β]
+ t

(j−1)
a if a ∈ A

tr0a ·
[
1 + α ·

(
f
(j−1)
a
qa

)β]
if a ∈ B

(73)

The ∆t
(j)
a component of the toll is the decision variable that we effectively calculate at each iteration.

4.1.2 Changes to the leader’s objective

For each iteration (j), the approximating subproblem is a linear approximations of the CNPP where
arc costs are fixed and therefore independent of flows, Flows are assigned according to an all-or-nothing
criterion, where all demand from the same commodity is routed on the cheapest path. The flow variables
for the approximating subproblem, rk,(j)a are binary variables defined as follows:

rk,(j)a =

{
1 if commodity k uses arc a in the (j)-th approximating subproblem
0 otherwise ∀a ∈ A ∪ B, ∀k ∈ K

(74)
According to the FW algorithm, at each iteration j, flows xk,(j)a are calculated as a convex combination of

the flows from the previous iteration (xk,(j−1)
a) and the flows obtained from solving the j− th approximating

subproblem (rk,(j)a).

xk,(j)a = xk,(j−1)
a + µ(j) · (rk,(j)a − xk,(j−1)

a) = µ(j) · rk,(j)a + (1− µ(j)) · xk,(j−1)
a (75)

Since the µ(j) parameter is calculated only after rk,(j)a are obtained, it is necessary to replace x(j) in the
leader’s objective. From Equation (75), the objective function of the leader for the j-th problem is equal to:

8

∑
k∈K

∑
a∈A∪B

ηk · t(j)a · xk,(j)a = (76)

∑
k∈K

∑
a∈A

ηk ·
[
µ(j) · t(j)a · rk,(j)a + (1− µ(j)) · t(j)a · xk,(j−1)

a

]
≤ (77)

∑
k∈K

∑
a∈A

ηk ·
[
t(j)a · rk,(j)a + t(j)a · xk,(j−1)

a

]
(78)

We thus have obtained an upper bound for the leader’s objective that does not contain the µ(j) parameter.
We will use this as objective of our linear approximating problem.

By applying the classical FW procedure to the CNPP as described in Frank & Wolfe (1956), along
with the modified cost function introduced in Equation (73), and the modified leader’s objective function in
Equation 78, the formulation of the j-th approximating subproblem is (see also Rigonat (2012) for further
details):

max
t,x

∑
k∈K

∑
a∈A

ηk
[
(t(j−1)
a + ∆t(j)a) · rk,(j)a + (t(j−1)

a + ∆t(j)a) · xk,(j−1)
a

]
(79)

min
x

{∑
a∈A

(C(j)a (f (j−1)
a) + ∆t(j)a) · r(j)a +

∑
a∈B

C(j)a (f (j−1)
a) · r(j)a

}
(80)

∑
a=i−∩A

rk,(j)a +
∑

a=i−∩B

rk,(j)a −
∑

a=i+∩A

rk,(j)a −
∑

a=i+∩B

rk,(j)a = bki ∀i ∈ N , ∀k ∈ K (81)

f (j−1)
a =

∑
k∈K

xk,(j−1)
a · ηk ∀a ∈ A ∪ B (82)

0 ≤ xk,(j−1)
a ≤ 1 ∀a = (i, j) ∈ A ∪ B, ∀k ∈ K (83)

rk,(j)a ∈ {0, 1} ∀a ∈ A ∪ B, ∀k ∈ K (84)

∆t(j)a free ∀a ∈ A (85)

t(j−1)
a + ∆t(j)a ≥ 0 ∀a ∈ A (86)

where t(j)a = (t
(j−1)
a + ∆t

(j)
a) and the relation between xk,(j)a and r(j)a is expressed by Equation (75).

To solve this problem, however, it is first necessary to reformulate it into a single level linear problem.

9

4.1.3 From bilevel to single level linear CNPP

Parallelling the procedure introduced in Section 3.4, it is possible to reformulate the bilevel CNPP linear
approximation into a single level problem by exploiting strong duality:

max
t,x

∑
k∈K

∑
a∈A

ηk
[
(t(j−1)
a + ∆t(j)a) · rk,(j)a + (t(j−1)

a + ∆t(j)a) · xk,(j−1)
a

]
(87)

s.t.
∑
a∈A

(C(j)a (f (j−1)
a) + ∆t(j)a) · rk,(j)a +

∑
a∈B

C(j)a (fk,(j−1)
a) · rk,(j)a =

=
∑
n∈N

λ
k,(j)
i · bki ∀k ∈ K (88)

∑
a=i−∩A

rk,(j)a +
∑

a=i−∩B

rk,(j)a −
∑

a=i+∩A

rk,(j)a −
∑

a=i+∩B

rk,(j)a = bki ∀i ∈ N , ∀k ∈ K (89)

λ
k,(j)
i − λk,(j)j ≤ C(j)a (f (j−1)

a) + ∆t(j)a a = (i, j) ∈ A,∀k ∈ K (90)

λ
k,(j)
i − λk,(j)j ≤ C(j)a (f (j−1)

a) ∀a = (i, j) ∈ B,∀k ∈ K (91)

f (j−1)
a =

∑
k∈K

xk,(j−1)
a · ηk ∀a ∈ A ∪ B (92)

0 ≤ xk,(j−1)
a ≤ 1 ∀a = (i, j) ∈ A ∪ B,∀k ∈ K (93)

∆t(j)a free ∀a ∈ A (94)

t(j−1)
a + ∆t(j)a ≥ 0 ∀a ∈ A (95)

rk,(j)a ∈ {0, 1} ∀a ∈ A ∪ B,∀k ∈ K (96)

λ
k,(j)
i free ∀i ∈ N , ∀k ∈ K (97)

Note that the problem is still non-linear because of the bilinear term ∆t
(j)
a · rk,(j)a in both the leader’s

objective and in Equation (88).

4.1.4 Linearisation

The linearisation scheme of the bilinear term ∆t
(j)
a · rk,(j)a follows the one illustrated in Labbé et al.

(1998)) for the uncongested NPP. A slack variable, different for each commodity, is used to re-define the
continuous toll variable:

pk,(j)a =

{
∆t

(j)
a if rk,(j)a = 1

0 otherwise
(98)

The following constraints need to be added:

pk,(j)a −∆t(j)a ≤M · (1− rk,(j)a) ∀a ∈ A, ∀k ∈ K (99)

− pk,(j)a + ∆t(j)a ≤M · (1− rk,(j)a) ∀a ∈ A, ∀k ∈ K (100)

pk,(j)a −N · rk,(j)a ≤ 0 ∀a ∈ A, ∀k ∈ K (101)

− pk,(j)a −N · rk,(j)a ≤ 0 ∀a ∈ A, ∀k ∈ K (102)

whereM e N are arbitrary big−M parameters. In fact, Equations (99) and (100) are Big-M type constraints.
If rka is one, pka is equal to ∆ta; if rka is zero, the constraints are relaxed. Equations (101) and(102) denote
an upper bound for pka. If rka is equal to one, pka is less than Na. If rka is zero, pka is zero too.

it follws that the transformation carried out, the formulation for the single level linear j-th approximating
CNPP subproblem is:

10

max
t,x

∑
k∈K

∑
a∈A∪B

ηk · (t(j−1)
a · rk,(j)a + pk,(j)a) (103)

s.t.
∑
a∈A

(C(j)a (fk,(j−1)
a) · rk,(j)a + pk,(j)a) +

∑
a∈B

C(j)a (fk,(j−1)
a) · rk,(j)a =

∑
n∈N

λ
k,(j)
i · bki ∀k ∈ K

(104)∑
a=i−∈A∪B

rk,(j)a −
∑

a=i+∈A∪B

rk,(j)a = bki ∀i ∈ N , ∀k ∈ K

(105)

λ
k,(j)
i − λk,(j)j ≤ C(j)a (f (j−1)

a) + ∆t(j)a ∀a = (i, j) ∈ A, ∀k ∈ K
(106)

λ
k,(j)
i − λk,(j)j ≤ C(j)a (f (j−1)

a) ∀a = (i, j) ∈ B, ∀k ∈ K
(107)

pk,(j)a −∆t(j)a ≤M · (1− rk,(j)a) ∀a ∈ A, ∀k ∈ K
(108)

∆t(j)a − pk,(j)a ≤M · (1− rk,(j)a) ∀a ∈ A, ∀k ∈ K
(109)

pk,(j)a ≤ N · rk,(j)a ∀a ∈ A, ∀k ∈ K
(110)

− pk,(j)a ≤ N · rk,(j)a ∀a ∈ A, ∀k ∈ K
(111)

f (j−1)
a =

∑
k∈K

xk,(j−1)
a · ηk ∀a ∈ A ∪ B

(112)

∆t(j)a free ∀a ∈ A
(113)

t(j−1)
a + ∆t(j)a ≥ 0 ∀a ∈ A

(114)

pk,(j)a free ∀a ∈ A, ∀k ∈ K
(115)

rk,(j)a ∈ {0; 1} ∀a ∈ A ∪ B,∀k ∈ K
(116)

λ
k,(j)
i free ∀i ∈ N ,∀k ∈ K

(117)

4.1.5 OS Algorithm

Relying on the formulation (103)-(117), we generate a succession of approximating subproblems that will
converge to the solution of the CNPP.

Initialization A threshold ε is chosen for the stopping criterion and the Big M parameters M and N are
set;

Starting solution An admissible starting solution, x̄(0) and ∆t(0), is found;
Initial costs Arc costs are adjusted according to the initial admissible flows vector.
j-th iteration Given the flow vector x̄(j−1) and the toll vector t(j−1), solution of the problem at the (j−1)-

th iteration:
1. The cost vector C(j)a is determined as function of the flow vector and the toll vector:

C(j)a (f (j−1)
a) =

tr0a ·

[
1 + α ·

(
f
(j−1)
a
qa

)β]
+ t

(j−1)
a if a ∈ A

tr0a ·
[
1 + α ·

(
f
(j−1)
a
qa

)β]
if a ∈ B

(118)

where f (j−1)
a =

∑
k∈K x

k,(j−1)
a · ηk.

11

2. The linear approximating problem (103) - (117) is solved in order to obtain the All-Or-Nothing
flow vector rk,(j) and the toll difference vector ∆t(j) for the current iteration;

3. The FW descent step is executed in order to determine the flows for the j-th iteration. It consists
of the following one-dimensional non-linear search problem:

µ(j) ∈ argminµ∈[0,1]ψ(µ) = z
[
x̄(j−1) + µ · (r̄(j) · η − x̄(j−1))

]
(119)

where µ is a scalar variable. This problem can be solved through the bisection algorithm.
4. The values of rk,(j)a are used to determine the flows by means of the following equation:

xk,(j)a = xk,(j−1)
a + µ(j) ·

(
ηk · rk,(j)a − xk,(j−1)

a

)
∀a ∈ A ∪ B, ∀k ∈ K (120)

5. Tolls are calculated for the current iteration as:

t(j)a = t(j−1)
a + ∆t(j)a (121)

6. The value of the leader ’s objective is calculated as:

Zl =
∑
k∈K

∑
a∈A

t(j)a · xk,(j)a (122)

Stopping criterion The stopping test is executed against the threshold ε.

|z(x̄(j))− z(x̄(j−1))|
|z(x̄(j−1))|

< ε (123)

Equation (123) is the relative gap function of the follower’s objective z(x̄(j)) at iteration j. If the test
fails, a new iteration is executed with vector x̄(j) as the starting solution; otherwise the algorithm is
stopped and x̄(j) is the deterministic flows vector and t̄(j) the optimum toll vector associated with it.

4.2 Two steps algorithm (TS)
The procedure described in this section is a Gauss-Seidel-decomposition-type algorithm. It iteratively

solves first the followers’ problem with respect to arc flows x̄(j) and then the leader’s problem with respect to
the toll vector t(j). Since in this algorithm tolls are calculated only when the flows are already distributed,
they will be at most as large as the slack between the cost of the used paths and the cost of the toll-free
path. A similar algorithm was indeed used by Julsain (1998) to find an equilibrium point on a congested
telecommunication network.

We solve the followers’ problem through the FW algorithm. In the case of the Traffic Assignment Problem
the sequence of linear approximating subproblems results in a succession of shortest path problem instances.
Note that, however, any traffic assignment algorithm that provides an arc-flow configuration can be used.
The main points of the Two Steps algorithm are the following:

1. Initialisation: Relevant parameters such as α, β of the cost function and threshold ε for the stopping
criterion of the first and the second step are chosen;

2. First step: traffic assignment At iteration j: given the flow vector x̄(j−1) and the toll vector
t(j−1), solution of the problem at the (j− 1)-th iteration, the Traffic Assignment problem described by
Equations (8)-(10) is solved, and a new flow configuration x̄(j) is thus obtained.

3. Second step: toll maximisation Given the flow vector x̄(j), the first level problem is solved in order
to calculate the toll vector t(j), which is optimal for the current iteration. This is carried out by solving
a single level bilinear reformulation of the CNPP as described in Section 3.4. Note that since at this
point flows xka are known, the problem here is linear, and the flow conservation constraint (Equation
36) and flow non-negativity constraint (Equation 39) are not necessary here:

max
t,x

∑
a,k

ta · xka · ηk (124)

s.t. Ca(fa) + ta + λki − λkj − µka = 0 ∀a ∈ A ∪ B, ∀k ∈ K (125)

µka · xka = 0 ∀a ∈ A ∪ B, ∀k ∈ K (126)

fa =
∑
k∈K

xka · ηk ∀a ∈ A ∪ B (127)

µka ≥ 0 ∀a ∈ A ∪ B, ∀k ∈ K (128)

λki free ∀i ∈ N , ∀k ∈ K (129)

12

4. Stopping test
Let ε be a chosen value for an acceptable relative objective error, and Z(x̄(j)) the value of the leader’s
objective at the j − th iteration, then the stopping condition (relative gap function) is as follows:

|Z(x̄(j))− Z(x̄(j−1))|
|Z(x̄(j−1))|

< ε (130)

If the stopping test fails, a new iteration is executed with vector x̄(j) as the starting solution for the
First step; otherwise the algorithm is stopped and x̄(j) is the deterministic flows vector and t̄(j) the
optimum toll vector associated with it.

5 Numerical experiments
We tested both algorithms on randomly generated networks, varying in size and percentage of toll arcs:

• 50 nodes, 250 arcs, number of users: 5; toll arcs ratio: 5% , 10%, 25%, 50%.

• 100 nodes, 500 arcs, number of users: 10; toll arcs ratio: 5% , 10%, 25%, 50%.

• 150 nodes, 800 arcs, number of users: 30; toll arcs ratio: 5% , 10%, 25%.

All tests were run on 50 networks per each of the above combinations. Arc costs was randomly set
between 1 and 100, commodity demand between 1 and 20 and arc capacity between 1 and 2*(avg. demand
on all K commodities); all tests were run with a stopping threshold of ε = 0.001.

The testing system is an Intel Xeon quad core machine running at 2.27 GHz, with 16 GB of Ram, running
a 64 bit Ubuntu Linux 10.4 operating system and the FICO Xpress optimisation suite v.7.3. Algorithms
were coded in the C programming language; optimisation problems were coded in the Mosel language and
solved through Xpress.

Test results are illustrated in Tables 1-3. The OS algorithm proves to be superior in both results quality
and running time. We consider leader’s revenue as a relevant parameter for results quality, since both
algorithms will stop once the follower’s problem has reached the equilibrium. OS delivers better results
on an average 50-65% of smaller networks with fewer congested arcs (5%) and average leader’s revenue is
around 4 times higher than TS. As the percentage of toll arcs increases (25%, 50%) however, OS delivers
better results for more than 90% of the testing instances, leading to an average leader’s profit that is 10
times higher than TS. This proves the full-CNPP linearisation approach adopted in OS to be far superior
to the problem decomposition approach of TS.

Where execution time is concerned, OS generally performs better than TS. We expect this as an outcome
of the fact that for every main execution in TS, many FW iterations are required to solve the second level
problem. This implies that a different choice of algorithm for solving the user equilibrium at the second level
is likely to improve running time for TS by a considerable amount.

The parameter that appears to be most influential on performance for both algorithms is the number
of commodities. This is consistent with the respective formulations, where commodities K are the sole
dimension that is shared among all problem constraints (whereas node number N and arc subsets A, B only
influence a subset of constraints each). On the other end, the variation of percentage of toll arcs appears
to be less influent. In fact it leaves execution time mostly constant on networks with the same size for
both algorithms, impacting running time in a significant way only on bigger networks and with toll arcs
percentage above 25%.

Network size Alg. 5% 10% 25% 50% toll arcs
50 nodes, 200 arcs, 5 users OS 442.22 5518.44 8986.20 21793.59

TS 158.04 420.81 1065.33 2206.80
100 nodes, 500 arcs, 10 users OS 876.66 8985.48 18544.12 37881.13

TS 223.81 626.25 1396.19 3428.34
150 nodes, 800 arcs, 30 users OS 4739.74 20063.63 101542.69

TS 470.45 1730.80 5235.94

Table 1: Average revenue

13

Network size Alg. 5% 10% 25% 50% toll arcs
50 nodes, 200 arcs, 5 users OS 66% 74% 92% 96%

TS 34% 26% 8% 4%
100 nodes, 500 arcs, 10 users OS 52% 85% 98% 96%

TS 48% 15% 2% 4%
150 nodes, 800 arcs, 30 users OS 75% 63% 94%

TS 25% 37% 6%

Table 2: Percentage of best results from all instances

Network size Alg. 5% 10% 25% 50% toll arcs
50 nodes, 200 arcs, 5 users OS 3.405s 2.181s 1.402s 3.23s

TS 30.770s 35.981s 30.154s 41.462s
100 nodes, 500 arcs, 10 users OS 15.993s 14.286s 13.5s 47.427s

TS 1m 47.198s 2m 42.621s 2m 35.275s 2m 31.605s
150 nodes, 800 arcs, 30 users OS 3m 55.928s 3m 13.324s 11m 46.587s

TS 11m 49.234s 10m 51.747s 12m 4.177s

Table 3: Average running time

6 Conclusions
In this paper we present a particular type of Network Pricing Problem that takes congestion into con-

sideration and we develop two heuristics to solve it, namely One Step (OS) and Two Steps (TS) algorithms.
These algorithms are then implemented and their performances are tested against different sets of networks.

From these tests it appears that OS outperforms TS in solution quality: in fact OS leader’s revenues
are up to ten times higher those produced by TS. TS however appears to have better scalability towards
network dimension and complexity than OS: where OS shows an exponential growth in running time for
networks with 25% or more toll arcs, TS running time remains more or less constant for all sets of networks
with the same number of arcs and nodes. OS on the other hand outperforms our implementation of TS in
running time on smaller networks.

This behaviour is most likely due to the particular structure of the two algorithms. In TS the second level
problem is solved first: this is a very well known convex problem known as Distributed User Equilibrium
for Traffic Assignment for which many solving algorithms exist. The one we chose to implement, the Frank-
Wolfe algorithm, is the simplest and most generic (it was first developed for solving quadratic problems, then
adapted to convex problems with linear constraints), thus rather inefficient, but it uses a sequence of linear
approximations that are each an instance of a Shortest Path problem, which can be solved efficiently. The
first level problem is instead a Linear Problem, which presents no "well-known" structure, but the number
of times it has to be solved is comparatively smaller than the iterations of Shortest Path problem that are
necessary to solve an instance.

On the other hand, the different approach adopted for the OS, that is, finding both flows and tolls at the
same time, has proven to be successful. Clearly, a Frank-Wolfe-like procedure based on linear approximations
is definitely not the best approach for solving Traffic Equilibrium problems, especially where running time
is concerned. The time required to solve the linear problem that represents the current iteration of the
algorithm grows at such a high rate that even solving instances of 30 commodities and 800 arcs required
hours. The cause for this lies in the fact that this linear problem, that has to be solved a considerable amount
of times, has no well-known structure and consequently no well-known efficient and dedicated algorithm, as
opposed to the Shortest Path problem used in the TS algorithm.

Despite this, we believe that the OS approach is indeed valuable, considering the improvements in final
revenue it delivered in our tests. One direction that could definitely be worth investigating in the future is
applying this very approach to other, more recent, Traffic Assignment algorithms, in order to obtain more
efficient algorithms for solving CNPP.

References
Bar-Gera, H. (2002), ‘Origin-based algorithm for the traffic assignment problem’, Transportation Science
36(4), 398–417.

14

Bar-Gera, H. & Boyce, D. (2006), ‘Solving a non-convex combined travel forecasting model by the method
of successive averages with constant step sizes’, Transportation Reasearch Part B 40, 351–367.

Bertsekas, D. P. (1995), Nonlinear Programming, Athena Scientific, Belmont, MA.

Boyce, D., Ralevic-Dekic, B. & Bar-Gera, H. (2004), ‘Convergence of traffic allocations: how much is
enough?’, Journal of Transportation Engineering 130(1), 49–55.

Bracken, J. & McGill, J. (1973), ‘Mathematical programs with optimization problems in the constraints’,
Operations Research (21), 37–44.

Brotcorne, L., Labbé, M., Marcotte, P. & Savard, G. (2000), ‘A bilevel model and solution algorithm for a
freight tariff-setting problem’, Transportation Science 34(3), 289–302.

Brotcorne, L., Labbé, M., Marcotte, P. & Savard, G. (2001), ‘A bilevel model for toll optimization on a
multicommodity transportation network’, Transportation Science 35(4), 345–358.

Damberg, O., Lundgren, J. T. & Patriksson, M. (1996), ‘An algorithm for the stochastic user equilibrium
problem.’, Transportation Reasearch Part B 30(2), 115–131.

Frank, M. & Wolfe, P. (1956), ‘An algorithm for quadratic programming’, Naval Research Logistic Quarterly
3 Part 1, 95–110.

Gentile, G. & Noekel, K. (2009), ‘Linear user cost equilibrium: the new algorithm for traffic assignment in
visum’, VISUM 11 Manual.

Hansen, P., Jaumard, B. & Savard, G. (1992), ‘A new branch-and-bound rules for linear bilevel program-
ming’, SIAM Journal on Scientific and Statistical Computing 5(13), 1194–1217.

Heilporn, G. (2008), Network pricing problems: complexity, polyhedral study and solution approaches, PhD
thesis.

Jayakrishnan, R., Tsai, W., Prashker, J. & Rajadhyaksha, S. (1994), ‘A faster path-based algorithm for
traffic allocation’, Transportation Research Record (TRR), Journal of the Transportation Research Board
1443, 75–83.

Jeroslow, R. (1985), ‘The polynomial hierarchy and a simple model for competitive analysis’, Mathematical
Programming 32, 146–164.

Julsain, H. (1998), Tarification dans les réseaux de télécommunications: une approche par programmation
mathématique à deux niveaux, Master’s thesis, Ecole Polytechnique, Montréal.

Labbé, M., Marcotte, P. & Savard, G. (1998), ‘A bilevel model of taxation and its application to optimal
highway pricing’, Management Science 44(12), 1608–1622.

Labbé, M. & Violin, A. (2013), ‘Bilevel programming and price setting problems’, 4OR: A Quarterly Journal
of Operations Research 11(1), 1–30.

Larsson, T. & Patriksson, M. (1992), ‘Simplicial decomposition with disaggregated representation for the
traffic allocation problem’, Transportation Science 26, 4–17.

LeBlanc, L. J., Morlok, B. & Pierskalla, W. (1975), ‘An efficient approach to solving the road network
equilibrium traffic allocation problem’, Transportation Research 9, 309–318.

Luo, Z., Pang, J. & Ralph, D. (1996), Mathematical Programs With Equilibrium Constraints, Cambridge
University Press.

Patriksson, M. (1994), The traffic assignment problem: models and methods, Topics in transportation, VSP.

Petersen, E. R. (1975), ‘A primal-dual traffic assignment algorithm’, Management Science 22(1), 87–95.

Pro (2009), On the accurate convergence of deterministic assignment when comparing scenarios for large
networks: investigating the LUCE algorithm, Vol. 187-193, L. Mussone, U. Crisalli, Maggioli Editore,
Rimini, Italy.

Rigonat, D. (2012), Approximate algorithms for the network pricing problem with congestion, Master’s
thesis, Universitá degli Studi di Trieste, Italy.

15

Sheffi, Y. (1985), Urban Transportation Networks: Equilibrium Analysis With Mathematical Programming
Methods, Prentice Hall.

Shimizu, K. & Aiyoshi, E. (1981), ‘A new computational method for Stackelberg and min-max problems by
use of a penalty method’, 26, 460–466.

Shimizu, K., Ishizuka, Y. & Bard, J. (1997), Nondifferentiable and Two-Level Mathematical Programming,
Kluwer Academic Publishers.

Vicente, L. & Calamai, P. (1994), ‘Bilevel and multilevel programming: A bibliography review’, Journal of
Global Optimization (5), 291–306.

Vicente, L., Savard, G. & Júdice, J. (1994), ‘Descent approaches for quadratic bilevel programming’, Journal
of Optimization Theory and Applications 81(2), 379–399.

Wardrop, J. G. (1952), ‘Some theoretical aspects of road traffic research’, ICE Proceedings: Engineering
Divisions 1(3), 325–362.

16

