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Problem statements

This work contributes to the modeling of analytical trad¢gbint distributions of time-dependent finite ca-
pacity Markovian queueing network states. The model isvated by an interest to analyse network effects
in congested urban road networks. The development of acallyprobabilistic and time-dependent models
for urban traffic is seldom. In urban transportation, as irstifields, time-dependent (i.e., transient) analy-
sis is most often carried out by either the use of (i) deteistimanalytical models (such as the fundamental
kinematic wave model (Lighthill and Witham; 1955; Richarii856)) or (ii) simulation-based models (for
a review, see Barcel6 (2010)), which when stochastic cawnigeaistributional estimates that go beyond
first-order information (i.e., expectations). There isreatly a lack of analytical transient techniques for fi-
nite capacity Markovian queueing networks that accounspatial-temporal dependencies, and even more
a lack of tractable (i.e., computationally efficient) teichues. This paper proposes a tractable analytical
approximation of transient multi-dimensional queue-tardjstributions.

In the broader field of transportation (all modes considgffed analytical probabilistic and time-dependent
techniques have been developed (for a single queue seerkiide(2001); Peterson et al. (1995b); for
networks of queues see Osorio and Flotterdd (2012); Osorad. €2011); Gupta (2011); Peterson et al.
(1995a); Odoni and Roth (1983)). This work contributes ® phobabilistic analytical modeling of urban
traffic. The proposed network model can be coupled with tetdink models of urban traffic (Osorio and
Flotterdd; 2012; Osorio et al.; 2011), which are also deribased on queueing network theory and are
consistent with the mainstream deterministic traffic med&€he combination of such models can describe
in a tractable and detailed manner both the within-link dreddetween-link dynamics, leading to a detailed
probabilistic description of the spatial-temporal evmntof urban congestion.

M ethodology

Consider a network of queues in an arbitrary topology, ciimgj of single server queues. External arrivals
to a queue arise following an independent Poisson procedseavice times are independently, identically
distributed exponential random variables. Routing is pholstic.

The following events are possible in the network: (i) afgvirom outside the network into a queue, (ii)
departures from a queue out of the network, (iii) transgifmom an upstream queue into a downstream
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gueue. The rates at which these events occur may be timadiepe All queues have finite capacities,
enabling the modeling of spill-back effects.

Denoting byN = N(t) the random vector of all queue states in the network at ralaled timet, the
dynamics of the joint distribution dfl are guided by the following linear system of differentiabatjons
(Reibman; 1991):
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where %P is the time derivative oP, x = (x;) andy = (y;) are both realizations dfl, andt}, is the
transition rate from stateinto statey.

This model becomes computationally intractable for nanarnetworks due to the exponential increase in
the dimension of the state space as a function of the numlogreafes. This work hence proposes a transient
decomposition technique that characterizes the high4usinaeal joint distributior?(N) in terms of lower-
dimensional marginals over non-disjoint (“overlappingtibnetworks, where a given queue belongs to the
subnetworks of both its upstream and its downstream quetlibgs decomposition is not expensive to
compute and, as proven in the full paper, unique.

Let S be a subnetwork andlS be the set of all of its adjacent subnetworks. The dynamitiseostateNs s
of all queues irb anddS only can then be expressed as follows:

d
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where(n, q) and(m, s) are elements of the combined state spac&aﬂdas with the respective first tuple
element belonging t6 and the second element belongin@& andt m;s) (S 0S) is the transition rate from
state(n, q) to (m, s) when only accounting for events possible in subnetvﬁ)dndas

Summing out the queue stateand rearranging terms results in

c?tP(N =m) = ZZZ’C (S,0S)P(Ns s = (n,q))

— Z ZZtms (S,9S)P(Nas = q | Ng = n)| P(Ng = n) €))

whereNs andNys are the random vectors of queue states only in subnetvoaksl 0S, respectively. It is
noteworthy that the term in brackets functions like a stipendent transition rate from subnetwork state
n to subnetwork state. This — so far exact — expression is the basis for the proposetb!|.

The full article develops in detail a tractable approxiroatof these state-dependent transition rates. This
approximation only requires computations based on sulmrktetates, resulting in a model specification
where the dynamics of all overlapping subnetworks are lpidétermined, with each subnetwork only
evaluating the instantaneous states of its neighbouribgetworks.

Further, the article proves that if any two subnetwork disttions have identical marginals for a common
set of queues at some point in time, this marginal will alsadaatical at all other points in time. This
constitutes a key feature of the proposed decompositioroaph: It maintains mutually consistent over-
lapping subnetwork distributions without any need to idtroe supplementary distributional adjustments
or constraints.

[ llustrativeresults

Consider the network shown in Figure 1, consisting of eigidle-lane roads. It is constructed in the same
spirit as the network presented by Corthout et al. (2012)o Mlows compete for the network capacity,
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Figure 1. Conflicting network inflows
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Figure 2: Multiple solutions

one entering at the south-western link (blue) and one eget the north-eastern link (orange). The flows
split at the intersections proportionally to the widthslué respective arrows. At the merge points, straight
flows have priority over flows entering from the side.

A deterministic version of this model has two solutions, lasven in Figure 2. In the first (top) solution,
the blue flow dominates the south-eastern merge, such thairéimge flow spills back and cannot enter
the north-western merge, where the blue flow can hence enkendered. Symmetrically, in the second
(bottom) solution the orange flow dominates the north-wasteerge. The blue flow hence spills back,
without entering the south-eastern merge, where the offmge&an hence pass unhindered.

In the presence of stochasticity, this system may osciliatereen these two solutions, with the period of
these oscillations depending on the network parametedgebh it is possible to construct arbitrarily long
periods of these oscillations, making a simulation-basedyais of this system extremely cumbersome. To
give an example, Figure 3 shows the occupancy of the midadleiti the lower road stretch, going from
west to east, over simulation time. It fluctuates betweendalmost completely full (containing 9 or 10
vehicles, meaning that the blue flow spills back) and a mostriduted state corresponding to maximum
flow throughput (meaning that the blue flow has taken over).

Figure 4 shows an estimation of the time-dependent expec®&gpancy on the same link as computed by
the proposed analytical model. The model captures two itapbeffects. First, its transient nature allows
to identify an initial overshoot in expected occupancyuliésg from the fact one starts with an empty

network, such that initially the demand can enter and ocdbhpynetwork unhindered from both sides.

Only after a while, spillback effects occur. Second, it tak@re than 300 time steps (5 minutes) to attain
stationarity in this system, due to its oscillatory naturke full article investigates in greater detail how the
proposed model approximates multi-variate network distrons of this type.
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Figure 3: Fluctuations of link occupancy over time
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Figure 4. Analytically computed expectation of link occapg over time
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