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Abstract

We present a Residual Logit (ResLogit) model for seamlessly integrating a data-driven Deep Neural
Network (DNN) architecture in the random utility maximization paradigm. DNN models such
as the Multi-layer Perceptron (MLP) have shown remarkable success in modelling complex data
accurately, but recent studies have consistently demonstrated that their black-box properties are
incompatible with discrete choice analysis for the purpose of interpreting decision making behaviour.
Our proposed machine learning choice model is a departure from the conventional feed-forward MLP
framework by using a dynamic residual neural network learning based approach. Our proposed
method can be formulated as a Generalized Extreme Value (GEV) random utility maximization
model for greater flexibility in capturing unobserved heterogeneity. It can generate choice model
structures where the covariance between random utilities is estimated and incorporated into the
random error terms, allowing for a richer set of higher-order substitution patterns than a standard
logit might be able to achieve. We describe the process of our model estimation and examine the
relative empirical performance and econometric implications on two mode choice experiments. We
analyzed the behavioural and theoretical properties of our methodology. We showed how model
interpretability is possible, while also capturing the underlying complex and unobserved behavioural
heterogeneity effects in the residual covariance matrices.

1. Introduction

Enhancing discrete choice models with DNNs and deep learning optimization algorithms is one
of the active areas of research that have shown promising results (Sifringer et al., |2018; Borysov|
et all 2019; Wong and Farooq, 2020). The increase in popularity of DNNs is primarily due to the
idea that these novel modelling strategies emulate behavioural actions through similar neurological
functions measured from the human brain. This is motivated by the argument that multi-layered
DNN architecture represents the structure of neuron activity patterns and memory in the human
brain, therefore assumed to be an efficient way of generating decision models (Friston and Stephan
2007). This is often referred to as ‘biological plausibility’ in deep learning literature (Bengio et al.
2015)). These similarities between choice behaviour theory and DNNs have led to many interesting
and useful applications in travel behaviour modelling and travel demand forecasting
land de Lucal, 2005} [Lee et al., 2018; Wong et al., 2018; Wang and Zhao, 2019). In general, it is
a straightforward intuition that these neural networks are composite functions made up of several
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layers of non-linear operators, which enable the feasibility of estimating complex non-linear models
using explanatory variables and discrete output choices.

It is generally assumed that by applying specific non-linear transformations on the input data
(e.g. sigmoid, hyperbolic tangent, or Linear Rectifier Units (ReLU)), it improves model prediction
accuracy over Random Utility Maximization (RUM) based models (Cantarella and de Luca, 2005;
Wang and Ross, 2018]). However, it has been observed that increasing the number of layers beyond
a certain threshold would degrade the model due to overfitting, unreachable optimal solutions, and
model identification problems (Glorot et al., 2011). Other major problems with DNNs are the
lack of model interpretability, parameter stability and general assumptions of the error distribution
(Doughertyl, |1995; [Hensher and Ton, 2000)). Even in cases where DNNs were shown to produce far
better and accurate predictions than standard linear utility-based RUM models, the formulation
of a DNN can be inconsistent. This issue arises due to the inconsistent hyperparameter selection,
validation bias and misspecification errors (Hillel et al., [2019). Moreover, the applicability of ma-
chine learning algorithms has not yet been clearly justified in behavioural modelling applications
and economic analysis (Karlaftis and Vlahogianni, 2011). Discrete choice experiments are typically
only stable at aggregate levels — As a result, training and optimizing a multi-layered model to
capture individual level variations have not yet provided the expected benefits beyond few layers
(Wang and Zhao, [2019).

This problem can be addressed by introducing the concept of residuals — skipped connections
between layers. Recent work has shown that this strategy significantly improves learning in deep
neural network architectures with marginal or no loss in performance (Witten et al., 2016). A form
of DNN architecture that utilizes this strategy is known as Residual Neural Networks or ResNets,
which allows for training of very deep neural network models by facilitating gradient backpropaga-
tion throughout the layers (He et al., [2016). We show that this solution can be easily adapted for
applications in choice behaviour modelling to identify sources of unobserved heterogeneity. This can
provide an opportunity for the discrete choice analysts to leverage on interpretable deep learning
algorithms to estimate more robust choice models. The goal of this paper is to present a practical
application of machine learning in choice modelling research that leverages on the flexibility of the
ResNet architecture.

We propose a tractable method of unifying a neural network model architecture with the Gener-
alized Extreme Value (GEV) choice model, which allows the systematic utility function to modelled
using standard econometric specification (McFaddden, [1978)). It extends previous work on machine
learning techniques for choice modelling tasks in two key aspects. First, we can accommodate the
random heterogeneity in the choice selection process in the form of residual matrix parameters
to account for the influence of unobserved behaviour variations. Second, it allows for parameter
estimation stability, model interpretation, economic analysis, and statistical testing, since the for-
mulation resembles a flexible GEV model structure with additive residual error correction terms in
the utility function. We define this model structure as a ResLogit model.

This paper is organized as follows: provides an overview of the heterogeneity represen-
tation in discrete choice models and in deep neural networks. presents the specification
of our proposed ResLogit model. demonstrates the method on a classic Red/Blue bus
example. outlines the estimation process and the learning algorithm. presents
two choice experiments that analyze the value of time and choice demand prediction, respectively.

Finally, the conclusion in [Section 7}



2. Background

2.1. Representation of heterogeneity in discrete choice modelling

The standard framework for analyzing and understanding the consumer behaviour has been the
discrete choice models such as Multinomial Logit (MNL), Multinomial Probit, Mixed logit or Nested
logit (McFadden and Train, [2000). This framework has proven successful because of its simple yet
flexible model formulation for relating observable information and attributes to choice behaviour.
Representing the effects of endogeneity and expressing behavioural richness is a fundamental chal-
lenge in choice modelling (Louviere et al., 2005). It assumes that the underlying decision processes
are hidden from the observer and that decision makers select their preferred alternative by rank-
ing all potential choices and choosing the alternative with the maximum utility through actions,
dynamics and contexts (Ben-Akiva et al., 2012). The true utility value is not directly observed,
but inferred from observed choice behaviour of the decision maker. The unknown factors are not
explicitly captured in the model Thus it needs to be approximated through the error terms, which
may result in estimation misspecification and inconsistencies with expected rational behaviour.

The MNL model assumes that the probabilities of each pair of alternatives are uncorrelated
with the presence of other alternatives known as independence of irrelevant alternatives (IIA)
(McFadden and Train, 2000). When choice alternatives are similar or correlated, assumption of ITA
may lead to an incorrect forecast of market share as well as model misspecification. Although this
simplifying assumption in MNL models may fit well to simple behavioural models and allows for
tractable estimation, it creates unrealistic substitution patterns that are not necessarily accurate in
reflecting observed human behaviour. The solution is to allow some correction for heterogeneity in
the stochastic component of the utility (McFadden and Train), [2000). For instance, the Nested Logit
models partially relax the IIA assumption by segmenting alternatives into subsets such that they are
similar within each group (non-zero correlation) but independent between groups (zero correlation).
In this way, the uncorrelated unobservable heterogeneity is partially accounted for in the model
equation. Similarly, Latent Class and Mixed logit model structures reflect the correlation between
alternatives by allowing for variable coefficients to vary between observations, class segments or
individuals. These methods of capturing heterogeneity assume a specific, pre-defined and non-
dynamical structure that is determined by the analyst and may not reflect the underlying correlation
that accounts for the complex behaviour learning process.

2.2. Representation of heterogeneity in DNNs

In the past several years, there have been new innovations in machine learning algorithms for
combining DNN and RUM based choice models designed to capture the underlying heterogeneity
from large datasets. This stems from the increasing importance of incorporating latent psychological
effects in hybrid choice models (Thorhauge et al., |2019). For instance, a way of using machine
learning in choice modelling is by learning a non-compensatory decision protocol distribution from
the data that generalizes many of the decision rules used in discrete choice, instead of defining fixed
assumptions about the error distribution (Vythoulkas and Koutsopoulos, [2003). In DNNs, these
latent psychological effects can be represented by the non-linear transformation within the network,
deriving a set of stochastic variables from observed explanatory variables.

The non-linear functions in these neural network based models are assumed to be able to repre-
sent taste variations and random heterogeneity in the choice model. For conventional DNNs, such
as the Multi-layer Perceptron (MLP), the objective is to find the set of optimal model parameters
and hyperparameters that map inputs to outputs through a series of non-linear transformations.
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This transformation process allows the underlying information to be inferred through the neural
network. Hyperparameters are arbitrary model parameters that specify the learning procedure or
controlling the model complexity such as L and Lo penalties, update step size, decay or initializa-
tion conditions. In some situations, hyperparameter tuning can yield state-of-the-art performance.
However, from the viewpoint of choice modelling they have no behavioural meaning behind it. A
simple MLP model is seen as a ‘black-box’ model and behaviour analysts have faced difficulty in
understanding how the model parameters interpreted. There can be multiple different models de-
fined by the same set of parameters, making it problematic in model identification and identifying
the exact beta parameters.

There are also disadvantages to using DNNs in choice modelling. Even though machine learning
methods are increasingly being used in travel mode choice prediction, their usefulness has been
limited to prediction tasks (Karlaftis and Vlahogianni, [2011). Early research on using machine
learning for mode choice modelling work primarily used prediction accuracy as a comparison and
suggests that neural networks appear to lack the consistency with economic principles (Hensher
and Ton, 2000; |Karlaftis and Vlahogianni, 2011)).

2.8. General formulation of a neural network architecture

Each neuron in an MLP is a basic processing unit that performs a non-linear transform on its
input (Lee et al., 2018)). During the training process, the model is estimated by a gradient descent
algorithm given an objective function, e.g. maximum log-likelihood. The basic MLP architecture
can be represented mathematically as a series of functions:

hm:l = f(ﬂ?, Wl)u

hm=2 = f(hm=1; W2), (1)

y = logit(hyr),

where x is the input, f is an activation function, h,, is the intermediate m™ layer in the neural
network model and y is the output choice probabilities of the network. The activation function can
be as simple as a linear regression or a continuous non-linear function, for example, a sigmoid unit:
f(x) = (14+e*)~L. In general, most DNN architecture are non-identifiable due to the non-linear
activation function used. For example, it is not required for each DNN parameters to have any
particular sign, since subsequent layers can have the opposite sign to reverse the values. Different
permutations of weights are also possible. For instance a 1-layer, 1 hidden neuron network with
unit weight is equivalent to a 1-layer, 2 hidden neuron network with half weight each, since the
product-sum of input and weights are equal.

The naive intuition is that the MLPs can progressively learn increasingly complex features
by adding more layers. However, it has been empirically shown that for a fully connected MLP
architecture, there is a maximum threshold to the number of layers before the model overfits and
deteriorates in model prediction accuracy and estimated log-likelihood (Srivastava et al., |2015;
He et al., 2016). This performance limitation has been observed and discussed recently in choice
modelling applications (Alwosheel et al., 2018; Lee et al., 2018]). This simple assumption contradicts
the belief that DNNs may achieve greater classification accuracy over conventional discrete choice
models and has led to a questionable understanding of the practical uses and importance of deep
learning in discrete choice modelling. It has been shown that in the MLP models, increasing the
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number of layers (and increasing non-linearity) may lead to worse performance compared to a
simpler model. This observation contradicts the logic that a M-layered network should, in theory,
produce a higher model accuracy than a (M — 1)-layered network by capturing higher level detail
in the model (Srivastava et al., 2015).

ResNets, on the other hand, exploit the use of identity shortcuts to enable the flow of information
across layers without causing model degradation from repeated non-linear transformations (He
et al., 2016). In an MLPs model, the activation function is applied to the entire layer of input
data. ResNets apply a non-linear transformation to the residual (variance) of the input, given by
the following:

hm:l = f(l‘) +x

hm:Z = f(hmzl) + hm:l (2)

y = logit(f(hm=nr) + hm=nr)

The hypothesis behind the ResNet architecture from an optimization perspective is that it is
easier to optimize a small change to the input rather than improving the entire layer of inputs at
once (He et al., 2016). The ResNet framework uses a skip connection mechanism to propagate
information through the layers making it easier to train complex behavioural models. From a
behavioural perspective, the model framework is able to retain the systematic portion of the utility.
Compared to a feedforward MLP neural network architecture, this approach manages to account
for the systematic utility function and econometric variables, allowing for statistical analysis of the
interactions between the attributes of the utility and the characteristics of the decision maker. For
instance, the econometric parameters (e.g. parameter for travel time, or cost of travel) would be
able to “explain” the choices with respect to the individual and alternative attributes, rather than
an arbitrary assignment to the respective latent variable output from the neural network.

Our proposed ResLogit hybrid choice model approach improves upon the GEV based RUM
framework and incorporates a neural network learning model, while preserving consistencies with
the RUM paradigm. The general framework of our ResLogit architecture is that it is much more
efficient to model the heterogeneity using a neural network rather than applying it to the entire
utility function. Whereas, the systematic utility function can still be modelled using the econo-
metric specification. This translates to using the choice endogeneity in the data to generate the
interactions and error term variations directly rather than to specify a fixed structural and mea-
surement equation. A comparison of the structure of an MNL, MLP, and the ResLogit model is

shown in [Figure

3. Specification of the proposed ResLogit model

We propose a tractable method of unifying a neural network model architecture with the Gen-
eralized Extreme Value (GEV) choice model (McFaddden, [1978). The GEV model is based on the
assumption of extreme value distributed error terms that can allow for correlation across choice
alternatives while having a closed form mathematical solution for estimation. The ResLogit model
can be classified as a special variant of a GEV model that inherits the theoretical foundations
of random utility models. In particular, we propose the following non-negative G function that
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Figure 1: The architecture of: (a) MNL model, (b) MLP-DNN with 2 hidden layers, (c) our proposed ResLogit
model.

represents the ResLogit model:

G =3 ([ TT Rom]ot) ®

jec m=1

where y* = e#Vi, and Vj is the observed deterministic part of the utility for j alternatives. The
product of R;,, terms in the square bracket is the residual correction factor that incorporates the

neural network structure into the GEV model. The derivative gTi is:

oG M )
gy, = Gt =u 1T Fan]uy ™ .

m=1

Contrary to the allocation factor used in cross-nested GEV models to reflect the extent at which
the alternative j is in a specified nest, the residual correction factor is a stochastic scale value that
adjusts the utility function. The justification for moving towards a neural network based structure
for the correlation across choice alternatives is such that it becomes a data-driven GEV model
generating approach using the underlying heterogeneity to estimate the logit structure. We assume
that G is a function that exhibits the following properties which can be trivially verified (Ben-Akiva
and Lerman, [1985):

1. G is a non-negative function for all y;;



2. G is homogeneous of degree p > 0: a"G(y;) = G(awy;);
3. lim G = +4o0;

Yj—>+00
4. The I*" partial derivative of G with respect to any [ distinct y; is non-negative when [ is odd
and non-positive when [ is even.

Under these conditions, the choice probability of alternative j being selected given a choice set
C derived from the G generator function is defined as follows:

y;Gi
pG
M
ST, B (5)
= vV M>1.

M
Z uVj/-‘r 21 1nRj’,m
. e m=
j'eC

P(lc) =

for the case of M = 0, it is equivalent to a standard MNL model. If the parameters in the residuals
R are set to zero, the residual function collapses to a constant (R = In(2)) and can be factorized
out from the logit choice probabilities. Varying the values of the residual does not change the scale
of the utility. As we are able to specify the log-likelihood objective function and the gradient on
the residual function is continuous, there would be a closed form solution to the choice probability
structure.

3.1. Residual function

The residual correction factor [H%zl ij} provides a convenient fully parametric approach for
a mixture of the error terms with the underlying unobserved behaviour distribution confounded in
the data. We require that R; ., satisfies the following conditions: 0 < Rj,, <1 and >, R;m, > 0.
Thus, a larger Hn]‘le Rj,, value translates to a higher independence of alternative j from the
alternatives k, where k # j. The product of R terms over m represents the joint distribution
mixture of higher order unobserved heterogeneity from each m!" residual layer. R; ,, is formulated

as a recursive function:

( 1

ifm=1,
1+ exp (Z wjk,ka>
Rjm = b | (6)
ifm>1
1+ exp (Z Wipm (Vi +1n Rj,m1)>
keC

where wj m, is the residual relational matrix parameters of the m'™ residual layer with dimensions

(j x k) to be estimated, which defines the correlation structure of the alternatives. Since the residual
correction factor is bounded between 0 and 1 for all M > 1, R;,, is continuous and asymptotic
given any empirical data. The additional optimization term (In R; ., in our model) shown in ({5
is the measurement quantity for the information content (Louviere et al., 2005). It represents
the unobserved interactions and correlated effects of a particular choice action, conditional on
the individuals’ beliefs or information processing strategy (IPS). The recent use of the rational
inattention theory in choice modelling also describes a similar uncertainty term to measure the
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amount of information used by an individual in decision making (Matéjka and McKay, [2015).
From a utility-maximization standpoint, the choice outcome may be sub-optimal if this uncertainty
is not accounted for.

We can consider the analogy with physical dynamics and information theory. The structure of
the ResLogit model corrects for the heterogeneity associated with the information processing cost,
moving from a state with high entropy to an optimized final state with low entropy. Although this
entropy itself is a latent construct in behavioural modelling, it can be useful to think of it as a form
of regularization. It has been shown that imperfect information about the choice distorts the model
and leads to choice errors (Matéjka and McKay, [2015)).

Behavioural researchers have also stressed the importance of accounting for uncertainty in the
choice process, such as experiences or habits (Sims, 2003). The uncertainty is modelled as a fixed
marginal cost in the utility. As with the rational inattention approach, our ResLogit model does
not impose any particular assumptions (e.g. the nesting structure, latent variables etc.) on the
underlying prior distribution but derives the structure by learning from the data.

By avoiding the need to create prior assumptions associated with rational expectations in choice
behaviour, the error terms become fully flexible and adaptive to the observed data. In theory, any
mixture of nesting structure or latent variable error terms could be generated from the ResLogit
GEV, provided that the data itself manifests the desired property. Other GEV models and their
choice probability distributions can be generated by setting the appropriate matrix parameters w
in the residual function.

3.2. Utility specification

In the ResLogit model, the utility U,,; of individual n selecting choice j is obtained as follows:

M
Unj = Vi + Y Vnjm(Vim-1) + &nj, (7)
m=1
where:
Vij = the deterministic linear portion of the utility associated with the characteristics
of the individual n and the attributes of the alternatives j;
Unjm = the m™ non-linear parametric residual terms of the utility derived from Rjm;

Enj = the unknown random error terms of the utility assumed to be #id extreme value
distributed with a zero mean.

We denote V,, = (Vi,1,..., V4 ) as the vector of j utility terms for an individual n. For example,
the residual components of the utility could look like the following:

M
Z Unjm(Vim—1) = Vnj1(Vno) + Vnj2(Vana) -+ Vnjsr (V1)

m=1

=—1In (1 + exp(w;1 - Vn,o)) —1In (1 + exp(wj2 - Vn71)> e (8)

—1In (1 + exp(wj s - VmM—l))a



where W, = (Wjim, - - -, Wjk,m) is a vector of k parameter terms where j, k € C, and

Vn,O == (ana ey VTL])’
Vn,m = Vn,m—l + an,m(vn,m—l) V 1<m<M

4. Red/Blue bus example

We show an example of how a simple nesting structure can be obtained using the estimated w
matrix. Let us consider the classic red/blue bus problem. The choice scenarios are summarized in
Assuming that we have 2 initial choices: bus (Vi,s) and car (Ve ), each have identical
observed utility: Ve = 1, Vpus = 1, under RUM theory, the probability of choosing either bus or
car is P = Pyys = 0.5 (Scenario 1).

Suppose that now we have a red bus (V,..q) and blue bus (Vi) option in place of Vi,s, V =
(Vears Vieds Viiue), given a set of simulated utilities where all 3 options have identical utilities: Vg =
1, Viea = 1, Viyue = 1. The outcome of rational behaviour choice probabilities assuming ITA should
be P., = 0.5, Preg = 0.25, and Py, = 0.25. However, the actual probabilities when estimated
by a MNL model would produce P, = 0.33, Preq = 0.33, and Py, = 0.33 which violates ITA
conditions (Scenario 2).

Under the ResLogit model, the correlation between the red and blue bus is corrected by a
residual function v, with parameter matrix w. Our model would be able to capture the endogeneity
between the red/blue bus choice options (Scenario 3).

Table 1: Tllustration of red/blue bus choice scenarios showing the effect of residual correction factors of a 1-layer
model.

Choice V; v(Vi,...,Vj) eVitv (Vi Vs) Prob.
Scenario 1

car 1 0 2.718 0.5
bus 1 0 2.718 0.5
Scenario 2

car 1 0 2.718 0.33
red bus 1 0 2.718 0.33
blue bus 1 0 2.718 0.33
Scenario 3

car 1 -0.127 2.394 0.468
red bus 1 -0.693 1.359 0.265
blue bus 1 -0.693 1.359 0.265

Using a 1-layer ResLogit model and a residual function defined by v = —In(1 4 exp(w - V)) as
an example, we create a synthetic choice simulation with the three alternatives C = {car, red, blue}.
From our simulated example, we assume an estimated model with the following w residual matrix



from a zero matrix initialization wi,:

Vear Vred Vblue Vear Vred Vblue
‘/car 0 0 0 ‘/car 0 —1 —1
Winit = Vied 0 0 0 — W final = Vied —1 0 1 )
%lue 0 0 0 V;)lue -1 1 0

where wip;¢ are the initial model parameters before estimation and w e are the estimated
model parameters. In this example, we assume that the scales of the utilities are all equal, i.e.
the diagonal elements of wgiqy = 0. A value of wjr = 1 signifies that increasing the utility of an

alternative j would cause a similar increase in alternative k. With a value of w;, = —1, increasing
the utility of an alternative j would cause a change in utility value in the opposite direction for an
alternative k. Given a utility vector V = [1 1 1]T, the residual is:
- T
w1l w12 w13 Vear
v..;=—In (1 +exp (w21 waoz w23| + | Viea >7 (10)
(w31 w32 w33 Vilue
0 -1 -1 11’
:—ln<1+exp 10 1|-]1 ) (11)
-1 1 0 1
—0.127
= |—0.693 (12)
—0.693
P(car, red,blue) = [0.468 0.265 0.265] (13)

The residual matrix wfinq indicates that the red/blue bus alternatives are correlated with a
positive value wyeqpue > 0: Increasing the utility of the red bus will cause a similar increase in
utility for the blue bus. If w;, = 0, then alternative j and %k are assumed to be independent (ITA
condition holds).

5. Estimation process

The size of the residual matrix varies according to the number of alternatives, such that each
element in the matrix corresponds to how the alternative specific utilities are influenced by other
alternatives. The matrix diagonal elements represent the variances of each alternative, e.g. co-
variance with itself. If this residual matrix is an identity matrix, that means that there is zero
correlation between alternatives (ITA holds), and the model collapses into a standard MNL model.

5.1. Depth of the neural network

Increasing the depth of the neural network increases the number of recursive addition of residual
terms in the utility function. This mathematical formulation allows the model to extract the
underlying prior information to reflect individual taste heterogeneities, with the residual layers
representing the nature of the complex behavioural distribution of decision makers that are not
captured by the observed explanatory variables. The exact number of layers used does not become
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a constraint in the model, and the residuals allow learning of DNNs with a low potential of overfitting
or degradation in model accuracy. This is the primary advantage of having a residual model over
a direct application of a feedforward neural network such as the MLP model. The key implication
of this on choice models is that we can operationalize the unobserved heterogeneity in the GEV
model as a product of the neural network learning process, while retaining the same econometric
parameters in the structural equation.

5.2. Objective function

The expression for the probability that an individual n selects a particular choice given [
explanatory variables x1, ..., z; in a ResLogit is:

Vit m=1 Vnjm(w)

P,(j|C; B,w) = , 14
) = (19)
where
I
Vnj = Zﬂjixni (15)
i=1

The set of optimal parameters B,GJ are estimated by maximizing the log-likelihood through a
batched stochastic gradient descent algorithm:

1 T J
Lo=~D. > WP A w) (16)

t=1 i=1

We then perform the updates to the model parameters with a fixed learning rate 7. In each batch
training step t, we compute the likelihood £; and shift the parameter estimate opposite to the
gradient direction:

Brs1 < B —n (VL) (17)
Wig1 — wi — 1 (VuLly) (18)

6. Case studies

We present two different choice experiments on the ResLogit model. The first experiment ana-
lyzes the Value of Time (VoT) of a Stated Preference (SP) travel survey. The second experiment
investigates the effects of model depth on a large scale Revealed Preference (RP) dataset to inves-
tigate the properties of the residuals, model degradation, and mode choice prediction performance.

6.1. Case study 1: Value of travel time analysis on an SP survey

We compared our ResLogit modelling method with a random parameters Mixed Logit model
on the value of travel time savings. The dataset used for this analysis is from the 2016 Train
Hotel SP based travel demand analysis study for a new intercity travel mode, Train Hotel (“TrH”),
which provides an overnight sleeper and dining service between business and tourist destinations
(Wong and Farooq, 2018]). Users of TrH are also expected to save on the hotel cost through this
service. This study covers metropolitan regions in the province of Quebec and Northeastern U.S.A.
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Table 2: Train Hotel survey characteristics

mode share ~ mean travel cost ($)  mean travel time (h)
preference

mode
car 0.239 115 7.26
car rental 0.021 179 6.29
bus 0.057 84 11.72
plane 0.056 178 4.04
train 0.060 48 6.12
TrH 0.567 164 13.78

— Montreal, Sherbrooke, New York City, Boston, Maine, etc. The mode share preference and the
statistical characteristics of the two explanatory variables used are presented in [Table 2

This survey revealed that more than half of the respondents (56.7%) prefer the proposed TrH
alternative despite having the longest average travel time (13.78 hours). This indicates the possibil-
ity of obtaining negative VoT from a positive travel time . In a simple choice model experiment,
we consider travel cost and time in the deterministic component of the utilities, as shown in the
Logit utility equation:

Unmode = BcostXmode_cost + ﬁTTXmode_TT + Emode (19)

For the Mixed Logit model with a Normal distribution N over the 3 parameters:

Umode = (Bcost + UcostN(07 1))Xmode_cost + (BTT + UTTN(07 1))Xmode_TT + 5:10[16 (20)

and for the ResLogit model:

Unmode = BcostXmode_cost + BTTXmode_TT - ln(l + eXp(wj,l : ‘/E))) + g;knode (21)

where mode is one of car, car rental, bus, plane, train or TrH. We use a 1-layer ResLogit model
for our model training and compared the estimated [ and alternative specific constants against a
Mixed Logit and Logit model.

The three SP choice models were coded and estimated in Python using PythonBIOGEME li-
brary (Bierlaire, |2016)). presents the model estimation and VoT results for the different
mode alternatives. It can be seen that for the ResLogit model, the sign of Spp is positive (0.05),
indicating that the respondents are willing to choose the mode of travel with greater travel time that
also provides greater flexibility and comfort. The model performance indicates that the ResLogit
model performs the best in terms of log-likelihood. The residual term in (21)) accounts for the
unobserved perceived value of the travel modes and the individual’s attitude towards the new hy-
pothetical TrH option. Another effect of the residual term is that the alternative specific parameters
(ASC) converge to zero, as shown by the insignificant values.

verifies our hypothesis of unobserved value-added benefits from the TrH option. By
removing the proposed alternative, the ResLogit model becomes similar to the Mixed Logit model
in terms of 8 values. Likewise the VOT sign changes to positive (20.59) capturing the consistency
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Table 3:

Estimated model parameters and VoT calculation. Std. error in parenthesis.

Logit Mixed Logit ResLogit
Parameters
ASCear -2.53 (0.25) -2.58 (0.26) 2.19 (2.84)
ASCear rental -1.7 (0.12) -1.71 (0.12) 2.48 (4.61)
ASChys -3.46 (0.23) -3.6 (0.25) 6.18 (25.1)
ASCplane -2.36 (0.25) -2.42 (0.27) -0.62 (1.32)
ASCirain -2.27 (0.21) -2.38 (0.22) 1.3 (0.77)
ASCry ref. ref. ref.
Beost -0.58 (0.11) -0.64 (0.12) -0.48 (0.13)
Brr -0.072 (0.02) -0.064 (0.024) 0.05 (0.01)
O cost 0.71 (022)
orT 0.2 (0.06)
VoT (CADS$ /hour) 12.41 9.98 -9.75
log-likelihood -2060.1 -2058.3 -2036.6
sample size 1788 1788 1788
p° 0.29 0.295 0.302

Table 4: Estimated model parameters and VoT calculation without TrH mode

. Std. error in parenthesis.

Logit Mixed Logit ResLogit
Parameters
ASCear -0.71 (0.37) -0.67 (0.41) 0.18 (0.37)
ASCear rental -0.92 (0.19) -0.89 (0.21) 3.81 (10.7)
ASChys -1.26 (0.30) -1.27 (0.31) -1.26 (0.37)
ASCplane -0.91 (0.42) -0.93 (0.53) -1.01 (0.65)
ASCirain ref. ref. ref.
Beost -2.62 (1.56) -0.40 (0.22) -0.10 (0.06)
Brr -0.134 (0.04) -0.15 (0.06) -0.02 (0.01)
Ocost 0.64 (0.34)
orT 0.09 (0.10)
VoT (CADS$ /hour) 5.11 38.20 20.59
log-likelihood -884.1 -843.3 -821.0
ample size 775 775 775
p° 0.214 0.213 0.216

of the existing modes (car, car rental, bus, train and plane) without the TrH alternative.

Although negative VoT obtained from the ResLogit model (-9.75) clearly contradicts rational
economic behaviour (where travel time is a factor of disutility), we attribute the exception in our
case study to the fact that it includes value-added amenities onboard the overnight train which are
not captured by travel time parameters, allowing for positive 7. The evidence in the literature
suggests that travel time offers a source of positive utility if the utility of travel includes activity

13



at the destination, conducted while travelling or enjoyment of the act of travel itself (Redmond
and Mokhtarian, 2001). Our experiment has shown that an individual might choose an alternative
with a higher travel time, taking into account other unobserved non-monetary benefits, indicated
by the positive time beta estimated in the ResLogit model. By contrast, the Logit and Mixed
Logit model estimated a negative time beta, which is a rational economic outcome, but does not
reflect the survey data and mode specific features accurately. The design of the Train Hotel SP
travel study allows for the possibility of positive Spr, travellers are willing to pay for a longer travel
time without taking into account other benefits of travel. From [Table 3| the ResLogit produced a
negative VoT, which is consistent with our choice context and the travel survey data results.

6.2. Case study 2: Mode choice prediction on an RP survey

We developed our second experiment on the 2016 Mtl Trajet RP travel survey dataset collected
from the user’s smartphone data on a mobile application (Yazdizadeh et al.l 2017)). shows
a list of explanatory variables and the choice set used for this mode choice prediction analysis. The
respondents’ travel diary includes mode choice, activity choice, trip attributes and GPS trajectories.
The travel survey was conducted over 4 months, from September to December 2016. In total, there
are 60,365 unique trips made during the period. To control for overfitting in our ResLogit mode
choice prediction model, we divide the dataset into two subsets using a 70:30 training/validation
Spht (Ntraining = 42; 2567 Nvalidation = 187 109)

The model estimation algorithm has been coded in Python using the Theano deep learning
library and estimated on the large scale RP dataset (Theano Development Team, 2016]). The

Table 5: Descriptive statistics of the 2016 Mtl Trajet RP travel survey dataset.

variable description type mean std dev
weekend trip on weekend dummy variable 0.205 0.001
hour 8 10 trip between 8am to 10am dummy variable 0.163 0.0015
hour 11 13 trip between 1lam to 1pm dummy variable 0.147 0.001
hour 14 16 trip between 2pm to 4pm dummy variable 0.209 0.002
hour 17 19 trip between 5pm to 7pm dummy variable 0.249 0.002
hour 20 22 trip between 8pm to 10pm dummy variable 0.095 0.001
hour 23 1 trip between 11pm to lam dummy variable 0.03 6e-4
hour 2 4 trip between 2am to 4am dummy variable 0.006 3e-4
hour 5 7 trip between 5am to 7am dummy variable 0.101 0.005
num_coord number of trajectory links continuous 109.8 131.23
trip _ dist trip distance (km) continuous 8.366 10.42
trip_ duration trip duration (min) continuous 24.04 20.97
trip__aspeed trip average speed (km/h) continuous 22.503 18.815
activity trip activity type, 1: education, categorical

2: health, 3: leisure, 4: meal, 5:

errands, 6: shopping 7: home, 8:

work, 9: meeting
choice 1:Auto, 2:Bike, 3:Public Transit, 4:Walk, 5:Auto+Transit,

6:Other mode, 7:Other combination
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advantage of using Theano library is that it is able to implement the calculations on a GPU at
an abstract level, reducing the computational times for our ResLogit model. The experiments are
iterated by varying the depth of the ResLogit model: M = {1,2,4,8,16}. The goal of this process
is to understand the effects of increasing the size of the residual layers on the choice model. This
experiment considers three specific criteria:

1. The effects of the number of residual layers on the model 5 parameters.

2. Model prediction accuracy and likelihood test results on the validation set.

3. A performance comparison against a conventional MLP-DNN architecture with an identical
number of layers and parameters.

We established our benchmark using a standard MNL model with all the parameters shown in
[Table 5] For the ResLogit model, we initialized the residual parameters using an identity matrix.
We used a SGD learning algorithm with a batch size of 32 (i.e. gradient is computed over a sample
of 32 observations from the training dataset) to train our models.

shows the validation log-likelihood estimates and a comparison between the MLP-DNN
and ResLogit models of different depth sizes. In the Reslogit model right), we observed
that as we increase the depth of the model, the log-likelihood remains consistent and higher than the
benchmark MNL. By contrast, the MLP-DNN validation log-likelihood estimates reveal that it does
not perform well as a ResLogit model of the same number of layers and hidden units, and it overfits
the training data as we increase the number of layers in the model. An indication of overfitting
in the MLP-DNN model is shown by the “spikes” in the training curve, which suggests that the
MLP-DNN architecture is unable to generalize to new samples. The ResLogit model does not
show such behaviour in the validation and log-likelihood results. We note that for our experiment
consistency, we did not implement any other forms of regularization, e.g. L1, Lo regularizer or
Dropout techniques. In theory, as we increase the complexity and non-linearity in the model, it
would fit the data better. However, the MLP model suffers from the problem of overfitting as we
increase the number of layers, an overfit effect is observed with depth M > 4, where the validation
log-likelihood no longer improves and performed worse than the MNL benchmark. In the ResLogit
model, we do not see this detrimental effect, even at a depth of 16 layers. This surprising fact
highlights how a simple comparison between a MNL and machine learning algorithm may sometimes
be misleading without first understanding the structure of the model.

In terms of behavioural interpretation, the ResLogit model is able to represent the underlying
choice heterogeneity far better due to the inherent structure of the residual layers. The residual
layers add another level of complexity, without interfering with the explanatory variables and the
model 8 parameters. In other words, the neural network component in the ResLogit model extracts
the variations of the  parameters through a data-driven learning process, rather than pre-defining
a fixed distribution over the 8 parameters. The model 5 parameters estimated by the ResLogit
model tend to be closer to the ‘true’ mean values while the taste variance is explained by the w
parameters.

shows the model performances across the training, validation and predictive accuracy on
the validation set. The ResLogit model averaged a predictive accuracy of 76.09% + 0.609% while
the MLP-DNN model fared worse with an average of 70.95% =+ 1.62% compared to the benchmark
MNL model (72.01%).

shows selected § parameter estimates from the benchmark MNL and the 16-layer
ResLogit model. The results revealed that the parameters estimated by the ResLogit model are
relatively different from the MNL model, indicating that the taste variation between mode choice
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Figure 2: Training and validation results.

Table 6: Prediction accuracy, training and validation log-likelihood results.

MNL MLP-DNN ResLogit

train LL.  valid LL  acc. train LL  valid LL  acc. train LL  valid LL acc.
-38790 -16145 0.720 - - - -
- - - -37208 -15583 0.726 -40217 -13675 0.752
- - - -37820 -15894 0.719 -32342 -13583 0.762
- - - -38496 -16736 0.698 -30592 -12870 0.773
- - - -42240 -16667 0.695 -31887 -13121 0.767

validation set sample size: 18,109

5 0 s 1w o S

and the underlying unobserved heterogeneity may have influenced the choice behaviour outcome.
The residual-corrected S values in the ResLogit model are shown to have a much smaller standard
error. This demonstrates that the heterogeneity confounded in the 8 parameters is explained away
by the residual layers. In terms of parameter significance, the ResLogit parameters have a nominal
p-value < 0.05. We note that our results are based on the fixed assumptions of independent and
identically distributed (IID) observations and we used the training set to calculate the standard
errors at a fixed number of iterations (250). shows the first 4 layers of residual weight
matrices from the ResLogit model. The weight parameters do not have a significant meaning to
the other 8 parameters. However, these parameters influence the variance of the error terms. The
higher level layers do not have a significant meaning or interpretation, but are useful in capturing
the higher-order variances (variance of variance components).

7. Conclusion

We present a novel hybrid choice model that integrates a residual neural network architecture
into the RUM model structure. A ResLogit model is designed based on the understanding of
residual connections in DNNs that significantly improves learning, out-of-sample-prediction and
obtain unbiased model parameter estimates. Two key objectives are accomplished that resolve the
shortcomings in machine learning for discrete choice modelling — overfitting due to systematic error
of biased model estimates in DNN and lack of flexible economic interpretability. We present a new
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approach using neural networks for discrete choice analysis in the form of a residual learning model,
namely a ResLogit model. Our proposed solution is able to maintain economic interpretability
without the loss in prediction performance.

The direct implications of our approach in research as well as practice are demonstrated by a
classic red/blue bus example in , analysis of VoT in , and choice prediction
performance in Unlike earlier studies that only examined the performance of machine
learning algorithms and their comparisons with discrete choice models in out-of-sample predictions,
this paper studies the impact of the model structure, which utilizes deep neural networks consistent
with GEV models.

One of the main criticisms of DNNs such as MLPs is that it cannot be easily adapted for econo-
metric analysis due to its ‘black-box’ nature On the other hand, machine learning and DNNs have
emerged as a powerful modelling strategy due to its theoretical ability to provide an accurate out-of-
sample prediction. Understanding how we can leverage these machine learning strategies effectively
is one of the primary challenges in choice modelling. The key contributing feature of our proposed
ResLogit model is the non-degenerate depth-invariant structure — this model structure does not ex-
hibit the same performance degradation seen in MLPs with increasing depth. Therefore, it allows
learning of very complex behavioural models from data without significant loss in performance over
simpler non-linear discrete choice models. Also, our method leverages on large datasets to learn
a richer set of higher-order substitution patterns rather than the standard way of pre-determined
error distributions over the model parameters. Finally, our method can be formulated as a GEV
random utility maximization model.

Two case studies are conducted. The first study establishes the use of our method to under-
stand how a neural network structure like our ResLogit model can have significant VoT estimation
differences and policy implications. The VoT estimation can be biased if the model specification is
poor or not well formulated. Our results showed that even with a Mixed Logit model, the VoT for
our case study example could not recover a suitable estimate based on an SP choice survey.

The second case study examines the performance comparison with a MNL-DNN model with
an exact number of layers and parameters. The MNL-DNN model fails to optimize parameters on
out-of-sample data and our experiment has shown it performs worse than a simple MNL model. For
the ResLogit model, it performs better than both the benchmark MNL and the MNL-DNN model.
This result shows that a residual learning approach serves a meaningful extension to discrete choice
models and offers richer behavioural insights.

The emerging research using Big Data and machine learning has made great strides in choice
modelling, but current methods of analysis and modelling have very limited capabilities and flexi-
bility in estimating complex and noisy data. Our proposed ResLogit model offers a practical and
logical solution for how choice modelling researchers can systematically implement machine learning
algorithms into existing discrete choice models without sacrificing model interpretability. Future
research will establish additional models and extensions to our proposed method.
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Table 7: Comparison of a subset of parameter estimates between MNL and ResLogit model.

MNL ResLogit (16-layer)

Parameters (5;) Value std. err. Value std. err. Value diff.
B weekend auto 0.02 0.007 0.225 0.006 0.205
B weekend bike -1.055 2.776 -0.069 0.044 0.986
B weekend auto-+transit -0.685 0.309 0.189 0.017 0.874
B hour 8 10 walk -0.957 0.039 -3.477 0.038 -2.52
B hour 8 10_auto+transit -2.493 0.328 1.835 0.028 4.328
B hour 11 13 bike -1.061 1.234 0.132 0.049 1.193
B hour 11 13 auto+transit -3.031 0.918 1.562 0.031 4.593
B hour 17 19 auto 0.029 0.002 -0.836 0.004 -0.865
B hour 20 22 bike -1.477 1.462 0.201 0.059 1.678
B trip_dist _auto 0.409 0.022 -0.275 0.001 -0.684
B trip_dist transit 0.258 0.039 0.113 0.004 -0.145
B trip_dist  walk -2.008 0.204 -0.536 0.01 1.472
B trip_time auto -0.653 0.027 0.24 0.001 0.893
B trip_time transit 0.84 0.008 1.121 0.002 0.281
B trip_time walk 0.88 0.272 0.057 0.005 -0.823
B trip_speed auto 0.919 0.085 -0.109 0.001 -1.028
B trip_speed walk -1.386 0.042 -0.878 0.006 0.508
B activity _edu_auto -1.303 2.458 -0.089 0.011 1.214
B activity edu walk -0.121 0.004 -5.645 0.063 -5.524
B activity _home auto -0.069 0.246 -0.015 0.004 0.054
B activity _home bike -1.108 0.075 1.357 0.03 2.465
B activity home transit 0.085 0.003 1.455 0.012 1.37
B activity _work auto -0.016 0.012 -0.077 0.004 -0.061
B activity work transit -0.039 0.002 1.386 0.012 1.425
B activity work auto+transit -1.877 0.745 -0.353 0.023 1.524
B activity meeting bike -2.852 2417 0.684 0.115 3.536
log-likelihood -16145 -13121

sample size 42,255 42,255

# of estimated parameters 138 922

validation accuracy 72.01% 76.73%
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Figure 3: First 4 layers of weight matrices from the ResLogit model.

19

-3.35

-3.13

1.32

-6.34

-0.57




References

Alwosheel, A., van Cranenburgh, S., Chorus, C.G., 2018. Is your dataset big enough? sample size requirements when
using artificial neural networks for discrete choice analysis. Journal of choice modelling 28, 167—-182.

Ben-Akiva, M., de Palma, A., McFadden, D., Abou-Zeid, M., Chiappori, P.A., de Lapparent, M., Durlauf, S.N.,
Fosgerau, M., Fukuda, D., Hess, S., Manski, C., Pakes, A., Picard, N., Walker, J., 2012. Process and context in
choice models. Marketing Letters 23, 439-456.

Ben-Akiva, M.E., Lerman, S.R., 1985. Discrete choice analysis: theory and application to travel demand. MIT press,
Cambridge MA.

Bengio, Y., Lee, D.H., Bornschein, J., Mesnard, T., Lin, Z., 2015. Towards biologically plausible deep learning. arXiv
preprint arXiv:1502.04156 .

Bierlaire, M., 2016. PythonBiogeme: a short introduction. Technical Report TRANSP-OR 160706. EPFL.

Borysov, S.S., Rich, J., Pereira, F.C., 2019. How to generate micro-agents? a deep generative modeling approach to
population synthesis. Transportation Research Part C: Emerging Technologies 106, 73-97.

Cantarella, G.E., de Luca, S., 2005. Multilayer feedforward networks for transportation mode choice analysis: An
analysis and a comparison with random utility models. Transportation Research Part C: Emerging Technologies
13, 121-155.

Dougherty, M., 1995. A review of neural networks applied to transport. Transportation Research Part C: Emerging
Technologies 3, 247-260.

Friston, K.J., Stephan, K.E., 2007. Free-energy and the brain. Synthese 159, 417-458.

Glorot, X., Bordes, A., Bengio, Y., 2011. Deep sparse rectifier neural networks, in: Proceedings of the 14th Interna-
tional Conference on Artificial Intelligence and Statistics, pp. 315-323.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition, in: Proceedings of the 29th
IEEE conference on computer vision and pattern recognition, pp. 770-778.

Hensher, D.A., Ton, T.T., 2000. A comparison of the predictive potential of artificial neural networks and nested
logit models for commuter mode choice. Transportation Research Part E: Logistics and Transportation Review
36, 155-172.

Hillel, T., Bierlaire, M., Jin, Y., 2019. A systematic review of machine learning methodologies for modelling passenger
mode choice. Technical Report TRANSP-OR 191025. EPFL.

Karlaftis, M.G., Vlahogianni, E.I., 2011. Statistical methods versus neural networks in transportation research:
Differences, similarities and some insights. Transportation Research Part C: Emerging Technologies 19, 387-399.

Lee, D., Derrible, S., Pereira, F.C., 2018. Comparison of four types of artificial neural network and a multinomial
logit model for travel mode choice modeling. Transportation Research Record 2672, 101-112.

Louviere, J., Train, K., Ben-Akiva, M., Bhat, C., Brownstone, D., Cameron, T.A., Carson, R.T., Deshazo, J., Fiebig,
D., Greene, W, et al., 2005. Recent progress on endogeneity in choice modeling. Marketing Letters 16, 255-265.

Matgjka, F., McKay, A., 2015. Rational inattention to discrete choices: A new foundation for the multinomial logit
model. American Economic Review 105, 272-298.

McFaddden, D., 1978. Modeling the choice of residential location. Spatial Interaction Theory and Planning Models
, 75-96.

McFadden, D., Train, K., 2000. Mixed MNL models for discrete response. Journal of applied Econometrics 15,
447-470.

Redmond, L.S., Mokhtarian, P.L., 2001. The positive utility of the commute: modeling ideal commute time and
relative desired commute amount. Transportation 28, 179-205.

Sifringer, B., Lurkin, V., Alahi, A., 2018. Enhancing discrete choice models with neural networks. 7th Symposium
of the European Association for Research in Transportation conference, .

Sims, C.A., 2003. Implications of rational inattention. Journal of monetary FEconomics 50, 665-690.

Srivastava, R.K., Greff, K., Schmidhuber, J., 2015. Training very deep networks, in: Advances in neural information
processing systems. volume 28, pp. 2377-2385.

Theano Development Team, 2016. Theano: A Python framework for fast computation of mathematical expressions.
arXiv e-prints abs/1605.02688.

Thorhauge, M., Cherchi, E., Walker, J.L., Rich, J.,; 2019. The role of intention as mediator between latent effects and
behavior: application of a hybrid choice model to study departure time choices. Transportation 46, 1421-1445.
Vythoulkas, P.C., Koutsopoulos, H.N., 2003. Modeling discrete choice behavior using concepts from fuzzy set theory,

approximate reasoning and neural networks. Transportation Research Part C: Emerging Technologies 11, 51-73.

Wang, F., Ross, C.L., 2018. Machine learning travel mode choices: Comparing the performance of an extreme

gradient boosting model with a multinomial logit model. Transportation Research Record 2672, 35-45.

20



Wang, S., Zhao, J., 2019. Multitask learning deep neural network to combine revealed and stated preference data.
arXiv preprint arXiv:1901.00227 .

Witten, I.H., Frank, E., Hall, M.A., Pal, C.J., 2016. Data Mining: Practical machine learning tools and techniques.
4 ed., Morgan Kaufmann, Cambridge, MA.

Wong, M., Farooq, B., 2018. Modelling latent travel behaviour characteristics with generative machine learning, in:
2018 21st International Conference on Intelligent Transportation Systems (ITSC), IEEE. pp. 749-754.

Wong, M., Farooq, B., 2020. A bi-partite generative model framework for analyzing and simulating large scale
multiple discrete-continuous travel behaviour data. Transportation Research Part C: Emerging Technologies 110,
247-268.

Wong, M., Farooq, B., Bilodeau, G.A., 2018. Discriminative conditional restricted boltzmann machine for discrete
choice and latent variable modelling. Journal of Choice Modelling 29, 152-168.

Yazdizadeh, A., Farooq, B., Patterson, Z., Rezaei, A., 2017. A generic form for capturing unobserved heterogeneity

in discrete choice modeling: Application to neighborhood location choice, in: Transportation Research Board 96th
Annual Meeting, pp. 17-05144.

21



	1 Introduction
	2 Background
	2.1 Representation of heterogeneity in discrete choice modelling
	2.2 Representation of heterogeneity in DNNs
	2.3 General formulation of a neural network architecture

	3 Specification of the proposed ResLogit model
	3.1 Residual function
	3.2 Utility specification

	4 Red/Blue bus example
	5 Estimation process
	5.1 Depth of the neural network
	5.2 Objective function

	6 Case studies
	6.1 Case study 1: Value of travel time analysis on an SP survey
	6.2 Case study 2: Mode choice prediction on an RP survey

	7 Conclusion

