Demand Based Timetabling of Passenger Railway Service

Tomáš Robenek
Jianghang Chen Michel Bierlaire

hEART 2013
2nd Symposium of the European Association
for Research in Transportation,
Stockholm

September 5, 2013
Railway Planning

- STRATEGIC - several years
- TACTICAL - >= 1 year
- OPERATIONAL - < 1 year

- Demand → Line Planning → Lines → Train Timetabling → Actual Timetables → Train Platforming → Platform Assignments
- Train Timetabling → Actual Timetables → Rolling Stock Planning → Train Assignments
- Actual Timetables → Crew Planning → Crew Assignments

TOC
IM
Line Planning Problem

Railway Infrastructure

Passenger Demand

Potentional Lines

Model

Min Cost

Max Direct Pass.

Trade-Off
Train Timetabling Problem – Non-Cyclic
Train Timetabling Problem – Cyclic

Railway Infrastructure

Cycle

Actual Timetable(s)

Model

SAFETY FIRST

<table>
<thead>
<tr>
<th>Persönlicher Fahrplan</th>
<th>Zürich HB - St. Moritz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ab</td>
<td>Ankunft</td>
</tr>
<tr>
<td>10 00</td>
<td>10 00</td>
</tr>
<tr>
<td>10 20</td>
<td>10 20</td>
</tr>
<tr>
<td>10 40</td>
<td>10 40</td>
</tr>
<tr>
<td>11 00</td>
<td>11 00</td>
</tr>
<tr>
<td>11 20</td>
<td>11 20</td>
</tr>
<tr>
<td>11 40</td>
<td>11 40</td>
</tr>
<tr>
<td>12 00</td>
<td>12 00</td>
</tr>
<tr>
<td>12 20</td>
<td>12 20</td>
</tr>
<tr>
<td>12 40</td>
<td>12 40</td>
</tr>
<tr>
<td>13 00</td>
<td>13 00</td>
</tr>
<tr>
<td>13 20</td>
<td>13 20</td>
</tr>
<tr>
<td>13 40</td>
<td>13 40</td>
</tr>
<tr>
<td>14 00</td>
<td>14 00</td>
</tr>
<tr>
<td>14 20</td>
<td>14 20</td>
</tr>
<tr>
<td>14 40</td>
<td>14 40</td>
</tr>
<tr>
<td>15 00</td>
<td>15 00</td>
</tr>
<tr>
<td>15 40</td>
<td>15 40</td>
</tr>
<tr>
<td>16 00</td>
<td>16 00</td>
</tr>
<tr>
<td>16 20</td>
<td>16 20</td>
</tr>
<tr>
<td>16 40</td>
<td>16 40</td>
</tr>
<tr>
<td>17 00</td>
<td>17 00</td>
</tr>
<tr>
<td>17 20</td>
<td>17 20</td>
</tr>
<tr>
<td>17 40</td>
<td>17 40</td>
</tr>
<tr>
<td>18 00</td>
<td>18 00</td>
</tr>
<tr>
<td>18 20</td>
<td>18 20</td>
</tr>
<tr>
<td>18 40</td>
<td>18 40</td>
</tr>
<tr>
<td>19 00</td>
<td>19 00</td>
</tr>
<tr>
<td>19 20</td>
<td>19 20</td>
</tr>
<tr>
<td>19 40</td>
<td>19 40</td>
</tr>
<tr>
<td>20 00</td>
<td>20 00</td>
</tr>
<tr>
<td>20 20</td>
<td>20 20</td>
</tr>
<tr>
<td>20 40</td>
<td>20 40</td>
</tr>
<tr>
<td>21 00</td>
<td>21 00</td>
</tr>
<tr>
<td>21 20</td>
<td>21 20</td>
</tr>
<tr>
<td>21 40</td>
<td>21 40</td>
</tr>
<tr>
<td>22 00</td>
<td>22 00</td>
</tr>
<tr>
<td>22 20</td>
<td>22 20</td>
</tr>
<tr>
<td>22 40</td>
<td>22 40</td>
</tr>
<tr>
<td>23 00</td>
<td>23 00</td>
</tr>
<tr>
<td>23 20</td>
<td>23 20</td>
</tr>
<tr>
<td>23 40</td>
<td>23 40</td>
</tr>
</tbody>
</table>
Arising Issues

Figure: Outside peak hour

Figure: Train station in China

Figure: Inside peak hour
Railway Planning Improved

- **STRATEGIC** - several years
- **TACTICAL** - >= 1 year
- **OPERATIONAL** - < 1 year

Flowchart:
- Demand → Line Planning
- Lines → Ideal Train Timetabling
- Ideal Timetables → Train Timetabling
- Train Timetables → Actual Timetables
- Actual Timetables → Train Platforming
- Actual Timetables → Rolling Stock Planning
- Actual Timetables → Crew Planning
- Platform Assignments
- Train Assignments
- Crew Assignments

Abbreviations:
- TOC
- IM

Logos:
- TRANSP-OR
- EPFL
Agenda

1. Motivation
2. Ideal Train Timetabling Problem
3. Conclusions
4. Future Work
1 Motivation

2 Ideal Train Timetabling Problem
 - Assumptions
 - Inputs
 - Decision Variables
 - Objective
 - Constraints
 - Cyclicity
 - Connections

3 Conclusions

4 Future Work
Assumptions I

User Cost

Ideal Time

Time
Assumptions II

SOURCE σ

Geneva + 33'
Lausanne + 66'
Berne + 60'
Luzern

x_t

0

1440
Inputs

\(t \in T \) – set of time steps

\(l \in L \) – set of lines

\(f \) – fraction by which it is better to be early

\(d_t \) – demand captured along the line \(l \), when scheduling a train at time \(t \)

\(d_t^{ll'} \) – connection demand captured along the line \(l \) and \(l' \), when scheduling a train at time \(t \) on the line \(l \)

\(n^l \) – number of trains available for line \(l \)

\(h_i^l \) – relative headway to reach a connection point of lines \(l \) and \(l' \) from the first station on line \(l \) and \(l' \)

\(c^l \) – size of the cycle on line \(l \)

\(s \) – preferred start of the planning horizon

\(M \in \mathbb{M} \) – set of sufficiently large numbers
Primary Decision(s)

\[x_t^l = \begin{cases}
1 & \text{if a train on line } l \text{ is scheduled at time } t, \\
0 & \text{otherwise.}
\end{cases} \]
Secondary Decisions I

- \(y_{t}^{lb} \in \mathbb{R}^{+} \) – cost of the passengers wanting to travel at time \(t \) on the line \(l \), when taking a closest train at \(t \) or before

- \(y_{t}^{la} \in \mathbb{R}^{+} \) – cost of the passengers wanting to travel at time \(t \) on the line \(l \), when taking a closest train after \(t \)

- \(y_{t}^{l} \in \mathbb{R}^{+} \) – cost of the passengers wanting to travel at time \(t \) on the line \(l \)
Secondary Decisions II

\[z_t^l = \begin{cases}
1 & \text{if passengers wanting to travel at time } t \\
& \text{on the line } l \text{ take the closest train} \\
& \text{after the time } t, \\
0 & \text{otherwise.}
\end{cases} \]
Objective

\[
\min \sum_{l \in L} \sum_{t \in T} y_t^l \cdot d_t^l
\]
Constraints I

\[
y_{t}^{lb} \geq \frac{(t - t')}{f} \cdot \left(x_{t'}^{l} - \sum_{t''=t'+1}^{t} x_{t''}^{l} \right) \quad \forall l \in L, \forall t, \forall t' \in T : t \geq t',
\]

\[
y_{t}^{la} \geq (t' - t) \cdot \left(x_{t'}^{l} - \sum_{t''=t+1}^{t'-1} x_{t''}^{l} \right) \quad \forall l \in L, \forall t, \forall t' \in T : t < t',
\]
Constraints II

\[y_{t}^{lb} \geq M_{1} \cdot \left(1 - \sum_{t' = s}^{t} x_{t'}^{l} \right) \quad \forall l \in L, \forall t \in T, \]

\[y_{t}^{la} \geq M_{1} \cdot \left(1 - \sum_{t' = t}^{T} x_{t'}^{l} \right) \quad \forall l \in L, \forall t \in T, \]
Constraints III

\[y_t^l \geq y_{t}^{lb} - z_{t}^l \cdot M_2 \quad \forall l \in L, \forall t \in T, \]
\[y_t^l \geq y_{t}^{la} - \left(1 - z_{t}^l\right) \cdot M_2 \quad \forall l \in L, \forall t \in T, \]
\[M_2 > M_1 \]
Constraints IV

\[\sum_{t \in T} x_t^l \leq n^l \quad \forall l \in L, \]
1 Motivation

2 Ideal Train Timetabling Problem
 - Assumptions
 - Inputs
 - Decision Variables
 - Objective
 - Constraints
 - Cyclicity
 - Connections

3 Conclusions

4 Future Work
Introducing Cyclicity

\[x_{t+c}^l = x_t^l \]

\[\forall l \in L, \forall t \in T : t + c^l \leq T : t \geq s, \]

\[\min(t+c^l, T) \sum_{t'=t+1} x_{t'}^l \leq (1 - x_t^l) \cdot M_3 \]

\[\forall l \in L, \forall t \in T : t \geq s, \]
Introducing Cyclicity

\[x_{t+c}^l = x_t^l \quad \forall l \in L, \forall t \in T : t + c^l \leq T : t \geq s, \]

\[\min(t+c^l, T) \sum_{t'=t+1} x_t^l \leq (1-x_t^l) \cdot M_3 \quad \forall l \in L, \forall t \in T : t \geq s, \]
Motivation

Ideal Train Timetabling Problem
- Assumptions
- Inputs
- Decision Variables
- Objective
- Constraints
- Cyclicity
- Connections

Conclusions

Future Work
Extra Decisions I

- $y_t^{ll^b} \in \mathbb{R}^+$ – cost of the passengers wanting to travel at time t on the line l, when taking a closest train at t or before and connecting to line l'
- $y_t^{ll^a} \in \mathbb{R}^+$ – cost of the passengers wanting to travel at time t on the line l, when taking a closest train after t and connecting to line l'
- $y_t^{ll'} \in \mathbb{R}^+$ – cost of the passengers wanting to travel at time t on the line l and connecting to line l'
Extra Decisions II

Let

\[z_t'' = \begin{cases}
1 & \text{if passengers wanting to travel at time } t \\
& \text{on the line } l \text{ take the closest train after the time } t \text{ and connecting to line } l', \\
0 & \text{otherwise.}
\end{cases} \]
Objective

$$\min \sum_{l \in L} \sum_{t \in T} y_t^l \cdot d_t^l + \sum_{l \in L} \sum_{l' \in L} \sum_{t \in T} y_t^{ll'} \cdot d_t^{ll'}$$
Extra Constraints I

\[y_{t''}^{bb} \geq (t - t') / f \cdot \left(x_{t'}^l - \sum_{t'''=t'+1}^{t} x_{t'''}^l \right) + \left(t'' - (t' + h_l'') \right) \cdot \]

\[
\left(x_{t''}^l - \sum_{t'''=t'+h_l''+1}^{t''-1} x_{t'''}^l \right) - M_4 \cdot \left(1 - x_{t'}^l + \sum_{t'''=t'+1}^{t} x_{t'''}^l \right)
\]

\[\forall l, \forall l' \in L : l \neq l', \]

\[\forall t, \forall t', \forall t'' \in T : t \geq t' \text{ and } t' + h_l'' < t'', \]

\[y_{t''}^{aa} \geq (t' - t) \cdot \left(x_{t'}^l - \sum_{t'''=t'+1}^{t'-1} x_{t'''}^l \right) + \left(t'' - (t' + h_l'') \right) \cdot \]

\[
\left(x_{t''}^l - \sum_{t'''=t'+h_l''+1}^{t''-1} x_{t'''}^l \right) - M_4 \cdot \left(1 - x_{t'}^l + \sum_{t'''=t'+1}^{t'-1} x_{t'''}^l \right)
\]

\[\forall l, \forall l' \in L : l \neq l', \]

\[\forall t, \forall t', \forall t'' \in T : t < t' \text{ and } t' + h_l'' < t'', \]
Extra Constraints II

User Cost

Ideal Time t

Regular Time Step

Departure

Arrival to Line l' at time $t'+h$

Time t''
Extra Constraints III

\[y_{t}^{ll'} \geq y_{t}^{ll''} - z_{t}^{ll'} \cdot M_{2} \quad \forall l, \forall l' \in L : l \neq l', \forall t \in T, \]

\[y_{t}^{ll'} \geq y_{t}^{ll''} - (1 - z_{t}^{ll''}) \cdot M_{2} \quad \forall l, \forall l' \in L : l \neq l', \forall t \in T, \]

Constraints to add

- Beginning and the end of horizon, when no connections are possible
1 Motivation

2 Ideal Train Timetabling Problem

3 Conclusions

4 Future Work
Conclusions

- New planning phase, based on the demand
- User cost rather than demand to capture (no need for discrete choice model)
- Can handle both non- and cyclic timetables
- Connections are demand imposed
1 Motivation

2 Ideal Train Timetabling Problem

3 Conclusions

4 Future Work
Future Work

- Methodology design (cyclic is tighter than the non-)
- Actually solving the problem
- Analysis of the general results
- Analysis of the connections
Thank you for your attention.