
Using mobile vehicle probes to estimate network-wide 

traffic conditions 
 

Vikash V. Gayah * 

Department of Civil and Environmental Engineering, 

The Pennsylvania State University, University Park, PA, USA 

Vinayak V. Dixit 

School of Civil and Environmental Engineering 

University of New South Wales, Sydney, Australia 

* Email: gayah@engr.psu.edu  

 

Recently, several network-wide traffic control strategies have been developed to improve 

traffic operations on urban street networks. These strategies include: optimal metering of 

vehicle entry [1, 2]; optimal pricing of vehicle entry [3]; optimal operation and pricing of cars 

and transit [4]; and, optimal allocation of space to cars and transit [5]. These strategies make 

use of macroscopic relationships that have been shown to exist on urban street networks—

specifically relationships between average vehicle flow, average vehicle density and the 

average rate at which trips are completed [1, 6, 7]. While these urban-scale control strategies 

tend to be elegant and simple to apply in theory, they often take for granted that network-

wide traffic conditions (e.g., the density of vehicles across all streets within the network) can 

be measured accurately in real time.  

This is not a trivial issue: measuring traffic conditions across even a small street 

network typically requires a tremendous amount of data, and these data are not available in 

many cities. Even when these data are available, the accuracy of the estimations is in doubt. 

Fixed inductive loop detectors, the most common method used to collect traffic data, are 

problematic in urban areas. This is because these detectors are usually placed near 

intersections and the presence of queues that form at these intersections can result in incorrect 

density estimates [8]. Other fixed detectors, such as cameras, are unable to cover the entire 

network without significant expense. And the time required to process this type of visual data 

makes real-time estimation doubtful.  

However, the proliferation of GPS sensors have made it possible for individual 

vehicles to serve as mobile probes to measure traffic conditions. The probe vehicles can 

easily cover all areas of the network, and will accurately reflect driver behavior and origin-



destination patterns in the network since the GPS devices are placed within vehicles driven 

by regular drivers. The data obtained can also be aggregated and analyzed in real time to 

estimate traffic conditions. By combining this mobile probe data with macroscopic traffic 

relationships, network-wide traffic conditions can be estimated. Figure 1 shows a typical plot 

of average network flow vs. average network density (more commonly known as the 

Macroscopic Fundamental Diagram, or MFD). Note that each value of network density is 

associated with a unique value of average travel speed. Thus, we can estimate network 

densities by first using mobile probe vehicles to get an estimate of average travel speed 

within the network, and then looking up the corresponding network density on the MFD.  

 

 
Figure 1. Typical MFD showing average vehicle speed associated with a given network density 

 

To test this methodology, data from a calibrated micro-simulation of the downtown 

Orlando street network was used [9, 10]. Figure 2a presents the plot of average network flow 

vs. average network density measured at 5-minute intervals during peak hour conditions 

within the network. Note that this figure only shows data obtained during the loading period 

(beginning of the rush) as previous work has shown that urban street networks behave more 

chaotically and less predictably during the end of the rush [11]. This asymmetric network 

behavior is caused by natural instabilities in the network when congested [12, 13]. Therefore, 

in this work density estimates are only obtained during this loading period. Figure 2b presents 

the corresponding relationship between average network density and average travel speed 

obtained from the MFD. The fitted curve displayed in Figure 2b was used to map travel 

speeds to network densities, and fits the observed data very well.  



 

 

 
Figure 2. Relationship between: a) average network flow and average network density; and, b) 

average network density and average travel speed in the Orlando downtown network 

 

Estimates of network density were obtained using several different mobile probe 

penetration rates and data sampling intervals. Penetration rate refers to the proportion of 

vehicles that are equipped with GPS devices and are able to yield real time travel 

information. Sampling interval refers to the length of time over which average speed, and 

thus network density, is calculated across the network. Higher sampling intervals means that 

network conditions are estimated fewer times during a given time period.  
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The estimated network density, 𝑘, is calculated using average travel speed estimates 

and the equation shown in Figure 2b, and then compared to the actual network density, 𝑘. 

The value 𝑘/𝑘 is computed to measure the accuracy of the estimation. Figure 3 presents box-

plots of the 𝑘/𝑘  values obtained during the entire loading period over many simulation runs 

for various combinations of mobile probe penetration rates and sampling intervals. Note that 

the results do not look very promising. Even for the highest penetration rates and sampling 

intervals, the data shows that density estimates are not very accurate.  

a)  

b)  
 

Figure 3. Box-plots showing accuracy of estimations during the entire loading period for: a) 
mobile vehicle probe penetration rate of 50%; and, b) sampling interval of 300 seconds. 

 



One reason for the large scatter in the box-plots is the extreme sensitivity of network 

density to travel speeds when average speeds are high; see Figure 2b. At high speeds, small 

errors in speed result in large errors in estimated density. Therefore, this methodology would 

not be as accurate when the network is operating in free flow as when the network is 

operating near congestion. Figure 4 confirms this by presenting a box-plot of the 𝑘/𝑘 values 

for traffic states near congestion. As shown in this figure, density estimates are much more 

accurate for congested states when compared to all states (free flow and congested). In fact, 

our results show that very accurate estimates can be obtained for congested or near congested 

traffic states for penetration rates greater than15 percent combined with sampling intervals 

greater than 90 seconds. 

Accurate estimation of traffic states near congestion is beneficial since congested 

traffic states are the most critical to identify. The traffic control strategies previously 

mentioned [1, 2, 3, 4, 5] require accurate identification of congestion, and accurate estimation 

of the level of congestion in order to efficiently manage traffic. To implement these strategies 

traffic densities generally do not need to be estimated accurately when the network is in free 

flow. Thus, this methodology appears to be very promising. However, it is not without issues. 

Further research needs to be performed on estimating traffic conditions during the end of a 

rush period (as opposed to just the beginning as is done here). Nevertheless, this combination 

of mobile probe data and macroscopic traffic relationships does seem to be a feasible way to 

estimate network conditions in real time and make the implementation of efficient, real-time 

urban network control strategies a reality.  



a)  

b)  
 

Figure 4. Box-plots showing accuracy of estimations of average vehicle densities near congestion 
for: a) mobile vehicle probe penetration rate of 50%; and, b) sampling interval of 300 seconds. 
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