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1 Introduction 

Carsharing is a transport option that allows people using a private vehicle without having to 

own it. In what respects to type of trips, carsharing systems can be classified into: round-trip, 

in which users have to return the cars to the same station from where they departed; and one-

way, in which users can pick up a car in a station and return it to another one [1]. This last 

type is more convenient for the users but it presents a system imbalance problem in vehicle 

stocks due to non-uniformity of trips between stations.  

Previous research has proposed several approaches to solve this problem, such as: 

vehicle relocations [2,3,4]; pricing incentive policies for the users to relocate the vehicles 

themselves [5,6]; operating strategies designed around accepting or refusing a trip based on 

its impact on vehicle stocks [7,8]; and station location selection to achieve a more favorable 

distribution of vehicles [8]. 

Correia and Antunes [8] proposed a mixed integer programming model to locate one-

way carsharing stations to maximize the profit of a carsharing company, considering the 

revenues (price paid by clients) and costs (vehicle maintenance, vehicle depreciation, and 

maintenance of parking spaces), and assuming that all demand between stations should be 



satisfied [8]. In applying their model to a case study in Lisbon, Portugal, tractability issues 

resulted and the model was only solvable with time discretization of 10-minutes steps.  

In this paper, the same case study as the one in [8] is considered and station location 

outputs are generated using their model but with time discretizations of 1-minute. An 

approach to optimize relocation operations on a minute-by-minute basis is developed, given 

those outputs for station locations.  These optimal vehicle relocations are compared to 

different real-time vehicle relocation policies implemented in a simulation model. This 

methodology should allow concluding on the influence of relocation operations on the profit 

of one-way carsharing and how to implement them. 

 

2 Mathematical model 

The objective of the mathematical programming model is to optimize vehicle relocation 

operations between stations. The decision variables of this model are: number of vehicles, 

number of parking spaces, and relocation operations. The objective function is the same as 

the one in [8], but including also the relocation costs. 

 

3 Simulation model 

In the simulation model, it is assumed that a trip will be performed only if there is 

simultaneously a station near the origin of the trip and a station near the trip destination. The 

environment is the case study city (Fig. 1), which influences the system through the effects of 

congestion on the road network with different link travel times throughout the day. These 

times were computed using the transportation modeling software VISUM (PTV). 

In each minute, trips and relocation operations are triggered and the model updates a 

number of system attributes, including: number of completed minutes driven by customers 

and by vehicle relocation staff; vehicle availability at each station; total number of vehicles 

needed; and maximum vehicle stock at each station. These indicators are used to compute the 

objective function, which is the same used in the mathematical model.  

 



 

 

Fig. 1. Simulation visualization of the municipality of Lisbon with all the possible stations 

location 

 

Two real-time relocation policies (1.0 and 2.0) were tested in the simulation. In the first 

one, it is determined for each minute of the day at each station s if the status of s is that of 

supplier or demander. A station s at time t is classified as a supplier if, on a previous day of 

operations, the average number of customer trips destined for that station at period t+x 

exceeds or equals the average number of customer trips that depart that station at the same 

period. Note that only customer trips, and not repositioning trips, are included in this 

calculation. Each station that is not designated as a supplier is classified as a demander. If s is 

classified as a supplier, its supply is equal to the number of extra vehicles (those not needed 

for serving customer demand) at s at time t. If s is classified as a demander, its demand for 

vehicles is set equal to the number of additional vehicles needed to serve demand at time t+x. 

For relocation policy 2.0, x is set equal to 1 minute and the set of supplier stations and the 

associated supplies are determined as described for policy 1.0.  The remaining stations are 

designated as demanders with the value of demand calculated as in relocation policy 1.0.  

Using relocation policies 1.0 and 2.0 as a starting point, three variants of these two 

policies were developed. The first is that each supplier station is required to keep at least one 

vehicle at that station (policies 1.A and 2.A). The second is that the distribution of vehicles at 



each station at the start of the day is set to that generated by the mathematical model defined 

in the previous section (policies 1.B and 2.B). And the third is the same as the second with 

priority given to stations with the greatest demand for vehicles (policies 1.C and 2.C).  

To decide how to distribute vehicles between suppliers and demanders, a typical 

transportation problem in Operational Research is solved where supply from m origins is 

distributed to n destinations minimizing the total travel time.  

 

4 Results and conclusions 

In Table 1, we show the best simulation results for each relocation policy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 1. Results for the different relocation policy 

 

Solution 

(stations) 
Indicators 

Optimization 

of the 

stations’ 

location 

Best results for each policy 

1.0 2.0 1.A 1.B 1.C 2.A 2.B 2.C 

69 (full 

demand 

attended) 

Vehicles 390 264 273 262 264 257 267 318 222 

Parking 

spaces 
739 533 490 550 412 409 480 415 334 

Time 

driven 

(min) 

23711 23711 23711 23711 23711 23711 23711 23711 23711 

Time of 

relocations 

(min) 

0 4008 2921 4800 4346 5169 2967 2661 9051 

Profit 

(€/day) 
-1160.7 591.7 742.1 433.3 766.1 726.5 854.9 179.1 695.1 

34 (free 

optimum) 

Vehicles 121 121 121 121 126 125 121 126 126 

Parking 

spaces 
241 241 241 240 195 195 241 195 195 

Time 

driven 

(min) 

10392 10392 10392 10392 10392 10392 10392 10392 10392 

Time of 

relocations 

(min) 

0 0 0 4 0 54 0 0 0 

Profit 

(€/day) 
505.9 505.9 505.9 507.1 512.9(*) 519.1(**) 505.9 512.9(*) 512.9(*) 

10 (small 

network) 

Vehicles 22 22 22 22 22 22 22 22 22 

Parking 

spaces 
42 42 42 42 29 29 42 29 29 

Time 

driven 

(min) 

2125 2125 2125 2125 2125 2125 2125 2125 2125 

Time of 

relocations 

(min) 

0 0 0 0 0 0 0 0 0 

Objective 

(€/day) 
164.6 164.6 164.6 164.6 190.6(*) 190.6(*) 164.6 190.6(*) 190.6(*) 

(*) no relocations occur, profit achieved only by bringing the initial availability from 

optimization 

(**) this profit is achieved using relocations and bringing the initial availability from 

optimization 

 

Analyzing Table 1, we can conclude that by using real-time relocation policies we reach 

higher profits compared to having no relocations. For instance, for the case of having all 



demand satisfied, we go from a situation in which there are losses of about 1160€/day to a 

situation where the profit is about 855€/day (best relocation policy found), even with 

increased costs due to relocations. This improvement was achieved through reductions in the 

number of vehicles needed to satisfy demand and the number of parking spaces needed at 

stations. 

In Table 2, we compare the results for: the station location model, the relocations 

optimization model, and the best performing simulated relocation policies. 

 

Table 2. Results for the different problems 

 

Models 

69 stations 34 stations 10 stations 

Profit 

(€/day) 

Improvements 

(€/day) 

Profit 

(€/day) 

Improvements 

 (€/day) 

Profit 

(€/day) 

Improvements 

(€/day)  

Optimization 

of station 

location 

-1160.7 -- 505.9 

 

-- 

 

164.6 

 

-- 

 

Optimization 

of relocation 

operations 

3865.7 5026.4 1768.1 1262.2 322.0 157.4 

Simulation 

with the best 

relocation 

policy 

854.9 2015.6 519.1 13.2 190.6 26 

 

Results for the simulated relocation policies are far from the optimal relocation 

solutions, showing that it is difficult to design effective real-time strategies based on fixed 

rules. A case in point is the 34 station scenario in which the optimized solution has an 

improvement in profit of about 1262 €/day, while the real-time relocation policies improve 

profit only to about 13 €/day. 

Nevertheless, it is important to observe that the policies evaluated in this work were able 

to make profitable the 69 station scenario that serves all demand in the city. Concluding,   

real-time relocation operations influence significantly the profit of one-way carsharing and 

should be implemented to balance these systems.  
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