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1. Introduction

Traffic flow on a single link is a surface in the three-dimensional space of
vehicle number, time and distance. It can be viewed in three different coordi-
nate systems: Eulerian coordinates (t, x), Lagrangian coordinates (n, x), and
(t, n). Each coordinate system gives a different “model” to solve the same
problem; these models are called the N-, T- or X-model hereafter, with:

• N(t, x) : number of vehicles that have crossed location x by time t,

• T (n, x) : time vehicle n crosses x,

• X(t, n) : position of vehicle n at time t,

These three models can be expressed as a Hamilton-Jacoby partial differ-
ential equation (HJ-PDE) because in all cases there exists a function H(·)–
called the Hamiltonian or fundamental diagram in traffic flow–that gives one
partial derivatives in terms of the other. The link between conservation laws
and HJ-PDE has been known to mathematicians for decades [6, 11, 5], but
was brought up to the attention of the traffic flow theory community just
recently by [2, 4]. This link is important because it means that the solution
of a conservation law (e.g., the kinematic wave model or LWR model of [7],
and [12]) can be expressed in terms of solution of the corresponding HJ-PDE
formulation, which are much simpler to compute.
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2. Contributions

This paper makes the following contributions:

• Several new and existing models formulated under the same HJ theory.

• Existing models include conservation laws (e.g., cell transmission model
[1]), car-following models, cellular automata and mezoscopic models.

• New graphical and exact numerical solution methods for piecewise lin-
ear flow-density diagrams, including fixed and moving bottlenecks.

• A new N-model is found that does not require memory (compared to
existing formulations).

• A new T-model is found that requires the comparison of only two terms
regardless of the shape of the initial and boundary data. This will
make stochastic extensions of the kinematic wave model mathemati-
cally tractable.

• The addition of a source term and all formulation opens the door for
a more rigorous modeling of several practical problems such as merg-
ing in Lagrangian coordinates, continuum approximation of merging-
divergent traffic in Eulerian coordinates, stochastic extensions and oth-
ers.

What follows is a general description and main results of the different
sections of the proposed paper.

3. General theory

This section presents the HJ theory for a generic “quantity” U(a, b) over
generic dimensions a and b. If G(·) gives the value of U(a, b) on a arbitrary
curve B then the scalar and homogeneous HJ-PDE reads:

HJ

{
Ua −H(Ub) = 0,

U(B) = G(B), B ∈ B
(1a)

(1b)

were subscript variables represent partial derivatives, B is a point with coor-
dinates (aB, bB) in the boundary B, and G(B) ≡ G(aB, bB) is the boundary
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data. The solution of (1) involves the extrema of the function ϕ(·):

ϕ(B,P ) = G(B) + (a− aB)L
(
b− bB
a− aB

)
, (2)

which is the sum of boundary data and the “cost” on link BP. Here, P ≡
(a, b) is a generic point, (b− bB)/(a− aB) is the slope of the line connecting
points B and P , and the Lagrangian L(·) is the Legendre transform of the
Hamiltonian. In particular, if H(·) is concave and G(·) continuous then a
solution of (1) is given by:

U(P ) = min
B∈BP

ϕ(B,P ), (solution for concave H) (3a)

L(q) = max
p

{H(p)− pq}, (3b)

where the auxiliary variable p refers to the argument of the Hamiltonian, i.e.
p ≡ Ub, and BP is the admissible region for B, defined in more detail in the
paper.

For convex H(·) the “max” and the “min” in (3) are interchanged; i.e.:

U(P ) = max
B∈BP

ϕ(B,P ), (solution for convex H) (4a)

L(q) = min
p
{H(p)− pq}. (4b)

Notice that (4) is new and proved in the paper.

4. Traffic flow models

This section presents the HJ formulation and solution for models N(t, x),
T (n, x), and X(t, n) in the case of concave or convex fundamental diagrams.
The meaning and symbols used here for the partial derivatives in each coor-
dinate system are summarized in Table 1.

U(a, b) N(t, x) T (n, x) X(t, n)
partials Nt −Nx Tn Tx Xt −Xn

symbol f(t, x) k(t, x) h(n, x) r(n, x) v(t, n) s(t, n)
name flow density headway pace speed spacing

Table 1: Coordinate systems and variables definition for the three representations
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Table 2 summarizes the key definitions for each coordinate system in the
context of HJ-PDE theory. BP

IVP and BP
BVP are the admissible region for

IVPs and BVPs, respectively. For simplicity, we shall use the same symbol
H,L,B, p, q, . . . etc for all coordinate systems.

N(t, x) T (n, x) X(t, n)
H(p) F (k) H(r) V (s)

L(q) maxk{F (k)− kṽ} minr{H(r)− rs̃} maxs{V (s)− sf̃}
p = |Ub| k r s

q = H′ ṽ, wave speed s̃, wave spacing f̃ , wave flow
HJ-PDE f = F (k) h = H(r) v = V (s)
H curvature concave convex concave
BP
IVP (x− q̂t, x− q̆t)+ (x− q̂n, x− q̆n)+ (n− q̂t, n− q̆t)+

BP
BVP (0, t− x/q̆)+ (0, n− x/q̆)+ (0, t− n/q̆)+

Table 2: Key elements of the Hamilton-Jacobi theory for the three coordinate systems.
The superscript “+” is introduced to indicate that if a term is negative it should be
replaced by 0.

We will show in the paper that the general solution for each of the three
models can be expressed as:

N(t, x) = min
B∈BP

{
G(tB, xB) + (t− tB)L

(
x− xB

t− tB

)}
(5a)

T (n, x) = max
B∈BP

{
G(nB, xB) + (n− nB)L

(
−x− xB

n− nB

)}
(5b)

X(t, n) = min
B∈BP

{
G(tB, nB) + (t− tB)L

(
n− nB

t− tB

)}
(5c)

5. Triangular flow-density diagram

In this section we will so that the solution under arbitrary initial and
boundary data is given by:

N(t, x) = min

{
min

y∈BP
IVP

{N(0, y) +Qt− k∗(x− y)}, N(t− x/u, 0)

}
(6)

T (n, x) = max {T (n, 0) + x/u, T (0, x+ nδ) + nτ} . (7)

X(t, n) = min

{
min

y∈BP
IVP

{X(0, y) + ut− s∗(n− y)}, X(t− nτ, 0)− nδ

}
(8)
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where we have defined the free-flow speed u, wave speed −w and jam density
κ. Other useful resulting parameters that will be used in the sequel are
the capacity Q = κwu/(w + u), the critical density k∗ = Q/u, the critical
spacing s∗ = 1/k∗, the jam spacing δ = 1/κ and the wave trip time between
two consecutive vehicles τ = 1/(wκ).

Findings: 1. even for general initial and boundary data, the solution of
the T-model only requires the comparison of two candidates; 2. the BVP
solution has only one candidate in all cases; 3. for IVP, the number of can-
didates for the N- and X-models depends upon the shape of the initial data.
A few common cases are discussed in the paper, along with the graphical
solution method for all models.

5.1. Exact Discrete models

Here we discretize the previous models in increments
↔
n,

↔
t ,

↔
x. A “tilde”

will denote a dimensionless quantity, e.g. x̃ = x/
↔
x or X̃(·) = X(·)/ ↔

x.
Two types of discrete implementations are described here: (i) in a “grid”
implementation the coordinate system is discrete, e.g. (t̃, x̃), but the depen-
dent variable is continuous, e.g. X(t̃, x̃); (ii) in a cellular automata (CA)

implementation everything is discrete, e.g. X̃(t̃, x̃).
The grid implementation of the T-model will be shown to be

T (ñ, x̃) = max
{
T (ñ, x̃− 1)+

↔
x /u, T (ñ− 1, x̃+ 1)+

↔
n τ

}
(9)

and the CA T-model:

T̃ (ñ, x̃) = max
{
T̃ (ñ, x̃− 1) + 1, T̃ (ñ− 1, x̃+ 1) + θ

}
(10)

with

θ =
u

w
is an integer. (11)

Similarly, the paper will derive the grid and CA versions of the N- and X-
models.

6. Remainder of the paper

Due to space limitations, we simply state the remaining sections:

1. Existing models will be cast as special cases of the models presented
here. These include [9, 10, 3, 8] among others to be identified.
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2. The conservation law representation of the three models presented so
far. The one corresponding to the T-model is new.

3. Addition of a source to the three models. These formulations are new
for the T- and X-models.

4. modeling of fixed and moving bottlenecks for all models.

5. modeling of piecewise linear fundamental diagrams for all models.
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