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Problem statements

This work contributes to the modeling of analytical tractable joint distributions of time-dependent finite ca-
pacity Markovian queueing network states. The model is motivated by an interest to analyse network effects
in congested urban road networks. The development of analytical, probabilistic and time-dependent models
for urban traffic is seldom. In urban transportation, as in most fields, time-dependent (i.e., transient) analy-
sis is most often carried out by either the use of (i) deterministic analytical models (such as the fundamental
kinematic wave model (Lighthill and Witham; 1955; Richards; 1956)) or (ii) simulation-based models (for
a review, see Barceló (2010)), which when stochastic can provide distributional estimates that go beyond
first-order information (i.e., expectations). There is currently a lack of analytical transient techniques for fi-
nite capacity Markovian queueing networks that account forspatial-temporal dependencies, and even more
a lack of tractable (i.e., computationally efficient) techniques. This paper proposes a tractable analytical
approximation of transient multi-dimensional queue-length distributions.

In the broader field of transportation (all modes considered), few analytical probabilistic and time-dependent
techniques have been developed (for a single queue see Heidemann (2001); Peterson et al. (1995b); for
networks of queues see Osorio and Flötteröd (2012); Osorio et al. (2011); Gupta (2011); Peterson et al.
(1995a); Odoni and Roth (1983)). This work contributes to the probabilistic analytical modeling of urban
traffic. The proposed network model can be coupled with detailed link models of urban traffic (Osorio and
Flötteröd; 2012; Osorio et al.; 2011), which are also derived based on queueing network theory and are
consistent with the mainstream deterministic traffic models. The combination of such models can describe
in a tractable and detailed manner both the within-link and the between-link dynamics, leading to a detailed
probabilistic description of the spatial-temporal evolution of urban congestion.

Methodology

Consider a network of queues in an arbitrary topology, consisting of single server queues. External arrivals
to a queue arise following an independent Poisson process, and service times are independently, identically
distributed exponential random variables. Routing is probabilistic.

The following events are possible in the network: (i) arrivals from outside the network into a queue, (ii)
departures from a queue out of the network, (iii) transitions from an upstream queue into a downstream
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queue. The rates at which these events occur may be time-dependent. All queues have finite capacities,
enabling the modeling of spill-back effects.

Denoting byN = N(t) the random vector of all queue states in the network at real-valued timet, the
dynamics of the joint distribution ofN are guided by the following linear system of differential equations
(Reibman; 1991):

d

dt
P(N = y) =

∑

x

ty
xP(N = x) (1)

where d
dt
P is the time derivative ofP, x = (xi) andy = (yi) are both realizations ofN, andty

x is the
transition rate from statex into statey.

This model becomes computationally intractable for non-trivial networks due to the exponential increase in
the dimension of the state space as a function of the number ofqueues. This work hence proposes a transient
decomposition technique that characterizes the high-dimensional joint distributionP(N) in terms of lower-
dimensional marginals over non-disjoint (“overlapping”)subnetworks, where a given queue belongs to the
subnetworks of both its upstream and its downstream queues.This decomposition is not expensive to
compute and, as proven in the full paper, unique.

Let S be a subnetwork and∂S be the set of all of its adjacent subnetworks. The dynamics ofthe stateNS,∂S

of all queues inS and∂S only can then be expressed as follows:

d

dt
P(NS,∂S = (m, s)) =

∑

n

∑

q

t
(m,s)
(n,q)(S, ∂S)P(NS,∂S = (n, q)) (2)

where(n, q) and(m, s) are elements of the combined state space ofS and∂S, with the respective first tuple
element belonging toS and the second element belonging to∂S, andt(m,s)

(n,q)(S, ∂S) is the transition rate from
state(n, q) to (m, s) when only accounting for events possible in subnetworkS and∂S.

Summing out the queue statess and rearranging terms results in

d

dt
P(NS = m) =

∑

s

∑

n

∑

q

t
(m,s)
(n,q)(S, ∂S)P(NS,∂S = (n, q))

=
∑

n

[

∑

q

∑

s

t
(m,s)
(n,q)(S, ∂S)P(N∂S = q | NS = n)

]

P(NS = n) (3)

whereNS andN∂S are the random vectors of queue states only in subnetworksS and∂S, respectively. It is
noteworthy that the term in brackets functions like a state-dependent transition rate from subnetwork state
n to subnetwork statem. This – so far exact – expression is the basis for the proposedmodel.

The full article develops in detail a tractable approximation of these state-dependent transition rates. This
approximation only requires computations based on subnetwork states, resulting in a model specification
where the dynamics of all overlapping subnetworks are jointly determined, with each subnetwork only
evaluating the instantaneous states of its neighbouring subnetworks.

Further, the article proves that if any two subnetwork distributions have identical marginals for a common
set of queues at some point in time, this marginal will also beidentical at all other points in time. This
constitutes a key feature of the proposed decomposition approach: It maintains mutually consistent over-
lapping subnetwork distributions without any need to introduce supplementary distributional adjustments
or constraints.

Illustrative results

Consider the network shown in Figure 1, consisting of eight single-lane roads. It is constructed in the same
spirit as the network presented by Corthout et al. (2012). Two inflows compete for the network capacity,
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Figure 1: Conflicting network inflows

Figure 2: Multiple solutions

one entering at the south-western link (blue) and one entering at the north-eastern link (orange). The flows
split at the intersections proportionally to the widths of the respective arrows. At the merge points, straight
flows have priority over flows entering from the side.

A deterministic version of this model has two solutions, as shown in Figure 2. In the first (top) solution,
the blue flow dominates the south-eastern merge, such that the orange flow spills back and cannot enter
the north-western merge, where the blue flow can hence enter unhindered. Symmetrically, in the second
(bottom) solution the orange flow dominates the north-western merge. The blue flow hence spills back,
without entering the south-eastern merge, where the orangeflow can hence pass unhindered.

In the presence of stochasticity, this system may oscillatebetween these two solutions, with the period of
these oscillations depending on the network parameters. Indeed, it is possible to construct arbitrarily long
periods of these oscillations, making a simulation-based analysis of this system extremely cumbersome. To
give an example, Figure 3 shows the occupancy of the middle link in the lower road stretch, going from
west to east, over simulation time. It fluctuates between being almost completely full (containing 9 or 10
vehicles, meaning that the blue flow spills back) and a more distributed state corresponding to maximum
flow throughput (meaning that the blue flow has taken over).

Figure 4 shows an estimation of the time-dependent expectedoccupancy on the same link as computed by
the proposed analytical model. The model captures two important effects. First, its transient nature allows
to identify an initial overshoot in expected occupancy, resulting from the fact one starts with an empty
network, such that initially the demand can enter and occupythe network unhindered from both sides.
Only after a while, spillback effects occur. Second, it takes more than 300 time steps (5 minutes) to attain
stationarity in this system, due to its oscillatory nature.The full article investigates in greater detail how the
proposed model approximates multi-variate network distributions of this type.

3



Figure 3: Fluctuations of link occupancy over time

Figure 4: Analytically computed expectation of link occupancy over time
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