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Abstract 

We discuss some methodological challenges and pitfalls when binary stated 

choice data is used to predict the potential ridership of new alternatives. Three 

challenges can be distinguished: (i) the appropriate translation of group scale 

parameters into nest parameters; (ii) the use of binary data for a full mode choice 

model; (iii) the use of stated choices involving transport modes which do not 

currently exist.  

The paper first critically examines the approach chosen in the market analysis 

underlying the official HSR-assessment study in Norway (Atkins 2012, 

Jernbaneverket 2012) and suggests more sophisticated methods, in particular joint 

RP/SP models with a cross-nested logit specification for a theoretically better 

justified forecasting procedure.   

We then examine this model estimation problem using similar data, providing 

some new insights regarding estimation of group scale parameters and their 

potential use in the construction of forecasting models for new alternatives that 

might be correlated with existing alternatives, using revealed preference and 

binary stated choice data.    

http://www.ing.puc.cl/esp/
http://www.puc.cl/
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Introduction 

A large-scale study on the feasibility and social benefits of high-speed rail (HSR) 

in Norway has been recently carried out (Jernbaneverket 2012). The estimated 

market potential of HSR is naturally a crucial element in this quest as the 

predicted ridership has a direct effect on expected revenues, user benefits and 

greenhouse gas reductions. The market analysis part of the assessment study was 

done by British consultants Atkins (2011, 2012a, 2012b). The model coefficients 

and structural parameters applied for forecasting (thereafter 'forecasting model') 

were derived from a stated preference (SP) study of binary choices between 

respondents‟ current mode of transport (air, traditional train, car or bus) and HSR.  

The variance of the error term associated with a stated choice model may differ 

between different groups (gn) of individuals n sharing particular characteristics 

(i.e. the current mode). Given the specification of the indirect utility functions, the 

error variance of models between - for instance - air and HSR, could be smaller or 

greater than the error variance of models between traditional train and HSR. 

Therefore, when estimating a pooled model (of all binary SP choices), one usually 

specifies different group scale parameters,    , to account for the possibility of 

differences in error variances (Louviere et al 2000)
1
. As group scale parameters 

will in general differ in value, the scale of the indirect utility function of HSR will 

depend on the user group. This is desirable for inference as it allows estimating a 

consistent set of model coefficients (β-parameters) for HSR. 

When implementing a forecasting model one should take into account the 

estimated group scale parameters as they may be considered – as shown later in 

the paper – a measure of which transport modes are closer substitutes. Fully 

accounting for group scale parameters – and not omitting or restricting them – 

will in general complicate the implicit structure of the mode choice model. 

Indeed, we will show that only in special cases, the often used multinomial 

(MNL) and nested logit (NL) models can be derived in a straightforward manner.   

Using binary choices for predicting demand for a full choice set of options has the 

pitfall that not all relevant scales (scale differences) can be assessed. In the 

aforementioned study, one does not, for example, observe how car-users react to 

changes in the indirect utility of air (e.g. the effect of a decrease in boarding time), 

so the scale of the error variance in choices between current transport modes 

might be unknown. Without further data, this relative scale has to be assumed 

implicitly. In the special case of stated preference (SP) choices that involve new 

potential transport modes subject to political debate (i.e. HSR), imposing 

restrictions on the relative scales is particularly appealing as the relative impact of 

the error term in SP choices is likely to be different from real-world choices 

among current transport modes due to the possibility of hypothetical and policy 

bias.  

                                                 
1
 We use the notion of group scale parameters as in Bierlaire (2003). 
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This paper pinpoints some methodological challenges, and gives suggestions for 

improvements when binary stated choice data are used to build forecasting models 

including all current modes and a hypothetical new transport mode.  

Theory 

Heteroscedastic logit model 

We describe a standard discrete choice set up where traveller n chooses between 

different transport modes i belonging to a (personal specific) choice set 

    according to the following choice rule:  

(1)                                                      .  

In standard multinomial logit models (MNL), the random term      are assumed 

to be IID-Gumbel distributed with mean zero and variance given by
2
:    

  

 
 
 
. 

With this, the MNL model choice probabilities can be shown to be given by 

(McFadden 1974): 

(2)                                           
     

  
    

      

  .       

The IID-assumption in equation (2) implies proportional substitution patterns 

across alternatives as the utility of any two alternatives is uncorrelated. Note that 

the scale factor   cannot be estimated separately from the parameters   in the 

deterministic component of utility, V, so it has to be normalized (see the 

discussion on identifiability by Walker 2001)
3
. 

In certain cases the analyst might wish to allow for different error variances for 

different subgroups in the data; for example, in our case we have that people using 

different modes in reality are subject to different SP experiments, asking them to 

choose between that mode and HSR. This can be easily treated by allowing the 

scale factor (which is inversely proportional to the error variance) to be not 

generic (as   as in equation (2)), but to differ by subgroup; thus, allowing for 

different group scale parameters,      the choice probabilities become4: 

(3)           
       

  
      

       

                

If we can mix the data for all groups, we would obtain a 'heteroscedastic logit' 

model.  

Obviously the group scale parameters affect the resulting choice probabilities as is 

illustrated in Figure 1. 

 

                                                 
2
     denotes the scale parameter of the Gumbel distribution. 

3
 For similar reasons, also the overall scale of utility U is arbitrary. When all utilities     in (1) are 

multiplied by a positive scalar μ (homogeneity parameter or 'overall scale parameter'), the choice 

probabilities in any discrete choice model, including MNL, do not change. 
4
 We note that not all group scale parameters can be estimated simultaneously. For identification, 

one group scale parameter has to be fixed (typically at the value 1).   



 4 

Figure 1: Illustration of effect of group scale parameter on choice probability  

  

If group scale parameters are different in value, the IID-assumption only applies 

within the subgroup but is relaxed for the whole sample. Given different but partly 

overlapping choice sets across groups, a model like (3) is not characterising by 

proportional substitution between all alternatives. In our case, HSR will have 

(potentially) different degree of substitution with the various current transport 

modes based on the estimated group scale parameters.    

Due to the relationship of the group scale parameters with the error variance, it is 

clear that they depend on how well specified the indirect utility function     is. If 

    is specified in such a way that it takes into account all differences between 

user groups (e.g. by using personal and alternative specific parameters) the group 

scale parameters might approximate each other and an IID distribution assumption 

(from that perspective seen as the ideal and not a restriction) could be used
5
. 

Nested logit and cross-nested logit models  

In a nested logit (NL) model, alternatives are allocated into non-overlapping nests, 

m, that contain alternatives i =1, ..., Jm. NL models (Williams 1977; Daly and 

Zachary 1978) can also be derived from the family of GEV-models (McFadden 

1981). Using GEV-notation, the choice probability for the NL model is given as: 

(4)         
      

      
  
   

 
   

    
      

  
   

 
   

   

 
      

   
      

  
   

 

                                                 
5
 Actually, if only alternative specific parameters are used it will not be possible to estimate group 

scale parameters as they will not be identifiable. However, most models include at least some 

generic parameters. 
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where    are scale parameters applied to alternatives in nest m. We refer to them 

as nest parameters. Similar to the group scale parameters     (but arising from a 

different perspective), the nest parameters are inversely related to the 

corresponding error variance. As pointed out before (footnote 3),   is an arbitrary 

positive number and only the ratio 
 

  
 has a behavioural interpretation. It can be 

shown that the correlation between two alternatives is given as: 

(5)                                       
 

  
          

where      is one when i and j belong to nest m and zero otherwise. 

A low error variance in nest m (i.e.    relatively larger than  ) implies a large 

correlation among utilities between the nested alternatives. For GEV-conditions to 

hold, we need         This implies that the utility of the nested alternatives 

must be positively correlated. This has to be taken into account when setting up a 

nested structure
6
.   

The choice probability in (4) has a nice two-fold interpretation. It is the choice 

between nests (choice at the „upper level‟/'root') times the choice between 

alternatives in the chosen nest (choice at the „lower level‟). 

A restriction of NL model is that nests cannot overlap, that is, each alternative can 

only enter one nest. A GEV-model that allows alternatives to enter into several 

nests, is the cross-nested logit, CNL (Vovsha 1997; Bierlaire 2006). Choice 

probabilities in the CNL model are given by (Abbe et al. 2007, page 797)
7
: 

 (6)             
        

  
  

      
  
   

 
  

 

      

  
  

      
  
   

 
   

   

   

  
       

     

  
  

      
  
   

 
    

Bierlaire (2006, page 293) also gives the following conditions to be met by CNL: 

1.                           

2.       for all j = 1, ... , J , m = 1, ..., M 

3.     
 
       for all j = 1, ..., J. 

                                                 
6
 Again, the interpretation of low error variance among related alternatives as a situation where 

these alternatives share a high proportion of unobservable variables is important. This has to be 

considered when one set ups a nested structure; one should nest alternatives that are likely to share 

unobservable variables, that is (with a naive specification of V) alternatives which are close 

substitutes. Again, when V is perfectly well-specified there should not be any correlation of error 

terms and IID error terms (as in the MNL-model) should be sufficient. 
7
 Equation (6) is for the resulting choice probability for the most general formulation of CNL. 

Other formulations are found in e.g. Ben-Akiva and Bierlaire (1999) or Wen and Koppelmann 

(2001). BIOGEME 1.8 (and later versions) use the CNL model version as in equation (6)  
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Following Train (2009) we refer to the  -parameters as allocation parameters
8
. 

The NL-model is a special case of the CNL-model where all     are zero except 

for the nest m the alternative is included in. 

The exact correlation structure of CNL models (Abbe et al. 2007) is much more 

involved than that for the NL (equation 5)
9
. An approximation is proposed by 

Papola (2004) as follows: 

(7)                                 
 

    
 

      
 

  
     

     

Equation (7) underlines the fact that the allocation parameters affect the 

correlation structure of the model. Equations (6) and (7) can be thought of as 

„weighted averages‟ of (4) and (5) respectively, where averages are taken over 

nests and where the allocation parameters represent weights. 

Relationship between group scale parameters and nest parameters 

As mentioned above, group scale parameters (   ) and nest parameters      are 

both inversely proportional to their related error variances. The difference lies in 

which error variance one is considering. Group scale parameters relate to the error 

variance in choices between (non-nested) alternatives of a particular user group. 

Nest parameters relate to the choice between alternatives in one nest (independent 

of the user type). An interesting question is in which cases the two types of scale 

parameters might be equal or have the same behavioural implications. To answer 

this, we examine under which conditions the resulting choice probabilities (   ) in 

(4) and (3) would be equivalent; that is, under which conditions a NL model can 

be written as (reduced to) a heteroscedastic logit model with scale parameters 

related to groups with (possibly) different choice sets. 

One can immediately spot a similarity between the second term in (4) and (3), 

which only differ by (i) the summation in the numerator is run over all alternatives 

inside nest m in (4) and over all alternatives in the (personal-specific) choice set 

  in (3); (ii) the indirect utility functions are multiplied (scaled) by    in (4) and 

by     in (3). So, in order that (4) equals (3), it would be required that that the first 

term in (4) is equal to one for all alternatives       and zero otherwise. The latter 

is required as person's n choice probabilities for all alternatives outside his/her 

choice set must be zero. This condition ensures that the choice at the upper level 

                                                 
8
 For interpretation and parameter identification, the condition     

 
      should be imposed. 

When this condition is imposed, that is if the allocation parameters for a given alternative sum up 

(over nests) to one, the allocation parameters are readily interpreted as the portion of an alternative 

that enters each nest. The relationship between    and    is however not obvious. Intuitively, a 

high correlation of nested alternatives (high     should go along with a relative high portion of a 

particular alternative being associated with that nest. However, we are not aware of suggestions for 

possible functional relationship between     and   . 
9
 See equation (20) in Abbe et al (2007, page 800) for the exact formula of correlation between 

two alternatives in a CNL. 
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(choice between nests) does not violate the definition of choice sets available to 

different user groups. 

More formally: 

            
  
   

 
   

          
  
   

 
   

   

 
      

         
  
   

 
       

               

 

if and only if: 

1)                 

2)            

and 3)  
      

      
  
   

 
   

    
      

  
   

 
   

   

  
              
            

  

This implies that the estimated group scale parameters     could only be used 

(mathematically) as nest parameters if alternatives were nested according to the 

group-specific choice sets (condition 1) and if the choice between nests was 

deterministic (condition 3). 

Condition 1 would only be valid if the different choice sets are non-overlapping 

(i.e. no transport mode could be available to several user groups). This will hardly 

be the case in reality. Later in the paper we discuss if and to what extent the use of 

a CNL model can ease the requirement of condition 1. 

Condition 3 is very restrictive as a model like (3) does not include information 

about the 'choice' of which user group a person belongs to (which corresponds to 

the choice at the upper level in the “transformed” NL model). Later in the paper 

we discuss the possibility of including additional information/data about that type 

of choice (in our application of HSR, the use of revealed preference data on the 

choice between current transport modes). 

Limitations of binary stated choice data 

Type of data 

In this section we describe the general type of data used in two recent studies on 

HSR in Norway (Atkins 2011, 2012; Flügel and Halse 2012). It is also the kind of 

data the (theoretical) discussion of the paper is based upon and which is used also 

in the estimation part.  

As HSR is a new option in the Norwegian context it was considered that the 

propensity to choose HSR was best investigated by designing choice experiments 

and analyzing the choice behaviour of a relevant sample of potential travellers
10

. 

                                                 
10

 Extrapolation of the classical train using existing models seems not valid given the great 

improvement in level-of-service and the likely perceptions of HSR as a new (and not just an 

upgraded) transport mode. 
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Such stated preference (SP) data ('SP-choices') can be used to infer the parameters 

of a mode choice model used to predict ridership of HSR in future scenarios. 

The procedure in the two Norwegian studies was such that survey participants 

were first asked about their current transport mode for a certain 'reference trip' in 

their given origin-destination (OD). This choice, done in real life, is here referred 

to as the revealed preference choice ('RP-choice'). Given their RP-choice, 

respondents then received a customised web-survey including a choice 

experiment between their current transport mode and the hypothetical HSR 

option. We thus have binary choices in the SP dataset
11

. 

One should note that the SP-choices were conditioned on the RP-choices. The 

decision structure of the two Norwegian studies is illustrated in Figure 2. For 

example, current car users can not choose between air and HSR but only between 

car and HSR. The SP-choice discards all rejected alternatives in the RP-choice 

(status quo without HSR) implicitly assuming that these will not be relevant for 

that user group in a future scenario with HSR. 

The reminder of this chapter discusses limitations and resulting pitfalls that this 

type of data brings along. 

Figure 2. Decision structure in recent Norwegian HSR-studies 

 

Limitation of binary choice data 

With binary data, as above, we do not observe how, for instance, car-users change 

behaviour when other existing modes (air, bus and classical train) improve or 

decline their level-of-service (LoS). This lack of information is problematic given 

that the LoS of all modes is likely to change after implementation of HSR. In the 

special case where one would assume no changes in LoS for the current modes in 

the forecasting year, one might discard the possibility of transfers between current 

modes (assuming a deterministic RP-choice), such that HSR ridership would be 

the sum of the share of travellers choosing HSR in the separate binary choice 

settings. However, in the case of HSR in Norway, which is likely to change the 

competitive structure of the market and for which one needs to forecast far in the 

                                                 
11

 The use of binary choices, instead of a full choice set of all available current modes plus HSR, 

reduces the complexity of the choice tasks. Given 4-6 attributes by alternative, choice tasks with 

more than two alternatives can easily produce too much burden on respondents (Caussade et al 

2005). The incapability of processing all the information can easily result in extensive 

lexicographic choice behaviour. It can also be mentioned that having binary choice tasks ease the 

experimental design (especially in the case of efficient designs as used by Flügel and Halse 2012).  

SP-choice (choice between 
current transport mode and HSR 

in survey) 

RP-choice (choice between 
current transport modes in real 

life) 

Travel by 

Air 

Air HSR 

Car 

Car HSR 

Train 

Train HSR 

Bus 

Bus HSR 
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future, such an assumption is hardly acceptable. Indeed, a full mode choice model 

that can explain future choice behaviour for the complete choice set is desirable 

and for many applications a necessity. 

For such a full choice model a consistent set of β-parameters for HSR is required. 

As explained in the introduction, when estimating a pooled model one should then 

(under the hypothesis of different error variances in the different binary choices) 

estimate group scale parameters, which might later be used to set the implicit 

structure of the forecasting models. 

In a full forecasting model, that in general should include all transport modes in 

every choice set
12

, one then faces an important shortcoming of having binary 

choice data, namely that not all relevant scales are assessable as would be needed 

to fully map the implicit structure of the decision process. The binary choice data 

might only reveal (if generic parameters are assumed to hold) the relative scale of 

the choices between the current preferred transport mode and HSR compared to 

the other binary choices. This will, in general, not be enough information to build 

a forecasting model that allows for correlated alternatives (as the NL model). In 

particular, one does not know the relative scale parameter between nests that do 

not include HSR, nor does one know the relative scale at the lower levels 

compared to the upper level. Further assumptions about these scales are then 

required. We will come back to this problem with a concrete example (the model 

implemented by Atkins). 

Limitation of stated choice data 

It is likely that the estimated utility in SP-choice space is different from the utility 

that would be obtained using real world choices. The hypothetical context 

(lacking real-world consequences for the decision maker) might be a reason for 

some respondents to put less effort into the choice tasks. Some respondents may 

also hide their real preferences either by choosing 'socially preferable' alternatives 

(and not 'personally preferable' option as required by the theory) or by choosing in 

such a way that the results of the study are driven towards an outcome which is in 

the respondent's favour (the so-called 'policy bias'). Thus, in general one should 

expect different error variances in SP and real world settings. 

The pitfall of this comes when parameters derived from SP-data only are used to 

predict behaviour in real world settings. Given that the error variance in SP-

choices is, in principle, different than what is true in a real world setting, the 

transport mode choice may appear less or more 'deterministic' (more or less 

random) as they actually are in reality. As a consequence, a SP-based model could 

under or overestimate the market share gain (or loss) of a transport mode the LoS 

of which has improved (or declined). When forecasting the effect of a HSR-

implementation (assuming that HSR will offer better LoS than existing modes), a 

SP-only model could underestimate the market penetration of HSR, if it overrates 

                                                 
12

 For certain OD pairs (e.g. no airport at a reasonable distance) and for a specific group of people 

(e.g. those without a driving license) the choice sets can be restricted, but we discard such option 

for the purpose of this discussion.  
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the impact of the random error term in the choice between current transport modes 

and (assumingly 'better') HSR options. 

One way of treating the above weaknesses of SP-only-data is to supplement it 

with RP-data (that reflects the real world setting) and to estimate a heteroscedastic 

logit model on the combined data (Ortúzar and Willumsen, 2011). One would 

then use a unique scale parameter for RP but might (given the various user groups 

in SP) estimate different group scale parameters for the SP-component of the data. 

As RP-choice data among all current transport modes is available for every 

respondent, we will examine under which conditions the inferred scale parameter 

for RP might be interpreted as the scale at the upper level of a hierarchical 

forecasting model
13

.  

Besides the hypothetical bias contained in SP, the scale parameters in combined 

SP-RP data models may also vary when the input data differs in nature (as in 

many empirical studies). The SP-experiments in the Norwegian HSR-studies were 

pivoted around directly reported or inferred LoS-information for the respondent's 

actual journeys. As it would have been cumbersome to ask for personal-specific 

information for all available transport modes, we only have precise data for the 

currently chosen transport mode. For the rejected options in the RP setting, we 

needed to import zonal data (i.e. average data inferred from network models based 

on information about the origin-destination pairs for each traveller). As average 

data does not accurately reflect the LoS actually perceived by the decision makers, 

a considerable measurement error in the RP-data component is likely. 

Validity of forecasting models 

Translation of estimated group scale parameters into a nested structure 

(without using combined RP-SP data) 

In this section we discuss strategies to translate an estimate heteroscedastic logit 

model (allowing different error variance for current user-groups) into full a 

forecasting model. With 'full' we mean that every decision maker is assumed to 

have a choice set containing all possible (future) transport mode and not just 

his/her current transport mode and HSR as in SP. Such a forecasting model will 

not distinguish between current user groups; this seems sensible as these user 

groups will hardly be stable for long term-forecasts as required for HSR. For 

                                                 
13

 The relative error variance in RP can only be identified when the indirect utility function applied 

to the SP and RP parts of the data share at least one common β-coefficient. However, the 

alternative specific constants (ASC) should be allowed to be specific as the average impact of the 

error term in the mode's utility function is likely to differ in RP and SP. See Cherchi and Ortúzar 

(2006; 2011) for a discussion about handling the ASC in joint RP-SP models. Even if the SP-

choices included more than two alternatives, it would also be vital to test for different implicit 

structures in SP and RP (Yáñez et al. 2010). In our case, of binary stated choices in SP, the focus 

is however not on the correct implicit structure in estimation, but on how to use the (relative) error 

variance of user groups in SP and the error variance in RP (derived from the heteroscedastic logit 

model) to infer a proper implicit structure for a forecasting model. 
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example, a current bus-user (in year 2010) might not consider just bus and HSR 

when doing his/her transport mode choice in year 2024 (the planned year of HSR-

implementation in Norway). S/he might, in the meanwhile, consider car or air as 

better options compared to bus. 

For now we assume that only SP data (and no RP-data) is available. It is fairly 

obvious that we could tackle our forecasting problem by just combining the binary 

SP choices into a MNL model. However, that model could not take into account 

the potentially serious correlation between HSR and the current modes or among 

some of the current modes themselves. For this reason we are interested in 

examining the possibility of achieving a more general model, such as a NL, to 

treat this problem. 

We have already discussed the (theoretical) conditions under which estimated 

group scale parameters could be directly used as nest parameters. For this purpose 

the nesting structure has to correspond to the available choice sets (defined by 

user groups). Given overlapping choice sets in reality a (standard) NL model is 

insufficient from a mathematically point of view. Moreover, a heteroscedastic 

logit model as in equation (3) does not include a respondent's 'choice' about which 

user group s/he belongs to (this is predefined by the researcher). Thus, a NL or 

CNL model that is 'reduced' to a heteroscedastic logit model must assume a 

deterministic choice at the upper level (see mathematical condition 3). 

When different group scale parameters are estimated and we wish to see under 

which conditions these could be used as nest parameters in a hierarchical 

forecasting model, in the absence of further information (such as RP data) it is 

necessary to assume the relative scale at the upper level of that forecasting model.  

As not all group scale parameters can be identified, it is always possible to 

transform them in such a way that the lowest among them is fixed to one. Then, a 

logical assumption would be to set the upper scale to one as well. However, this is 

a fairly restrictive assumption in general, as obtaining scale parameters that are 

lower than one is eminently possible from a mathematical point of view. 

In our application of mode choice, we are concerned with the right allocation of 

transport modes (all current modes and HSR) into nests. Applying the above 

assumption, the current transport mode(s) with the lowest associated group scale 

parameters can be allocated into a nest with the same scale as assumed for the 

upper level (that is 1). Such a nest is referred to as 'degenerated nest'. Regarding 

HSR (which is associated with all groups), it should be nested with the current 

transport mode(s) associated with highest group scale parameter(s). A nested logit 

model (non-overlapping nest) would (under the above assumption) be sufficient 

when the scale parameter(s) (that are greater than 1) are not significantly different 

from each other. If this is not the case (i.e. if more than two group scale 

parameters are distinct from each other), the different degrees of correlation 

between HSR and the other transport modes should be taken into account with a 

cross nested logit specification. 

For illustration, Table 1 discusses four potential cases of estimated group scale 

parameter values. The group scale parameter for car-users is fixed to one in these 
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examples (this is consistent with assuming that choice between car and HSR is the 

binary choice with highest error variance). 

Table 1: Possible nesting structures suggested by group scale parameters 

 Case 1 Case 2 Case 3 Case 4 

Estimated group 

scale parameter 

car-users ≡1 ; 

train-users ≈ 1; 

air-user ≈1; 

car-users ≡1 ; 

train-users ≈ 1; 

air-user ≈3; 

car-users ≡1 ; 

train-users ≈ 3; 

air-user ≈3; 

car-users ≡1 ; 

train-users ≈ 2; 

air-user ≈3; 

Proposed nest 1 -  car car car 

Proposed nest 2 - train train, air, HSR train, HSR 

Proposed nest 3 - air, HSR - air, HSR 

Resulting 

forecasting 

model* 

MNL NL with two 

degenerated 

nests 

NL with one 

degenerated 

nests 

Cross- nested 

logit model 

*Under the assumption that the overall scale (at the upper level) is one. 

If all estimated group scale parameters were close (and insignificantly different) to 

one (i.e. case 1 in Table 1), a MNL would be obtained. Note that even this model 

might not be theoretically justified given the missing information inherent to 

binary choice data. In fact, the MNL model would only be valid under the 

assumption that the scale in choices between current modes is equal to the scale in 

choices between single current modes and HSR. 

It is also interesting to look at the correlation structure in the estimation and 

forecasting model structures. Let x and y denote the following vectors: 

   

 

 
 
 
 

             
                 
             
             
               
              

 
 
 
 

       

    
      
    
    

  

Cov (     is then the covariance matrix consistent with the heteroscedastic logit 

model, while Cov (     would be the covariance structure for the proposed 

forecasting model. 

For case 1 we would need to translate: 
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This seems logical but contains - as mentioned above - an implicit assumption 

about the correlation between the current modes (car, air, train) which is not 

possible to ascertain using binary choice data.  

In case 2, if the group scale parameter for air-users was estimated as significantly 

higher than those for the remaining groups, this would indicate that air and HSR 

are closer substitutes (have a lower error variance) and a NL structure with air and 

HSR in one nest and two degenerated nests for car and train could be proposed. 

Here the following translation would apply: 

  

 

 

  
 

 

 
 

 
 

 

 

 
 

 
 

 

 

 
 
  

 
 

 

 

 
 

 
 

 

 

 
 

 
 

 

 

 
 

 
 
 
   

  
 
        

  

 
 

 

 
 

 

 
 

 
 

 

 

 
 

       

 

 
       

 

  

Thus, the variance in the binary choices between air and HSR for current air users 

is used to set the covariance between air and HSR for the full forecasting model 

(via equation 5). Note that this is only valid if the group scale parameters can 

really be interpreted as accounting for different degrees of similarity (related to 

unobserved attributes) regarding the transport modes; however, the group scale 

parameters can also be affected by the heterogeneity in preferences related to the 

user groups. As a proper forecasting model needs to allow for a full choice set for 

all decision makers (discarding the previous allocation into user groups) the size 

of the nested parameters might not be correctly derivable from the size of the 

group scale parameters. If this was not a problem, a forecasting model is easy to 

implement. Given the assumption of  = 1 (see discussion above), the group scale 

parameter estimated equal to three can be directly used as the nest parameter in 

the nest containing air and HSR. 

In case 3, if the scale parameter for train-users is estimated as significantly greater 

than one and insignificantly different from the air-user scale parameter, train, air 

and HSR may be nested together. Similar to the second case, the following 

correlation structure in the forecasting model would be proposed:  

  

 

 

 
 
 

 
 
 
 
 
 

 
 
  

 
 
 
 

 
 
 
  

 
 
 

 
 
 
 
 
 

 
 
 
 
 
  

 

 
 
 
 
 
 
   

 
 
 
       

  

 
 

 
 
 
 

 
 
 

       
       

 
       

 
       

 
       
       

 

  

Finally in case 4, if the train-user scale is greater than one but significantly lower 

than the air-users scale, the only valid option would be to allow for HSR entering 
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one nest with train and another nest with air. In that case a CNL model would be 

required
14

 and the following correlation structure would be desirable: 

  

 

 

 
 
 

 
 
 
 
 
 

 
 
  

 
 
 
 

 
 
 
  

 
 
 

 
 
 
 
 
 

 
 
 
 
 
  

 

 
 
 
 
 
 
   

 
 
 
       

  

 
 

 
 
 
 

 
 
 
 

       

 
 
 

       

 
       
       

 

  

It may however be difficult to find a CNL model that implies this correlation 

structure. In particular the choice of allocation parameters in conjunction with the 

nest-parameters is not obvious
15

. 

In summary, facing distinct binary choice data, the translation of group scale 

parameters from estimation into nest parameters for a full forecasting model is 

actually invalid from a strict theoretical point of view. However, given some 

further assumptions, practical strategies for setting up reasonable forecasting 

models may be found. One of the assumptions (about the relative scale at the 

upper level) in a hierarchical forecasting model may be relaxed if more data is 

available (see suggestion below). 

Approach used by Atkins 2012 

The market demand study by Atkins (2011, 2012a) was also based on binary 

stated choices between the current transport mode and HSR. As forecasting model 

they applied a NL model where HSR and air were nested together ('fast mode 

nest'
16

). For the remaining alternatives (car, classical train and bus) degenerated 

nests were used
17

. 

The structure of the model used by Atkins (2011; 2012) is illustrated in Figure 3. 

This structure corresponds well with the group scale parameters Atkins reports for 

a pooled estimation model. Table 2 summarises the group scale variables ('scales 

on data sets') reported by Atkins (2011, page 44 and 46)
18

. 

                                                 
14

 Apart from a CNL model, a fully general mixed logit (ML) model (Train 2009), might be an 

alternative and provide an even better way to handle this issue at the expense of more complex 

estimation, interpretation and application. 
15

 'It is also not obvious whether or nor air and train should be nested together in case 4. 
16

 The interpretation of the 'fast mode nest' seems appealing at first glance as air and HSR are 

faster than other modes (and thus more “similar” among themselves). However, correlation applies 

only to unobserved variables (the error term). As travel time belongs in the systematic utility 

function, it does not seem obvious why HSR and air should be more correlated than other modes. 

Also the fact that we segment the mode choice model in work and non-work trips seems to take 

care of possible correlation associated with the argument that HSR and air satisfy similar types of 

travel demand. One might also argue that given that we control systematically for travel time and 

trip purpose, HSR is expected to have a higher correlation with conventional train as both modes 

share many unobserved variables (e.g. accessibility, comfort and environmental perception). 
17

 Atkins applied a typical mode choice model for the choice between HSR and air, and an 

incremental mode choice model for choices at the upper level. The discussion of this paper is 

equally valid for both types of approaches as they need the same relative scale information. 
18

 Appendix A1 depicts the original result outputs reported by Atkins 
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Figure 3. Structure of implementation model in Atkins 2011/2012

 

Table 2 Scale parameters reported by Atkins 2011* 

Scales on datasets 
(equivalent to what we call 

'group scale parameters') 

 

Non-Work model 

 

Work model 

 Value "t-ratio" Value "t-ratio" 

Bus-users 1 n/a 1 n/a 

Train-users 1 n/a 1 n/a 

Car-users 1 n/a 1 n/a 

Air-users 1 n/a 1.55 9.6 

*Atkins (2012a) presented an updated estimation model for OD pairs where air was not available. 

The parameter estimates for the 'air-available' model changed somehow; also, a significant scale 

parameter for air users was reported for the non-work model.  

Table 2 indicates that the scale parameter applied to current air-users is 

significantly greater than one for the work model
19

. The t-statistics for the other 

scale parameters were not reported by Atkins (2011, pages 44 and 46) nor by 

Atkins (2012a, page 28), which presents their updated model. It is unclear (to us) 

whether they excluded these scale parameters in their final estimation run. 

Given the above scale parameters, Atkins (2011) applied a NL model to work 

related trips
20

. The nest parameter was 1.55 and as (implicitly) an overall scale of 

one was assumed, an inclusive value parameter of 0.643 (i.e. 1/1.55) was used in 

the calculation of ridership. 

What is worth criticizing is that Atkins does not comment and discuss (after what 

we can see) their fundamental assumption that the scale parameter associated with 

the choices between nests („fast modes‟, car, bus and train) equals one (i.e. the 

scale parameter of the SP-choices between car/HSR, train/HSR, and bus/ HSR). 

                                                 
19

 It is unclear if the t-test relates to values of 1 (as it should) or 0. 
20

 Given the incremental approach that Atkins uses for all modes besides air and HSR, their non-

work model is also framed as a NL model. However as all nest parameters are equal to one, the 

model is essentially a MNL. 

Choice between Alternatives in 
nests ("lower level") 

Choice between Nests ("upper 
level") 

Atkins approach for 
implementation Travel by 

FAST 

Air HSR 

Car 

Car 

Train 

Train 

Bus 

Bus 
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This assumption is far from obvious and ignores the fundamental lack of 

information in the use of binary choices. 

Suggested improvements 

We propose including the RP-data on choice between current transports modes to 

build the full modal choice model. Arguably, the relative scale estimated in a joint 

SP-RP model can be a measure of the relative scale at the upper level relative to 

the lower level. There is a slight difference between the choice of current modes 

and the choice between nests, as in Figure 4 below, as the latter reflects the choice 

of current modes given that HSR is available later in the decision structure. 

Because of missing RP-data on HSR, this seems to be the best practical approach. 

Figure 4. Decision structure in a proposed CNL model 

 

Given a possibly complex pattern of estimated group scale parameters (case 4 in 

Table 1), we propose a more general model, namely the cross-nested logit (CNL) 

model. We see two ways of moving forward. One possibility is to estimate a joint 

RP-SP MNL model including group scale parameters and translate it into a 

forecasting model with implicit structure as in Figure 4. As usual the RP-scale is 

set to one (and would be treated as upper level scale) and we estimate the group 

scale parameters (in an effort to treat them as nest parameters at the lower level). 

If we want the resulting hierarchical forecasting model to be consistent with GEV 

theory, the estimated group scale parameters should be greater than one. Clearly 

this is not guaranteed and one might consider imposing a lower boundary (of one) 

for the group scale parameters. As mentioned above the translation from a 

heteroscedastic logit model into a CNL model may be difficult in terms of finding 

the correct allocation parameters.  

A second, and arguably better option, is to directly estimate a CNL model on the 

combined RP-SP data. But again, it is not guaranteed that the nest parameters in 

the CNL model will have the right size (greater or equal one) so pre-estimation 

restrictions might be considered once more. This would enable, in theory
21

, also to 

estimate the allocation parameters needed by equation (6). 

A CNL model consistent with the decision structure in Figure 4 allows HSR to 

enter each nest and the current modes enter only one nest. Thus, we set all 

allocation parameters for the current modes to zero except for the nest where the 

mode is where its allocation parameter takes the value one.  

                                                 
21

 We experienced practical (numerical) problems in estimating the alpha parameters. 

Choice at lower level  

Choice at upper level  

Travel by 

Air/HSR 

Air HSR 

Car/HSR 

Car HSR 

Train/HSR 

Train HSR 

Bus/HSR 

Bus HSR 
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Empirical results on own data  

Brief description of data 

For the empirical part of the paper we used data from an independent SP study 

conducted by the Institute of Transport economics (TØI). Details can be found in 

the report by Flügel and Halse (2012a)
22

. 

Respondents were recruited from a previous study about the current market 

situation in the main long distance corridors in Norway
23

 (Denstadli and 

Gjerdåker 2011), here referred to as 'RP-study'. The RP-study asked air, bus, train 

and car users about general information regarding their reference trip (i.e. the trip 

they actually made when filling out the pen-and-pencil questionnaire). In the last 

item travellers were asked to leave their e-mail address in order to receive a web-

based survey concentrating on high-speed rail. A sub sample of 893 respondents 

completed the online SP-study (about 33% of the invited respondents); 815 

respondents were considered for the following analysis. 

Each respondent made 14 choices between its current mode of transport (as 

observed in the RP-study) and HSR. The attributes characterizing the transport 

modes were total travel costs, in-vehicle travel time, travel time to station/airport 

(„access time‟), travel time from station/airport („egress time‟), frequency (number 

of departures per day) and the share of the ride spent in tunnels ('tunnel share'). In 

the first eight choice tasks ('CE1'), the attributes of the current mode were kept 

fixed to the reported values, while they varied within certain percentage changes 

in the last six choice tasks ('CE2'). CE2 included also an opt-out option ('neither of 

the two alternatives'). A typical choice task (of CE2) is depicted in Figure 5. 

Figure 5: Illustration of choice task ('CE2') 

 

                                                 
22

 The paper by Flügel and Halse (2012b) also provides basic information and descriptive statistics 

about the study. 
23

 Oslo-Trondheim, Oslo-Bergen and Stavanger-Bergen. For the SP-study, only the former two 

corridors were considered. 
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The general choice behaviour of the sample is summarised in Table 3. 

Table 3: sample size of user groups and general choice behaviour 

SP-sample  (both 
Oslo-Bergen and 
Oslo-Trondheim) 

Group 
size 

Percent of SP choices 
(%)  
  

Percent of respondents always 
choosing (%) 

 Purpose  User 
group 

Final 
sample 

Current 
mode 

HSR  Opt-
out 

Current 
mode 

HSR Switch 
between 

Non-
work 
travel 

car  320 61.6 37.7 0.6 31.3  13.8  55.0  

air 76 34.5 64.7 0.8 1.3  31.6  67.1  

train 176 40.8 57.2 2.0 6.3  18.2  75.6  

bus 35 41.0 58.5 0.6 0.0  17.1  82.9  

Work-
related 
travel 

car  46 56.7 41.7 1.6 23.9  15.2  60.9  

air 132 41.6 57.2 1.2 4.5  22.0  73.5  

train 31 44.9 54.4 0.6 9.7  19.4  71.0  

 

Compared to a representative dataset (Denstadli and Gjerdåker 2011), we have 

somewhat under-sampled current air users and over-sampled current car and train- 

users
24

 (note that the share of group-membership relates to the 'RP-choice' as 

described earlier). Notwithstanding, air-users are the largest group among 

respondents with a work-related trip (the actual market share for air was around 

84%). For 'non-work' trips car is the largest group in SP followed by train and air 

(the actual market shares of car, train and air for non-work trips were, 

respectively, 40, 21 and 35%). As both in reality and in the SP-sample, the share 

of bus was very low, especially for work-related trip, this mode was discarded as 

an alternative in the work-model. 

The choice behaviour in SP shows that current car users have a lower propensity 

towards HSR. In 61.6% of the choice tasks car-users chose car and not HSR (and 

neither the opt-out). Close to 1/3 of all car-users in the sample did not choose 

HSR at all (e.g. in none of the 14 choice tasks). Current public transport users are 

more inclined to choose HSR (at least as indicated in SP). A considerable share 

(17.1-31.6%) always chooses the HSR option. The choice pattern by user-group is 

pretty similar for work and non-wok trips. But HSR is more frequently observed 

as the chosen alternative for work related trips as the car-user group is relatively 

smaller for that purpose. Finally, as the opt-out alternative was very seldom 

chosen it was excluded for the analysis in this paper
25

. 

  

                                                 
24

 External weights were used in estimation to offset this.  
25

 This is done for simplicity (streamlining models and output tables). In alternative models the 

opt-out was included by using constant terms (based on the user groups). They were estimated as 

strongly negative (as shares of opt-outs were low as shown in Table 3) but the inclusion of this 

alternative does not change the other utility functions (i.e. parameter estimates) considerably. 
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Heteroscedastic logit model 

In this section we present SP-only models and discuss their estimation results, 

especially related to the group scale parameters. The specification of the standard 

model is similar to that used by Atkins (2011). We report and discuss here the 

results for non-work trips (Table 4); the results for the work-trips model are given 

in Appendix A2. 

Looking at the first model ('IID-MNL'), where group scale parameters are not 

included (i.e. they are all fixed to one) we see that all variables have expected 

signs. The cost variable segmented by income is in right order and the interaction 

effect with a dummy for "do not pay for trip myself" is, as expected, positive 

(reduces the marginal disutility of travel costs). 

Travel time was modelled as alternative-specific. For car and air the total travel 

time was used, while we distinguish between in-vehicle time and access/egress 

time for bus, train and HSR
26

. All marginal utilities of travel time are negative. 

However, according to the robust t-statistic
27

, not all marginal utilities are 

significantly different from zero the IID-MNL model. A dummy applied to trips 

under six hours (as in Atkins 2011), making a possible return trip on the same day 

more convenient, is as expected positive. The inverse of frequency ('headway') 

applied to the scheduled modes is negative, as is the share of tunnels (the latter 

effect is not significant in 'IID-MNL').  

The second model ('heterosc. logit') estimates group scale parameters for air, train 

and bus-users. As one sees (Table 4), the group scale parameter for car users was 

normalised (i.e. set to one) and all the other group scale parameters were 

estimated significantly greater than one. 

That the lowest group scale parameter is related with car-users is intuitive for 

several reasons. First, in the car sample the most 'extreme' choice behaviour is 

observed (in Table 3 only 55% of the respondents switched their choice between 

car and HSR in the 14 consecutive choice tasks). Also, car as a transport mode is 

more distinct from HSR than the remaining modes (compared to air and train, car 

offers the possibility to transport heavy luggage, have a flexible routes etc.), so the 

observed choices may be more driven by 'unobservable' (not included) 

characteristics. 

Interestingly, the group scale parameter for train (3.10) is greater than for air 

(2.01). This difference is considerable although it is not significantly different at 

the 5% level (but with a p-value of 0.09). According to these values, train would 

be a closer substitute to HSR than air. 

                                                 
26

 Obviously for car there is no access and egress time (discarding the walk to the car and the 

possibility of renting a car at some places where access time would be needed). For air we used 

total travel time instead of in-vehicle time as the latter hardly varies in the RP-data. Also, Atkins 

used total travel time for air (even though they did not consider RP-data in their analysis). 
27

 The reported robust t-statistic take into account the panel-structure of the data via the PANEL 

section in Biogeme. Therefore, no bootstrapping or other methods to correct for the unrealistic 

assumption of IID error terms of the MNL model in pseudo-panel data needed to be performed. 
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Table 4: SP-only models, non-work related trips 

Non-work Trips IID-MNL heterosc. logit heterosc. logit 2 Mixed hetero. logit 
* 

Variable 
type/name 

Applied 
utility 
function 

Value  Rob. 
T-stat 
(0) 

Value  Rob. 
T-stat 
(0) 

Value  Rob. 
T-stat 
(0) 

Value  Rob. T-
stat (0) 

ASC HSR 1.3 2.39 0.67 1.51 4.31 6.73 11.2 8.2 
Car 0 fixed 0 fixed 0 fixed 0 fixed 
Air  -0.115 -0.12 -0.185 -0.3 5.72 4.9 17.9 4.34 
Train  0.512 0.7 -0.301 -0.65 3.78 5.17 11.2 5.66 
Bus 1.33 1 0.34 0.59 3.88 5.08 10.4 6.19 

Travel cost  
low income  

generic -0.00333 -8.29 -0.00213 -6.31 -0.00235 -6.14 -0.00978 -11.87 

mid. income  generic -0.00265 -7.69 -0.00169 -5.49 -0.00182 -5.4 -0.00666 -6.95 

high income  generic -0.00248 -7.96 -0.0015 -5.09 -0.00166 -5.56 -0.0067 -10.7 

missing 
income 

generic -0.0103 -4.32 -0.00661 -4.98 -0.00757 -5.03 -0.0193 -1.95 

Interaction: 
not pay trip   

generic 0.00165 2.92 0.00115 3.25 0.00122 2.86 0.00368 1.96 

Travel time   
In-vehicle 

HSR -0.00531 -5.08 -0.00341 -5.29 -0.00409 -5.21 -0.0158 -9.73 
Train -0.00283 -1.68 -0.00033 -0.46 -0.00043 -0.54 -0.00681 -3.35 
Buss -0.00367 -1.32 -0.00135 -1.47 -0.00157 -1.49 -0.01 -4.52 

Total time  Air  -0.0033 -0.97 -0.00235 -1.28 -0.00305 -1.94 -0.0206 -2.68 
Car -0.00129 -1.22 -0.00125 -1.45 -0.0019 -1.79 -0.00554 -3.86 

Access + 
egress time  

HSR, Train, 
Bus 

-0.00214 -1.13 -0.00273 -2.34 -0.00281 -2.49 -0.00986 -4.29 

Dummy (<6h) generic 0.49 2.87 0.283 2.62 0.26 2.42 0.492 2.67 

Headway  generic 
(not car) 

-1.08 -2.86 -0.444 -2.55 -0.525 -2.45 -2.55 -4.76 

Tunnel share  generic 
(not air) 

-0.00267 -0.54 -0.00286 -1.09 -0.00344 -1.32 -0.0204 -3.87 

Importance 
scores  
Flexibility Car 

    1.13 7.54 2.2 6.49 

Comfort Air      -0.619 -2.53 -2.3 -2.37 

Reliability  Train     -0.158 -1.92 -0.929 -2.89 

Variance of pers. spec. 
error term           HSR 

           3.93 12.11 

Group scale parameters Value Rob. 
T-stat 
(1) 
 

Value Rob. 
T-stat 
(1) 

Value Rob. 
T-stat 
(1) 

Value Rob. T-
stat (1) 

Car-users  1 fixed 1 fixed 1 fixed 1 fixed 

Air-users  1 fixed 2.01 2.03 1.92 2.2 0.772 -1.32 

Train-users  1 fixed 3.1 3.61 2.86 3.56 1.35 2.44 

Bus-users   1 fixed 3.96 2.66 3.52 2.48 1.88 2.77 

No. of parameters     18   21   24   25 

No. of observations   8402  8402  8402  8402 

No. of respondents   607  607  607  607 

Null-LL  -5822.44 -5822.44 -5822.44 -5822.44 

Final-LL  -4640.69 -4522.51 -4146.59 -2791.84 

Adjusted rho-squared     0.2    0.22   0.284   0.516 

*1000 Halton draws were applied. 

As pointed out before, correlation between modes is not affected by observed 

similarities of transport modes (similar prices and total travel time in air and HSR) 

but, rather, by unobservable similarities (similar comfort and perceived security in 

traditional train and HSR). 

Bus-users are associated with the highest group scale parameter. This result seems 

odd at first glance. A prospective explanation is that the bus-user group is a fairly 

homogenous group of people (mostly students). This might make the impact of 

the error term relatively lower for this group and yield a high group scale 
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parameter because of the inverse relationship to the error variance. As pointed out 

before (and discussed again later in the paper) this might be problematic if one 

wants to directly use these group scale parameters as a nest parameters in a nest 

bus/HSR say, as such a nest (applied in a forecasting model) should account for 

similarities between modes (and not within the user groups).  

Including group scale parameters does increase the model goodness-of-fit. A 

likelihood ratio test (Ortúzar and Willumsen, 2011, page 279) clearly rejects the 

IID-MNL, to be the true model (LR=236.4;       
 = 7.8). 

The estimated group scale parameters are not in line with the results obtained by 

Atkins 2011 (Table 2) which reported scale parameters equal to one for all user 

groups in the non-work related model. However, the specification of the indirect 

utility is not exactly the same. 

In an extended version of the standard heteroscedastic model ('heterosc. logit 2') 

we included personal specific scores of items, in an attempt to catch latent 

variables such as flexibility, comfort and reliability
28

. All scores have expected 

sign and decent t-statistics, and the general goodness-of-fit of the model increases 

substantially. Thus, the impact of the unobservable variables (i.e. error term) 

diminishes. This makes also the group scale parameters to change slightly in 

value, something which underlines the fact that these parameters depend on the 

specification of the indirect utility function. The scores are not included in later 

models as there is no information about them (and their development over time) at 

the population level (or at the level of the extended RP-data). 

Finally, we included a personal specific error term (normally distributed) in the 

utility function of HSR in a 'mixed heterosc. logit model'. This error term should 

catch much of the unobserved propensity towards HSR. This model, which takes 

explicit care of the panel effect in the SP data (the unobserved propensity towards 

HSR is based on all 14 SP-choices of a respondent), is clearly superior in 

goodness-of-fit to the former ones. Also, most of the formerly insignificant 

variables (like access/egress time) are significant in this last model (however, this 

function might be impracticable for forecasting purposes). We also see that the 

group scale parameters change substantially in value. Thus, controlling for 

unobserved heterogeneity makes car appearing to be a closer substitute to HSR 

than air. 

  

                                                 
28

 Flexibility was included in the utility function of car as it is likely that car is chosen at the 

expense of HSR when respondents value the possibility to adjust departure time and route, and to 

have a car available at destination, highly. In relation to comfort, we hypothesised that people who 

appreciate the possibility to read, sleep and move around are more likely to choose HSR; however, 

as this variable only entered the choices between HSR and air, we included it in the latter and 

expected a negative sign (as HSR is assumed to offer better comfort than air). Finally, as current 

trains are perceived as rather unreliable, we included the score on the items related to reliability in 

the utility function of the train. 
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Joint RP-SP models 

In this section we combine the SP data with RP data on the choice of current 

transport mode. The RP data includes all travellers in the RP study (within the 

defined corridors) independent of whether they left an e-mail address and were 

included in the SP study. Based on the - in many cases rough - information on the 

travelled OD pair, we imported LoS zonal data from the Norwegian national 

transport model. These LoS-data are average values for the relevant zone pairs 

(and are, in some instances, not updated) such that the RP data must be considered 

rather imprecise. 

For the non-work model, we added to the 8,402 SP choices (from 607 

respondents), 8,450 RP choices from 8,450 individuals (including those on the SP 

sample) yielding 16,852 observations for the joint RP-SP model. 

We included separate ASC for the RP and SP alternatives and used common 

coefficients for the SP and RP data LoS variables
29

. We applied the set of β-

variables as in the first two models because personal specific 'importance scores' 

were not available for most of the RP data. 

Table 5 gives the estimation results for three models with different restrictions on 

the estimated scale parameters
30

. For the most general model (RPSP2) we also run 

a mixed MNL version
31

. 

In the first model ('RPSP1'), the group scale parameters in RP are fixed at one and 

a common scale parameter for all the SP choices (without taking into account user 

groups) was estimated as 0.557 (significantly different from one). We conclude 

that the error variance of the RP-choices (based on zonal data for all current 

modes) is lower than the error variance in the binary stated choices. This is 

interesting and contrary to initial expectations. Also the diverse personal specific 

propensity towards HSR (as seen in Table 3 and indicated in the huge gain in LL 

in the ML model on SP data) is likely to be a reason for the relative high error 

variance in SP. The high scale parameter estimated for the RP-data component 

already indicates that it will be hard to use this scale as the upper level scale in a 

hierarchical forecasting model. 

In the second model ('RPSP2') we estimate all group scale parameters from SP 

without restrictions. This model might be used to derive a (hierarchical) 

forecasting model as suggested earlier. 

 

                                                 
29

 Based on pretests this was actually shown to be a rather restrictive assumption. However, having 

different  coefficients for the same LoS variable introduces the problem of which value use in 

forecasting. In most practical applications the issue is resolved easily as the SP-based variables 

tend to be much better. We have not explored this issue here. 
30

 Notably, the sign of IVT for bus was estimates as positive (while it was negative for the SP-only 

data); this is clearly caused by the requirement to be common (and the imprecise nature of the RP 

LoS data); in a practical application we would take this variable out of the “common” set. 
31

 As the Panel command in BIOGEME does not allow for having different user groups for 

identical person-ID variables, we split the person ID in SP and RP. This is the reason why 

Biogeme reports 9,057 and not 8,450 persons. 
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Table 5: Combined RP-SP models, non-work  
Non-work Trips RPSP1 RPSP2 RPSP2 ( mixed) RPSP3 

Variable 
type/name 

Applied 
utility 

Value  Rob. T-
stat (0) 

Value  Rob. T-
stat (0) 

Value  Rob. T-stat 
(0) 

Value  Rob. T-
stat (0) 

SP ASC 
  

HSR 2.75   4.33 2.13 3.55 2.62 7.61 1.63 3.98 

Car 0 fixed 0 fixed 0 fixed 0 fixed 
Air  0.884 1.21 0.534 0.77 1.18 2.51 0.97 1.76 

Train  -0.408 -0.84 -0.428 -0.89 0.0244 0.07 0.157 0.43 

Bus -4.36 -5.73 -3.56 -3.88 -3.73 -5.56 -2.85 -2.13 

RP ASC 
 

Car 0 fixed 0 fixed 0 fixed 0 fixed 

Air  2.95 5.07 2.56 4.82 3.06 9.18 1.94 3.87 

Train  -0.267 -0.75 -0.525 -1.46 -0.187 -0.77 -0.391 -1.16 

Bus -6.50 -10.42 -5.83 -7.65 -6.05 -10.21 -5.44 -4.56 

Travel cost  
low income  

generic -0.00530 -11.37 -0.00518 11.81 -0.00522 -13.71 -0.0031 -9.6 

mid. income  generic -0.00450 -10.67 -0.00436 -10.91 -0.00384 -9.41 -0.0025 -8.24 

high income  generic -0.00432 -10.58 -0.00407 -10.24 -0.00383 -13.74 -0.0024 -8.1 

missing 
income 

generic -0.00436 -27.13 -0.00431 -26.42 -0.00438 -29.17 -0.0035 -21.92 

not pay trip   generic 0.00205 3.24 0.00216 3.65 0.000695 1.52 0.0014 3.35 

Travel time   
In-vehicle 

HSR -0.0108 -5.50 -0.00961 -6.88 -0.00923 -9.85 -0.0056 -7.06 

Train -0.00258 -3.20 -0.00223 -2.72 -0.00284 -4.97 -0.0013 -1.78 

Bus 0.00616 6.62 0.00485 3.95 0.00545 5.48 0.0050 2.48 

Total time  Air  -0.0110 -6.69 -0.0104 -6.40 -0.0118 -13.38 -0.0076 -4.73 

Car -0.00377 -3.36 -0.00408 -3.95 -0.00406 -7.26 -0.0021 -2.38 

Access + 
egress time  

HSR, Train, 
Bus 

-0.0106 -17.54 -0.0110 -18.28 -0.0111 -22.20 -0.0076 -9.84 

Dummy (<6h) generic 0.192 1.54 0.269 2.31 0.127 1.80 0.193 2.01 

Headway  generic 
(not Car) 

-0.753 -3.26 -0.741 -3.40 -1.07 -5.18 -0.609 -3.15 

Tunnel share  generic 
(not Air) 

-0.00508 -0.58 -0.00826 -1.26 -0.0131 -5.06 -0.0043 -1.16 

Variance of HSR error     2.25 11.96   

Group scale parameters Value Rob. T-
stat (1) 
 

Value Value Rob. T-stat 
(1) 

Rob. T-stat 
(1) 

Value Rob. T-
stat (1) 

Car-users (SP)    0.378 -10.38 1.89 5.82 1 fixed 

Air-users (SP)    0.727 -1.63 1.51 1.55 1.18 0.63 

Train-users (SP)    1.22 1.48 2.48 6.38 2.05 3.83 

Bus-users (SP)     1.10 0.29 1.81 2.01 1.26 0.35 

SP-choice (generic)  0.557 -6.67       

RP-choices  1 fixed 1 fixed 1 fixed 1 fixed 

No. of est. parameters     22   25   25   24 

No. of observations  16852 16852  16852 16852 

No. of respondents  8450 (9057) 8450 (9057)              8450  (9057) 8450 (9057) 

Null-LL  -16868.364 -16868.364 -16868.364 -16868.364 

Final-LL  -11085.925 -10965.676 -8953.482 -11111.635 

Adjusted rho-squared     0.341   0.348   0.447   0.340 
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Unfortunately, the scale for the RP component is estimated to be lower than the 

scales for car and air-users. While this does not degrade the validity of the 

estimation model, it is problematic in respect to the proposed forecasting 

approach. The RP-choices cannot be used as the scale at the upper level, as the 

group scale parameter for car-users and air-users would imply a wrong inclusive 

value parameter for the car and air alternative. 

In model RPSP3 we impose the restriction that the RP-scale equals the group 

scale parameter of the car-users group. This restriction guarantees that the nested 

parameters would obey the GEV-requirements. As the goodness-of-fit reduces 

substantially, the estimation model is inferior to the previous one (LR = 291.9; 

      
 = 3.8). Notwithstanding, it might be the only model usable for the purpose 

of a valid hierarchical forecasting model. 

Table 5 shows also results for a ML version of model RPSP2, including the same 

personal specific error term in the HSR utility function as before (that is only in 

SP). In this model all group scale parameters in SP are greater than the scale in RP 

such that all nest parameters in a derived (cross) nested logit model would be of 

correct size. The parameters in this model might also be used for a valid 

forecasting model, however the forecasting framework should allow for the 

inclusion of the additional random term (e.g. by simulation) as it has obviously a 

strong effect on the scale parameters and therefore on the implicit structure in the 

forecasting model. 

Cross-nested logit models  

As proposed earlier we also estimated CNL models that allow the HSR to be 

nested with each of the four current modes. The model structure is depicted in 

Figure 4, and shows that the current modes enter only one nest. Thus, we set all 

allocations parameters for the current modes to zero except for the nest they 

belong to, where the allocation parameter takes the value one
32

.  

We intended to estimate the allocation parameters from the data. However, serious 

numerical and (empirical) identification problems occurred. Thus, in Table 6 we 

only present CNL models for non-work related trips where the allocation 

parameters are fixed to predefined values (results for work trips are given in 

Appendix A2). In the first two we constrain the allocation parameters for HSR to 

be 0.25 for each nest; model 'CNL_RPSP_1a' imposes the extra restriction that the 

estimated nest parameters are one or greater (as required by theory) while the 

second ('...b') allows the nest parameters to take any positive number. 

In a second set of two models we let single allocation parameters respond to the 

actual market shares. Although there is no theoretical reason for that it seems an 

intuitive approach. Again we would have liked to estimate these parameters as 

well but failed to obtain reasonable results in this version of the paper. 

                                                 
32

 This is a somewhat restrictive structure as it might be that, for example, train and bus are 

correlated in the RP-data. Up to now we have not explored the possible correlation structures 

among existing modes as inferred from the RP-data (see discussion later). 
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Table 6 CNL modes, non-work  

Non-work Trips CNL_RPSP_1a CNL_RPSP_1b CNL_RPSP_2a CNL_RPSP_2b 

Variable 
type/name 

Applied 
to utility 

Value   T-stat 
(0)* 

Value  Rob. T-
stat (0) 

Value   T-stat 
(0)* 

Value  Rob. T-
stat (0) 

SP ASC 
  

HSR 1.82 9.87 2.36 4.02 1.86 10.03 2.34 4.05 

Car 0 fixed 0 fixed 0 fixed 0 fixed 
Air  1.05 4.99 0.887 1.28 1.06 5.06 0.797 1.16 

Train  -0.101 -0.51 -0.249 -0.53 -0.0775 -0.38 -0.358 -0.77 

Bus -2.77 -6.01 -3.03 -3.66 -3.18 -7.61 -3.51 -5.18 

RP ASC 
 

Car 0 fixed 0 fixed 0 fixed 0 fixed 
Air  2.16 9.82 2.6 4.76 2.17 9.80 2.64 4.90 

Train  -0.313 -1.67 -0.54 -1.48 -0.273 -1.44 -0.536 -1.48 

Bus -5.24 -9.13 -5.49 -6.4 -5.72 -12.23 -5.91 -9.26 

Travel cost  
low income  

generic -0.00336 -28.3 -0.0051 -12.28 -0.00340 -28.24 -0.00521 -12.43 

mid. income  generic -0.00278 -23.2 -0.00431 -12.25 -0.00281 -23.13 -0.00439 -12.20 

high income  generic -0.00272 -21.89 -0.00402 -11.27 -0.00274 21.83 -0.00409 -11.32 

missing 
income 

generic -0.00359 -34.21 -0.0043 -28.29 -0.00361 -34.13 -0.00433 -28.17 

not pay trip   generic 0.00142 8.46 0.00203 3.58 0.00146 8.51 0.00209 3.61 

Travel time   
In-vehicle 

HSR -0.00608 -10.38 -0.00911 -7.3 -0.00631 -10.45 -0.00949 -7.45 

Train -0.00144 -3.33 -0.00201 -2.49 -0.00156 -3.48 -0.00206 -2.55 

Bus 0.00469 5.02 0.00439 3.14 0.00549 7.38 0.00506 5.33 

Total time  Air  -0.00813 -13.68 -0.0104 -6.22 -0.00813 -13.62 -0.0105 -6.29 

Car -0.0022 -6.58 -0.00391 -3.64 -0.00224 -6.65 -0.00396 -3.73 

Access + 
egress time  

HSR, Train, 
Bus 

-0.00789 -23.67 -0.0109 -17.53 -0.00793 -23.66 -0.0110 -17.51 

Dummy (<6h) generic 0.216 3.91 0.299 2.53 0.203 3.64 0.286 2.43 

Headway  generic 
(not Car) 

-0.62 -4.62 -0.717 -3.37 -0.648 -4.66 -0.725 -3.32 

Tunnel share  generic 
(not Air) 

-0.00427 -2.39 -0.00877 -1.41 -0.00397 -2.17 -0.00872 -1.35 

Nest-parameters  Value T-stat (1) Value T-stat (1) Value T-stat (1) Value T-stat (1) 

Car/HSR 1(at the 

boundary) 
0  0.302 -16.64 1(at the 

boundary) 
0.00 0.323 -14.58 

Air/HSR  1.04 0.36 0.598 -2.35 1.05 0.51 0.620 -2.25 

Train/HSR  3.07 4.94 3.23 3.76 2.84 4.22 1.83 2.00 

Bus/HSR  1.98 1.05 1.83 0.78 1.53 0.24 1.91 0.94 

Allocation parameters for 
HSR 

 Value Rob. T-
stat (0) 
 

Value Rob. T-
stat (0) 

Value Rob. T-
stat (0) 

Value Rob. T-
stat (0) 

Car/HSR  0.25 fixed 0.25 fixed 0.41 fixed 0.41 fixed 

Air/HSR  0.25 fixed 0.25 fixed 0.35 fixed 0.35 fixed 

Train/HSR  0.25 fixed 0.25 fixed 0.21 fixed 0.21 fixed 

Bus/HSR  0.25 fixed 0.25 fixed 0.03 fixed 0.03 fixed 

No. of parameters     25   25   25  25 

No. of observations  16852 16852  16852 16852 

No. of respondents  8450 (9057) 8450 (9057)                     8450 (9057)            8450 (9057) 

Null-LL  -16868.364 -16868.364 -16868.364 -16868.364 

Final-LL  -11131.865 -10959.315 -11139.473 10960.815 

Adjusted rho-squared     0.339   0.349   0.338  0.349 
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*Robust t-stats not reported by Biogeme probably because some variables are estimated at the imposed (lower) boundary  

In the first model, the nest parameter for nest 'car/HSR' is estimated at the lower 

boundary of 1. The Final-LL is worse than in all the combined RP-SP models in 

Table 5, even than in 'RPSP3' where we imposed a similar restriction for the car-

user scale. 

In the second model we see that the true estimated value of the 'car/HSR' nest 

parameter is lower than one. This violates the condition discussed in the 

theoretical part of the paper. This CNL version is, therefore, not valid. It simply 

seems that the data (and/or the chosen specification of V) does not support the 

proposed hierarchical structure. Nevertheless, it is interesting to compare the 

estimated nest parameter with the group scale parameters of model 'RPSP2' (Table 

5). We can see that scales related to car and air, are lower than 1 (i.e. the overall 

scale in 'CNL_RPSP_1b' which relates to the scale of the RP choices in 'RPSP2'). 

The scale parameters related to bus and train are greater than 1 (also in 

correspondence with the group scale parameters in the bespoken MNL model). 

The actual values of the two sets of scale parameters are however different. Both 

models ('RPSP2b' and 'CNL_RPSP_1b') yield about the same final log-likelihood. 

The CNL models where the allocation parameters are fixed at the current market 

shares are similar to the models where the allocation parameters are fixed to 0.25 

each, but the model goodness-of-fit is slightly lower in this latter set of models.  

 

Summary and further research  

The paper is concerned with the use of models estimated with binary stated choice 

data (derived from pivoted choice experiments including only two alternatives: 

the current transport mode and a new transport mode) for the establishment of a 

forecasting model that includes all future transport modes. When using binary 

stated choice data, it seems good practise to join the responses from different 

users groups (current car, air, train and bus users) to estimate a joint model that 

includes group scale parameters (heteroscedastic logit model) allowing to treat the 

potentially different error variance in the separate binary choice experiments. 

Atkins (2011, 2012a) translated such estimated group scale parameters directly 

into nest parameters used in a forecasting nested logit model to predict the market 

shares of all future transport modes in Norway (including high-speed rail). Our 

paper shows that this procedure has serious methodological shortcomings. 

In particular, binary stated choice data alone does not provide the necessary 

(relative) scale of SP-choices (compared to RP-choices) and the scale in choices 

between current modes needed for a full forecasting model with consistent 

implicit structure. The use of combined SP-RP data (which is well understood in 

the literature) is considered highly important for such purposes. This paper 

suggests (in addition) the use/estimation of cross-nested logit models in order to 

release the possibly restrictive assumption of non-overlapping nests for the 

hierarchical forecasting model. 
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In the empirical part of the paper the suggested approaches are tried out on data 

similar to the data used by Atkins (2011), but with the inclusion of additional RP 

data. The RP-scale was estimated to be greater than (most of) the group scale 

parameters in SP making it impossible to translate the estimation model into a 

valid hierarchical structure where the estimated RP-scale was intended to serve as 

the scale at the upper level. In correspondence, some of the nest parameters in the 

estimated cross-nested logit models where estimated to be lower than 1, violating 

their GEV-requirements. Models imposing restrictions (to make models 

theoretically justified) were estimated as well. These models, however, are clearly 

inferior from the models goodness-of-fit point of view. 

  

One of the main reasons for the lower error variance in RP-choices was shown to 

be the great inter-personal differences in the propensity towards the HSR-option. 

Controlling for (unobserved) taste variation towards HSR in mixed logit models 

showed that the error variance in SP is considerable reduced (yielding higher scale 

parameters) and that in such models the RP-scale is indeed smaller than the SP-

scale. However, the forecasting model based on mixed logit results needs to 

simulate the additional error term and this might not be compatible with existing 

model systems. 

Somewhat related to this discussion, the group scale parameters based on user 

groups in SP might be affected by the different degree of heterogeneity of 

decision makers within the user groups. This is an important caveat when 

interpreting group scale parameters. For example, the group scale parameter for 

current bus users was found to be the largest in value. This is likely to be related 

to a relative low degree of heterogeneity among decision makers (as mentioned, 

students make up for a high share of bus-users) and not to similarities among 

transport modes. Indeed, as bus and HSR seem not to be very similar transport 

modes (both with respect to observed and unobserved attributes) nesting them 

together 'feels wrong'. Therefore, specification of the indirect utility should try to 

explain inter-personal differences such that the group scale parameters may really 

account for different in error variances related transport modes. This is required 

for hierarchical forecasting models that discard the existence of user groups (i.e. 

that assume the same full choice set for all individuals). 

From the theoretical discussion and from empirical results in this paper it was also 

shown that the specification of indirect utility (V) does influence the estimation of 

scale parameters. Further estimation runs improving the specification of the utility 

functions in SP might make it possible to obtain desirable relative sizes of the 

scale/nest parameters. In this connection also the use of SP and RP specific 

coefficients (besides ASC) should be tested. 

Another strategy which was not discussed in this paper, would be to estimate (test 

for) the implicit nesting structure in the RP-data only, and to use estimation results 

on the group scale parameters in SP to allocate HSR to the pre-existing nest(s) 

obtained in RP. The implicit assumption with this approach would be that the 

correlation structure between current modes would not change after the 

implementation of HSR. 
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Given the shortcoming of binary choices discussed in the paper it is indispensable 

to consider alternative approaches for the experimental design in SP-studies. It 

seems desirable to include (at least some) choice tasks where the respondent is 

faced with all transport modes. As pointed out before (footnote 10) designing 

choice experiments including many alternatives can make it difficult for 

respondents to process all information and to make thoughtful decisions. 

Good practise is found in the study reported by Yáñez  et al. (2010) where each 

SP-respondent received four transport modes. One of these modes was the current 

mode and one the HSR and in addition two other transport modes were added in 

the choice experiments on a random basis. In this case it seems possible to 

estimate the implicit structure of the complete choice model. 

It seems also interesting and important to do more research on the estimation and 

use of cross-nested logit models. The interpretation of allocation parameters and 

their connection to the nest parameters seems unclear and estimating the 

allocation parameters freely for our data yield serious numerical and (empirical) 

identification problems. 

Finally, an important element missing in the current paper are investigations on 

the effect of ridership based on the different models. Further research in this 

direction will be conducted. 
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Appendix A1 Reported parameters in reports by Atkins (2011/2012) 

Figure A1: Extract of reported estimation results in Atkins 2011(work- model)  

 

Source: Atkins 2011, page 43/44 

Figure A2: Extract of reported estimation results in Atkins 2011(non-work model)  

 

Source: Atkins 2011, page 46 
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Figure A3: Coefficients in mode choice mode by Atkins 2012a (updated model)  

 

Sounce: Atkins 2012a, page 28 
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Appendix A2: Model for Work related trips 

For work-related trips, bus is discarded as a relevant travel alternative. The 

specification of the indirect utility function is as in the work-related trips (instead 

of 6 hours we use 4 hours for the dummy applied short total travel times). In the 

combined RP-RP model, we add to the 2,888 SP-choices, 2,289 RP-choices from 

2289 individuals yielding 5,177 observations. 

The results from the work-model are comparable to the non-work models when 

comes to groups scale parameters and nest parameters. Also the effects of the 

mixed hetero. logit models are similar (massive improvement in LL, lower RP-

scale parameter)  

Table A1: SP-only models, work related trips 

work Trips 
IID-MNL heterosc. logit heterosc. logit 2 Mixed hetero. 

logit * 

Variable 
type/name 

applied 
utility 
function 

Value 
Rob. T-
stat (0) 

Value 
Rob. 
T-stat 
(0) 

Value 

Rob. 
T-
stat 
(0) 

Value 
Rob. 
T-stat 
(0) 

Alternative 
specific constants 

HSR -0.718 -0.49 -1.69 -1.89 -0.277 -0.18 6.76 1.81 

car 0 fixed 0 fixed 0 fixed 0 fixed 

air -1.93 -1.26 -2.15 -2.34 -0.0975 -0.06 7.18 1.74 

train -3.49 -1.87 -2.71 -2.57 -0.652 -0.39 8.75 1.29 

Travel cost 
low income 

generic -0.00312 -3.80 -0.00141 -2.32 -0.00157 -2.32 -0.00848 -4.15 

mid. income generic -0.00265 -3.58 -0.000970 -1.71 -0.00107 -1.73 -0.00543 -3.68 

high income generic -0.00156 -2.26 -0.000542 -1.38 -0.000599 -1.39 -0.00342 -2.75 

missing income 
info. 

generic -0.00133 -0.79 -0.000657 -1.10 -0.000594 -0.96 -0.00133 -0.70 

Interaction: 
not pay trip 

generic 0.000706 1.03 0.000251 0.84 0.000284 0.86 0.00139 1.18 

Travel time 
In-vehicel 

HSR -0.00970 -4.24 -0.00360 -1.95 -0.00370 -1.96 -0.0218 -4.79 

train 0.000757 0.22 0.000210 0.17 0.000315 0.21 -0.0126 -2.27 

Total time 
air -0.00703 -2.72 -0.00258 -1.61 -0.00217 -1.51 -0.0107 -2.32 

car -0.00959 -3.09 -0.00677 -2.99 -0.00647 -2.76 -0.0118 -4.25 

Access + egress 
time 

HSR, train -0.00824 -3.10 -0.00321 -1.70 -0.00296 -1.68 -0.00960 -2.10 

Dummy (<4h) generic 0.324 1.56 0.111 1.18 0.142 1.35 0.360 1.38 

Headway 
generic 
(not car) 

-2.27 -2.69 -0.886 -1.77 -0.946 -1.80 -5.87 -4.20 

Importance scores 
flexibility car 

    
0.394 1.01 1.37 1.48 

comfort air 
    

-0.195 -1.70 -0.952 -2.35 

reliability train 
    

-0.181 -0.77 -0.841 -0.64 

Variance of pers. 
spec. error term 

HSR  
     

2.85 5.64 

Group Scale parameters Value 
Rob. T-
stat (1) 

Value 
Rob. T-
stat (1) 

Value 

Rob. 
T-
stat 
(1) 

Value 
Rob. T-
stat (1) 

car-users 
 

1 fixed 1 fixed 1 fixed 1 fixed 

air-users 
 

1 fixed 2.95 1.34 2.75 1.33 1.06 0.32 

train-users 
 

1 fixed 3.08 1.42 2.86 1.41 0.927 -0.35 

# est. parameters 
 

15 17 20 21 

# observations 
 

2888 2888 2888 2888 

# respondents 
 

209 209 209 209 

Null-LL 
 

-2002.256 -2002.256 -2002.256 -2002.256 

Final-LL 
 

-1632.196 -1617.409 -1587.674 -1167.604 

Adj.rho-squ 
 

0.177 0.184 0.197 0.406 

* 1000 Halton draws applied 
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Table A2: Combined RP-SP models, non-work   
work Trips RPSP1 RPSP2 RPSP2 (mix.MNL) RPSP3 

Variable 
type/name 

applied 
utility 
function 

Value 
Rob. T-
stat (0) 

Value 
Rob. 
T-stat 
(0) 

Value 

Rob. 
T-
stat 
(0) 

Value 
Rob. 
T-stat 
(0) 

Alternative 
specific constants 
SP 

HSR 0.592 0.65 0.885 0.66 2.48 3.11 0.284 0.28 

car 0 fixed 0 fixed 
  

0 fixed 

air -0.170 -0.19 -0.125 -0.10 1.98 2.58 -0.349 -0.33 

train 0.257 0.32 0.458 0.40 1.80 2.13 0.435 0.44 

Alternative 
specific constants 
RP 

car 0 fixed 0 fixed 
  

0 fixed 

air -0.316 -0.36 -0.295 -0.25 1.49 2.15 -0.652 -0.64 

train -1.17 -1.49 -1.40 -1.40 -0.174 -0.27 -1.47 -1.59 

Travel cost 
low income 

generic -0.00306 -5.27 -0.00443 -5.37 -0.00473 -7.08 -0.00344 -5.33 

mid. income generic -0.00269 -5.11 -0.00361 -5.14 -0.00343 -5.77 -0.00302 -5.06 

high income generic -0.0019 -4.12 -0.00254 -3.75 -0.00251 -4.43 -0.00214 -3.82 

missing income 
info. 

generic -0.00191 -6.36 -0.00259 -8.14 -0.00251 -9.36 -0.00225 -7.77 

Interaction: 
not pay trip 

generic 0.00105 2.40 0.00143 2.45 0.00126 2.36 0.00123 2.43 

Travel time 
In-vehicel 

HSR -0.00883 -4.74 -0.0115 -3.84 -0.0125 -6.25 -0.00928 -4.20 

train -0.00551 -4.06 -0.00724 -4.85 -0.00765 -5.80 -0.00732 -4.91 

Total time 
air -0.00809 -4.38 -0.0104 -5.57 -0.0129 -9.46 -0.00944 -5.37 

car -0.00594 -3.12 -0.00756 -3.55 -0.00515 -4.51 -0.00736 -4.25 

Access + egress 
time 

HSR, train -0.00745 -5.41 -0.0101 -1.68 -0.00895 -9.72 -0.00881 -3.87 

Dummy (<4h) generic 0.387 2.67 0.500 2.67 0.235 1.84 0.390 2.30 

Headway 
generic 
(not car) 

-1.93 -3.00 -2.65 -3.39 -2.98 -5.97 -2.18 -3.22 

Group Scale parameters Value 
Rob. T-
stat (1) 

Value 
Rob. T-
stat (1) 

Rob. T-stat 
(1) 

Rob. 
T-
stat 
(1) 

Value 
Rob. T-
stat (1) 

car-users 
 

1 fixed 0.415 -3.54 1.74 2.37 1 fixed 

air-users 
 

1 fixed 0.827 -1.29 1.81 3.89 0.992 -0.05 

train-users 
 

1 fixed 0.808 -0.94 1.63 2.36 0.942 -0.23 

RP-sample 
 

1.33 1.63 1 fixed 1 fixed 1 fixed 

# est. parameters 
 

18 20 21 19 

# observations 
 

5177 5177 5177 5177 

# respondents 
 

2498 2498 2498 2498 

Null-LL 
 

-3955.574 -3955.574 -3955.574 -3955.574 

Final-LL 
 

-2888.428 -2881.103 -2432.831 -2893.366 

Adj.rho-squ 
 

0.265 0.267 0.380 0.264 
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Table A3: CNL modes, work-related trips  

work Trips CNL_RPSP_1a CNL_RPSP_1b CNL_RPSP_2a CNL_RPSP_2b 

Variable 
type/name 

applied 
utility 
function 

Value 
T-stat 
(0)* 

Value 
Rob. 
T-stat 
(0) 

Value 
T-
stat 
(0)* 

Value 
Rob. T-
stat (0) 

Alternative 
specific constants 
SP 

HSR 0.269 0.48 1.02 0.72 0.269 0.48 1.24 0.80 

car 0 fixed 0 fixed 0 fixed 0 fixed 

air -0.346 -0.63 0.0410 0.03 -0.346 -0.63 0.264 0.18 

train 0.427 0.67 0.630 0.51 0.427 0.67 0.892 0.67 

Alternative 
specific constants 
RP 

car 0 fixed 0 fixed 0 fixed 0 fixed 

air -0.650 -1.17 -0.294 -0.25 -0.650 -1.17 -0.332 -0.29 

train -1.50 -2.50 -1.39 -1.41 -1.50 -2.50 -1.41 -1.44 

Travel cost 
low income 

generic -0.00341 -9.09 -0.00444 -5.51 -0.00341 -9.09 -0.00443 -5.43 

mid. income generic -0.00299 -8.78 -0.00363 -5.28 -0.00299 -8.78 -0.00360 -5.23 

high income generic -0.00212 -6.94 -0.00259 -3.86 -0.00212 -6.94 -0.00254 -3.83 

missing income 
info. 

generic -0.00224 -11.03 -0.00260 -8.28 -0.00224 -11.03 -0.00259 -8.31 

Interaction: 
not pay trip 

generic 0.00121 4.09 0.00145 2.49 0.00121 4.09 0.00143 2.48 

Travel time 
In-vehicel 

HSR -0.00918 -6.90 -0.0114 -3.94 -0.00918 -6.90 -0.0112 -3.91 

train -0.00721 -6.08 -0.00727 -4.89 -0.00721 -6.08 -0.00727 -4.92 

Total time 
air -0.00940 -10.43 -0.0104 -5.53 -0.00940 -10.43 -0.0103 -5.56 

car -0.00733 -6.92 -0.00759 -3.60 -0.00733 -6.92 -0.00762 -3.65 

Access + egress 
time 

HSR, train -0.00877 -11.62 -0.0101 -9.05 -0.00877 -11.62 -0.0101 -9.06 

Dummy (<4h) generic 0.386 4.39 0.511 2.72 0.386 4.39 0.505 2.71 

Headway 
generic 
(not car) 

-2.16 -6.17 -2.66 -3.39 -2.16 -6.17 -2.64 -3.41 

Nest parameters Value 
 T-stat 
(1) 

Value 
Rob. T-
stat (1) 

Value 
T-stat 
(1) 

Value 
Rob. T-
stat (1) 

car/HSR 
 

1 0.00 0.331 -5.71 1 0.00 0.260 -8.80 

air/HSR 
 

1 0.00 0.726 -1.74 1 0.00 0.819 -1.33 

train/HSR 
 

1 2.72 1.95 -1.31 1 2.72 0.584 -1.77 

Allocation parameter for 
HSR  

Value T-stat (0) 
 

Value Rob. T-
stat (0) 

Value T-stat 
(0) 
 

Value Rob. T-
stat (0) 

car/HSR 
 

1/3 fixed 1/3 fixed 0.076 fixed 0.076 fixed 

air/HSR 
 

1/3 fixed 1/3 fixed 0.837 fixed 0.837 fixed 

train/HSR 
 

1/3 fixed 1/3 fixed 0.087 fixed 0.087 fixed 

# est. parameters 
 

20 20 20 20 

# observations 
 

5177 5177 5177 5177 

# respondents 
 

2498 2498 2498 2498 

Null-LL 
 

-3955.574 -3955.574 -3955.574 -3955.574 

Final-LL 
 

-2893.415 -2880.080 2893.415 -2880.212 

Adj.rho-squ 
 

0.263 0.267 0.263 0.267 

* robust T-stats not reported by Biogeme probably because some variables are estimated at the constrained boundary  

 


