
Two-stage column generation and
applications

Matteo Salani ∗ Ilaria Vacca ∗

October 2, 2008

Report TRANSP-OR 081002
Transport and Mobility Laboratory

Ecole Polytechnique Fédérale de Lausanne
transp-or.epfl.ch

∗Transp-OR, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzer-
land, { matteo.salani , ilaria.vacca } @epfl.ch

1



Abstract

Column generation has been intensively used in the last decades
to compute good quality lower bounds for combinatorial problems re-
formulated through Dantzig-Wolfe decomposition. In this paper we
propose a novel framework to cope with problems in which the struc-
ture of the original formulation, namely the presence of a combinato-
rial number of decision variables, does not allow for straightforward
reformulation. The basic idea is to start from a meaningful subset of
original variables, apply the DW reformulation to the subset, solve the
reformulation with column generation and perform the explicit pric-
ing on original variables retracing back the reformulation and using
complementary-slackness conditions. The Discrete Split Delivery Ve-
hicle Routing Problem with Time Windows (DSDVRPTW) is used as
an illustration for the method, which provides a new exact approach
to the problem.
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1 Introduction

The resolution of large scale optimization problems arising in real world
applications improved in the last decades thanks to the advances in combi-
natorial optimization theory. Among others, reformulation techniques cou-
pled with Column Generation permit to obtain good quality dual bounds
through decomposition (Nemhauser and Wolsey, 1988) and (Desaulniers
et al., 2005).

Unfortunately, for a considerable number of optimization problems,
their structure does not allow for straightforward reformulation. In par-
ticular, the presence in the original formulation of a large, possibly combi-
natorial, number of decision variables renders the pricing problem of the as-
sociated column generation scheme unmanageable. Applications with such
characteristics are found in several domains: container terminals (Giallombardo
et al., 2008), routing problems (Nakao and Nagamochi, 2007), and schedul-
ing (Xu and Chiu, 2001).

In this paper we present a novel framework called Two-stage column
generation which can be used for such problems. The basic idea of the
framework is simple: we consider a subset of original variables of the so
called compact formulation, we solve the so called extensive formulation
via standard column generation and we generate profitable original vari-
ables computing their reduced cost, by complementary-slackness condi-
tions, in the same spirit of basic column generation. At the end of this
procedure we possibly consider a smaller subset of original variables and
identify a sub-set of sub-optimal ones. Since the method addresses linear
programs only, i.e. provides dual bounds, we embed it in a branch-and-
price scheme as in Barnhart et al. (1998).

The main issue of this approach, addressed in the reminder of the pa-
per, is the computation of the reduced cost of the compact formulation
variables, given an optimal solution of the linear relaxation of the exten-
sive formulation. Some attempts in this direction have been proposed with
another aim, namely the variable elimination based on reduced cost: for
linear integer programs, non-negative variables with a reduced cost greater
than the duality gap cannot be positive in any optimal solution, i.e. can
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be fixed to 0 or eliminated.
Walker (1969) illustrates a method which can be applied if the pricing

problem can be solved as a pure linear program. As observed by Irnich
et al. (2007), in the case of shortest path subproblems, this results in SPP
on acyclic networks. Poggi de Aragão and Uchoa (2003) propose to keep
the so-called coupling constraints in the master problem formulation; how-
ever, Irnich et al. (2007) observe that there exists a feasible solution for
such a master problem where the reduced costs associated to the coupling
constraints are all zero, and the authors raise theoretical and algorithmic
reasons for not using such approach. Finally, Irnich et al. (2007) propose to
estimate the reduced cost of a variable by the smallest reduced cost of a col-
umn in which the variable is taken with positive value; this method cannot
be directly applied to our two-stage framework since a correct estimation
would imply the minimization over the entire set of original variables.

A secondary contribution of our work is a general method to compute
reduced costs for original formulation variables when the Dantzig-Wolfe
reformulation is applied.

The paper is organized as follows: in section 2, we define the two-stage
column generation method. In section 3, we illustrate its application on
the Discrete Split Delivery Vehicle Routing Problem with Time Windows
and we comment on possible extensions in concluding section 4.

2 General framework

2.1 Dantzig-Wolfe reformulation for integer programs

Consider the following integer linear program, the original or compact
formulation (CF):

zIP = min cTx (1)

s.t. Ax ≥ b, (2)

Dx ≥ d, (3)

x ∈ Zn
+. (4)
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We assume that conditions to use a standard column generation ap-
proach hold, namely the linear relaxation of the Dantzig-Wolfe reformu-
lation of (1)–(4) provides better bounds than the linear relaxation of the
original problem, because of the special structure of constraints {x ∈ Zn

+ :

Dx ≥ d} which can be easily convexified.
Furthermore, we remark that our framework applies to problems which

present a combinatorial number of compact integer variables x. This pre-
vents us to use the standard column generation approach, as the complexity
of the resulting subproblem is unmanageable, as we’ll see later on.

Let P = conv{x ∈ Zn
+ : Dx ≥ d} 6= ∅ be a bounded polyhedron. We can

represent each x ∈ P as a convex combination of extreme points {pq}{q∈Q}

of P:
x =

∑

q∈Q

pqλq,
∑

q∈Q

λq = 1, λ ∈ R|Q|
+ . (5)

The equivalent extensive formulation (EF) of (1)–(4) is:

zIP = min
∑

q∈Q

cqλq (6)

s.t.
∑

q∈Q

Aqλq ≥ b, (7)

∑

q∈Q

λq = 1, (8)

λ ≥ 0, (9)

x =
∑

q∈Q

pqλq, (10)

x ∈ Zn
+. (11)

where cq = cTpq and Aq = Apq ∀q ∈ Q.
If we relax the integrality of x in (11), constraints (10) also become

redundant. The resulting master problem (MP) is:
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zMP = min
∑

q∈Q

cqλq (12)

s.t.
∑

q∈Q

Aqλq ≥ b, (13)

∑

q∈Q

λq = 1, (14)

λ ≥ 0. (15)

In column generation we repeatedly solve a restricted master problem
on a subset of variables λ, which otherwise would be an exponential number.
At each iteration we add profitable variables not yet in the formulation, if
any, by solving the pricing subproblem :

min
q∈Q

{c̃q := cq − πAq − π0} (16)

where π ≥ 0 is the dual vector associated to constraints (13), π0 ∈ R is
the dual variable associated to the convexity constraint (14) and c̃q is the
reduced cost of variable λq.

The resulting pricing is an integer linear program, which eventually ex-
hibits the same computational complexity of the original compact problem.
Its complexity is affected by (i) the structure of constraints {x ∈ Zn

+ : Dx ≥
d}, i.e. the nature of extreme points of Q, (ii) the number of decision
variables in the compact formulation.

According to our assumptions, variables of the compact formulation are
combinatorially many and this results in an unmanageable pricing, which
mainly motivates our two-stage column generation approach.

2.2 Two-stage column generation

Let X be the set of compact formulation variables, |X| = n. The basic
idea of our approach is to start with a subset X̄ ⊂ X, |X̄| = n̄ such that
(CF) is feasible and iteratively add profitable variables in X̂ := X \ X̄ using
reduced costs arguments as in the standard column generation procedure.
At each iteration, the resulting master problem is optimally solved using
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again column generation. The clear benefit of this approach is that the the
associated pricing is solved over a smaller set of variables, i.e. the dimension
of the vector pq representing an extreme point is smaller. Furthermore, not
all the variables xi ∈ X̂ will eventually need to be added.

Without loss of generality and for simplicity of notation we assume that
x = [ x̄ | x̂ ], c = [ c̄ | ĉ ], A = [ Ā | Â ] and D = [ D̄ | D̂ ].

The partial compact formulation (PCF) is defined as follows:

z̄IP = min c̄T x̄ (17)

s.t. Āx̄ ≥ b, (18)

D̄x̄ ≥ d, (19)

x̄ ∈ Zn̄
+. (20)

We remark that z̄IP ≥ zIP.
Let P̄ = conv{x̄ ∈ Zn̄

+ | D̄x̄ ≥ d} 6= ∅ be bounded. We can represent each
x̄ ∈ P̄ as a convex combination of extreme points {pq}{q∈Q̄} of P̄:

x̄ =
∑

q∈Q̄

pqλq,
∑

q∈Q̄

λq = 1, λ ∈ R|Q̄|
+ (21)

By substituting c̄q = c̄Tpq and Āq = Āpq ∀q ∈ Q̄, we can write the
equivalent partial extensive formulation (PEF), as seen before in (6)–(11);
subsequently, by relaxing the integrality constraints on x̄, we can define the
partial master problem (PMP):

z̄MP = min
∑

q∈Q̄

c̄qλq (22)

s.t.
∑

q∈Q̄

Āqλq ≥ b, (23)

∑

q∈Q̄

λq = 1, (24)

λ ≥ 0. (25)

The resulting pricing subproblem:

min
q∈Q̄

{c̃q := c̄q − πĀq − π0} (26)
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is now solvable (due to the lower size of Q̄) and column generation can be
efficiently applied.

The two-stage column generation approach can be briefly outlined as
follows:

Algorithm 1: Two-stage column generation

input set X̄

repeat
repeat

CG1: generate extensive variables λ for partial master
problem (PMP)

until optimal partial master problem (PMP) ;

CG2: generate compact variables x for partial compact
formulation (PCF)

until optimal master problem (MP) ;

On the one hand, in (CG1) standard column generation applies; in
particular, the dual optimal vector π is known at every iteration and thus
reduced costs c̃q := c̄q − πĀq − π0 of λ variables can be directly estimated.

On the other hand, in (CG2) we need to know the reduced costs of
variables xi ∈ X̂ in order identify the profitable ones to be added to the
partial compact formulation, if any.

Unfortunately, we don’t have such information available but we need to
reconstruct it from the solution of the partial master problem.

2.2.1 Reduced costs of compact variables by complementary slack-
ness

The dual problem of the linear relaxation of the original compact formula-
tion (1)–(4) is:

zLR = max bTα + dTβ (27)

s.t. αA + βD ≤ c, (28)

α, β ≥ 0. (29)
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Reduced costs of compact variables x are defined as:

c̃ = c − αA − βD (30)

where α is the dual vector associated to constraints Ax ≥ b in (2) and β

is the dual vector associated to constraints Dx ≥ d in (3).
At each completed cycle of (CG1), we optimally solve the partial master

problem and we know the optimal objective function z̄∗MP and the optimal
values of primal vector λ∗ and dual vector π∗.

We remark that, since π is the dual vector associated to covering con-
straints (13) in the master problem, it corresponds to dual vector α as-
sociated to the same covering constraints (2) in the compact formulation.
Similarly for the partial master problem and the partial compact formula-
tion.

Nevertheless, in order to estimate reduced costs (30), we still need to
know the dual vector β associated to constraints Dx ≥ d of the subproblem
in (3).

We propose a method to compute reduced costs of compact variables
x ∈ X̂ starting from the optimal solution λ∗ of a partial master problem
and using complementary slackness arguments.

Firstly, we recall that, given λ∗, we can uniquely reconstruct the equiv-
alent optimal solution x̄∗ of the linear relaxation of the partial compact
problem. This is trivial when the compact formulation is known and the
extensive formulation is obtained through Dantzig-Wolfe reformulation, but
this is also possible when only an extensive formulation is given (Villeneuve
et al., 2005).

Furthermore, the solution x = [ x̄∗ | 0 ] is feasible for the linear relaxation
of original compact problem (1)–(4), as X̄ ⊂ X. Additionally, this solution
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is trivially optimal for the following constrained problem:

min cTx (31)

s.t. Ax ≥ b, (32)

Dx ≥ d, (33)

x̄ = x̄∗, (34)

x̂ = 0, (35)

x ≥ 0. (36)

The dual of the constrained problem is given by:

max bTα + dTβ + x̄∗γ (37)

s.t. αA + βD + γI + δI ≤ c, (38)

α, β ≥ 0, (39)

γ ∈ Rn̄, (40)

δ ∈ Rn̂. (41)

Given the optimal solution x∗ = [ x̄∗ | 0 ] of the primal constrained prob-
lem, we can compute the associated dual optimal solution [ α∗, β∗, γ∗, δ∗ ]

using complementary slackness conditions:

α (Ax∗ − b) = 0 (42)

β (Dx∗ − d) = 0 (43)

γ (x̄∗ − x̄∗) = 0 (44)

δ (x̂∗ − 0) = 0 (45)

in addition to dual feasibility:

αA + βD + γI + δI ≤ c (46)

α, β ≥ 0 (47)

Conditions (44) and (45) just state that variables γ and δ are free, since
(34) and (35) are equality constraints. Furthermore, values for vector α

are fixed, since we showed that it corresponds to dual vector π obtained
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solving the (partial) master problem, i.e. α∗ = π∗. Therefore, conditions
(42)–(47) reduce to:

β (Dx∗ − d) = 0 (48)

π∗A + βD + γI + δI ≤ c (49)

β ≥ 0 (50)

The dual vector δ represents the reduced costs of not-yet-added variables
x̂ that we want to determine.

[γ, δ]T = c̃ = c − αA − βD

We observe that (48)–(50) is a system of linear equations which can be
transformed in a linear program using a trivial objective function and solved
to optimality, e.g. with the simplex method. The analysis and comparison
of different objective functions goes beyond the scope of this paper. To
illustrate the framework and for the sake of simplicity we propose to use
the following objective:

max1Tδ

Remarks If the solution of (48)–(50) is such that γ∗ ≥ 0 and δ∗ ≥ 0,
then [ α∗, β∗ ] is also a feasible solution of the dual (27)–(29) of the original
compact formulation and therefore (bTα∗+dTβ∗) is a valid lower bound to
(1)–(4). Furthermore, since all reduced costs are positive, (CG2) stops.

3 Illustration on the Discrete Split Delivery VRPTW

The Split Delivery Vehicle Routing Problem (SDVRP) is a relaxed version
of the classical capacitated VRP in which the number of visits to customer
locations is no longer constrained to be at most one, as in the original
version of the problem. Thus, in the SDVRP each customer can be visited
by more than one vehicle which serves a fraction of its demand. It has been
recently shown that this relaxation could yield to substantial savings on the
total traveled distance, up to 50% in some instances (Archetti et al., 2006b).
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The problem and some properties have been introduced by Dror and
Trudeau (1989) with a local search heuristic. Lately Dror et al. (1994)
introduce a mathematical formulation based on integer programming and
solved through a cutting plane approach. Lower bounds have been pro-
posed by Belenguer et al. (2000) and exact methods have been proposed
by Gueguen (1999), Gendreau et al. (2006) and Desaulniers (2008), who
address the problem with time windows. Finally, Archetti et al. (2006a)
propose a tabu search algorithm.

The Discrete Split Delivery problem is a variant of the SDVRP in which
the delivery request of a customer consists of several items which cannot
be split further. The problem belongs to the class of split delivery prob-
lems since each customer’s demand can be split and each customer can be
visited by more than one vehicle. This variant arises in some practical ap-
plications: Nakao and Nagamochi (2007) present the problem and propose
a dynamic programming based heuristic, Xu and Chiu (2001) present the
Field Technician Scheduling Problem and propose some heuristics without
specifically relate the problem to the DSDVRP, Ceselli et al. (2008) present
an exact approach to a real-world VRP in which customers’ orders can be
split among several vehicles in a discrete fashion. The authors propose a
three level order aggregation which end up, at the last level, in considering
any possible combination of items.

In the reminder of the section we consider the DSDVRP with time
windows (DSDVRPTW) and we assume that, for each customer, all feasible
combinations of items are provided as input (which possibly results in a
combinatorial number of combinations) and we assume that each vehicle
can serve at most one combination per customer. Although very rare, this
assumption might lead to a sub-optimal solution because of time windows
constraints; the same assumption has been adopted in Ceselli et al. (2008).

Remarkably, service time at customer’s location depends on the serviced
combination, which is a modeling feature rarely found in literature.

In the next paragraphs we provide some notation and formulations of
the DSDVRPTW and apply the two-stage column generation framework
to it.
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3.1 Compact formulation

We provide a concise and self-explanatory definition of the DSDVRPTW.
Given:
� N : set of customers

{1, ..., n};

� ai : minimum arrival time
at customer i ∈ N;

� bi : maximum departure
time from customer i ∈ N;

� G = (V, E) : complete graph
with V = {0} ∪N;

� cij, tij : cost and traveling
time of arc (i, j) ∈ E;

� K : set of vehicles of capac-
ity L;

� Ri : set of items to be deliv-
ered to customer i ∈ N;

� Ci : set of feasible combi-
nations of items r ∈ Ri for
customer i ∈ N;

� qc
i : size of combination c ∈

Ci;

� tc
i : service time of combi-
nation c ∈ Ci;

� er
ic : 1 if item r ∈ Ri is in
combination c ∈ Ci;

we define the following decision variables:

xk
ij =

{
1 if arc (i, j) ∈ E is used by vehicle k ∈ K;
0 otherwise.

yk
ic =

{
1 if customer i ∈ N is visited by vehicle k ∈ K with combination c ∈ Ci;
0 otherwise.

Tk
i = time when vehicle k ∈ K starts service at customer i ∈ N.

The service time tc
i for a combination c ∈ Ci has the following proper-

ties:

� tc
i ≤

∑

r∈Ri

er
ict

r

� tc
i ≥ tr ∀r ∈ Ri : er

ic = 1

We propose the following compact formulation for the DSDVRPTW,
which aims to minimize the total cost of the arcs traversed by a vehicle
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and relies on a polynomial number of constraints, a polynomial number of
flow (xk

ij) and time (Tk
i ) variables and a combinatorial number of selection

variables (yk
ic):

min
∑

k∈K

∑

(i,j)∈E

cijx
k
ij (51)

∑

j∈N

xk
0j = 1 ∀k ∈ K, (52)

∑

j∈V

xk
ij −

∑

j∈V

xk
ji = 0 ∀k ∈ K, ∀i ∈ V, (53)

∑

j∈V

xk
ij =

∑

c∈Ci

yk
ic ∀k ∈ K, ∀i ∈ N, (54)

∑

k∈K

∑

c∈Ci

er
icy

k
ic = 1 ∀r ∈ Ri, ∀i ∈ N, (55)

∑

c∈Ci

yk
ic ≤ 1 ∀k ∈ K, ∀i ∈ N, (56)

Tk
i +

∑

c∈Ci

tc
iy

k
ic + tij − Tk

j ≤ (1 − xk
ij)M ∀k ∈ K, ∀i ∈ N,∀j ∈ V, (57)

Tk
i − t0i ≥ (1 − xk

0i)M ∀k ∈ K, ∀i ∈ N, (58)

Tk
i ≥ ai

∑

j∈V

xk
ij ∀k ∈ K, ∀i ∈ N, (59)

Tk
i +

∑

c∈Ci

tc
iy

k
ic ≤ bi

∑

j∈V

xk
ij ∀k ∈ K, ∀i ∈ N, (60)

∑

i∈N

∑

c∈Ci

qc
iy

k
ic ≤ L ∀k ∈ K, (61)

xk
ij ∈ {0, 1} ∀k ∈ K, ∀(i, j) ∈ E, (62)

yk
ic ∈ {0, 1} ∀k ∈ K, ∀c ∈ Ci, ∀i ∈ N, (63)

Tk
i ≥ 0 ∀k ∈ K, ∀i ∈ N. (64)

where M ≥ 0 is a sufficiently large positive real number.
The objective (51) is to minimize the total traveling costs. Flow conser-

vation is ensured by constraints (52)–(54), which also link x and y variables.
Customer demands are ensured by covering constraints (55)–(56): remark-
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ably, all items must be covered but not all combinations. Finally, prece-
dence, time windows and capacity constraints are ensured by constraints
(57)–(58), (59)–(60) and (61).

We remark the additional complexity incurred by precedence constraints
(57) with respect to the same type of constraints in formulations for the
VRPTW: the service time at customers location depends on the selection
of the combination, i.e. the term

∑
c∈Ci

tc
iy

k
ic is now a decision variable.

3.1.1 Remarks on notation

The above notation can be simplified by the following remark. By defi-
nition no items can be shared among customers i.e. Ri ∩ Rj = ∅ ∀i 6= j;
consequently Ci ∩ Cj = ∅ ∀i 6= j. We can therefore define the super-sets
R =

⋃
i∈N Ri and C =

⋃
i∈N Ci, which substitute individual sets R1, ..., Rn

and C1, ..., Cn. Variables yk
ic are substituted by variables yk

c which are set to
1 if vehicle k ∈ K delivers combination c ∈ C to the customer i | c ∈ Ci and
0 otherwise. Input data qc

i , tc
i and er

ic are also appropriately redefined as qc,
tc and er

c. Constraints (53)–(60) remain defined for each customer i ∈ N,
except the demand satisfaction constraints (55), which can be rewritten as:

∑

k∈K

∑

c∈C

er
cy

k
c = 1 ∀r ∈ R. (65)

3.2 Extensive formulation and standard approach

Consider the simplified notation introduced in 3.1.1. We propose to obtain
a lower bound for DSDVRPTW through the Dantzig-Wolfe reformulation
of the compact formulation (51)–(64).

For all k ∈ K, let Pk := conv{(xk
ij, y

k
c) | (52) − (54); (56) − (64)} 6= ∅ be a

bounded polyhedron and let {pq}{q∈Qk} be the set of extreme points of Pk,
with pq = (x̄q, ȳq). Variables xk

ij and yk
c can be represented as a convex

combination of these extreme points:

xk
ij =

∑

q∈Qk

x̄
q
ijλq , yk

c =
∑

q∈Qk

ȳq
cλq ,

∑

q∈Qk

λq = 1 , λ ≥ 0. (66)
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We remark that, in this reformulation, each (x̄q, ȳq) ∈ Pk represents
a feasible tour for vehicle k delivering a unique combination c to each
customer i visited by the the tour.

By definition, vehicles k ∈ K present identical restrictions (i.e. same
capacity): consequently, polyhedra Pk ≡ P ∀k ∈ K and are described by the
same set of extreme points {pq}{q∈Q}. Note that in P the index k disappears
from variables xk

ij and yk
c , as each (x̄q, ȳq) ∈ P represents now a feasible

tour that can be covered by whatever vehicle among the |K| available.
After some standard adjustments and aggregation, the linear relaxation

of the extensive formulation for DSDVRPTW is the following:

min
∑

q∈Q

cqλq (67)

∑

q∈Q

er
qλq = 1 ∀r ∈ R, (68)

∑

q∈Q

λq ≤ |K|, (69)

λ ≥ 0. (70)

where cq =
∑

(i,j)∈E cijx̄
q
ij and er

q =
∑

c∈C er
cȳ

q
c . Indices q ∈ Q correspond

to feasible delivery tours, cq is the cost of tour q ∈ Q and er
q is 1 if item

r ∈ R is delivered in tour q ∈ Q and 0 otherwise.
Unlike common reformulations for routing problems, partitioning con-

straints (68) cannot be substituted by convexity constraints unless all pos-
sible combinations of items are provided in sets Ci, which is not assumed
in this paper.

We remark that, since the polyhedron P = conv{(x, y) | (52)−(54); (56)−
(64)} does not possess the integrality property, the relaxation (67)–(70)
obtained trough the Dantzig-Wolfe reformulation is stronger than the linear
relaxation of (51)–(64).

The master problem is usually solved by means of column generation.
However, as we will see, the traditional approach is not applicable in prac-
tice, because of the complexity of the resulting pricing subproblem.
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The dual formulation of the master problem is:

max
∑

r∈R

πr + |K|π0 (71)

∑

r∈R

eq
r πr + π0 ≤ cq ∀q ∈ Q, (72)

π ∈ R|R|, (73)

π0 ≤ 0. (74)

The reduced cost of a tour q ∈ Q is given by:

c̃q := cq −
∑

r∈R

eq
r πr − π0 (75)

The pricing subproblem is then formulated as follows:

min
q∈Q

{cq −
∑

r∈R

eq
r πr − π0} (76)

In this pricing problem, two main decisions are made:

1. which customers i ∈ N are visited by tour q ∈ Q and in which order:
this decision is implicitly represented in the pricing problem through
the cost component cq =

∑
(i,j)∈E cijx̄

q
ij;

2. which items r ∈ R are delivered to customer i ∈ N using which com-
bination c ∈ C: in particular, the decision on combinations is implic-
itly represented in the pricing problem through the cost component
eq

r =
∑

c∈C er
cȳ

q
c .

Decision (2) is what adds complexity to the subproblem, as combina-
tions c ∈ C are a combinatorial number.

More specifically, the pricing problem (76) can be formulated as an Ele-
mentary Shortest Path Problem with Resource Constraints (ESPPRC) by
defining a network G(Ñ,A) which has one node for every customer i ∈ N

and for every combination c ∈ Ci and whose arcs have transit time equals
to (tij + tc

i ). Since ESPPRC is a NP-Hard combinatorial problem, its solu-
tion on such a big network is impractical. A standard column generation
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approach is therefore not applicable to this problem and, more in general,
to the class of problems characterized by a combinatorial number of com-
pact variables which impact on the complexity of the underlying pricing
subproblem.

3.3 Application of two-stage column generation to DS-
DVRPTW

The two-stage column generation framework presented in section 2 can be
applied to the extensive formulation for the DSDVRPTW (67)–(70). In
particular we consider a subset Ȳ ⊂ Y of y variables and consequently a
subset of possible combinations C. We assume w.l.o.g that Y = [Ȳ|Ŷ] and
that Q̄ is the set of lower dimension extreme points:

min
∑

q∈Q̄

cqλq (77)

∑

q∈Q̄

er
qλq = 1 ∀r ∈ R, (78)

∑

q∈Q̄

λq ≤ |K|, (79)

λ ≥ 0. (80)

We are now interested in computing the reduced cost of a compact
formulation variable yk

c ∈ Ŷ via complementary slackness conditions using
the method illustrated in section 2.2.1.

In order to plug DSDVRPTW into the general framework and to comply
with the notation used in section 2, we represent all decision variables by
a unique vector:

x = [ {xk
ij}(i,j)∈E,k∈K | {yk

c}c∈C,k∈K | {Tk
i }i∈N,k∈K ]. (81)

Matrix A is represented by constraints (65), while the subproblem, repre-
sented by matrix D, includes constraints (52)–(54) and (56)–(61).
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Dual vector α is associated to matrix A and therefore to constraints
(65), while dual vector β associated to matrix D is as follows:

β = [ ε | ζ | η | θ | µ | τ | ξ ] (82)

where ε is the dual vector associated to constraints (52)–(53), ζ is the dual
vector associated to constraints (54), η is the dual vector associated to con-
straints (56), θ is the dual vector associated to constraints (57), µ is the
dual vector associated to constraints (58)–(59), τ is the dual vector associ-
ated to constraints (60) and ξ is the dual vector associated to constraints
(61).

Using the optimal solution of the PMP, an artificial constrained problem
on the basis of (31)–(36), and complementary slackness conditions, we can
reconstruct the optimal dual vectors α∗ and β∗ and subsequently compute
the reduced cost of variables yk

c as follows:

c̃(yk
c) = 0 + ζk

i −
∑

r∈R

er
cαr − ηk

i −
∑

j∈V

tcθ
k
ij − tcτ

k
i − qcξ

k (83)

where the index of the customer i is implicitly represented by the index of
the combination c, i.e. i | c ∈ Ci.

Once we know the reduced cost of variables yk
c , we can iterate the

two-stage column generation framework, with a pricing subproblem that,
thanks to the reduction of the dimension, is now solvable.

4 Conclusions

In this paper we present a novel framework called Two-stage column gen-
eration to deal with with problems in which the possible combinatorial
number of compact formulation variables does not allow for straightfor-
ward reformulation.

Starting from a meaningful subset of compact formulation variables and
following a standard reformulation scheme we end up with a so called par-
tial master formulation and an associated, now manageable, pricing prob-
lem. Given an optimal solution of the partial master problem we provide a
general method to compute the reduced cost of original variable retracing
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back the original formulation. Using a modified LP formulation of the origi-
nal problem and using complementary-slackness conditions we compute the
dual variables of the original formulation using a simplex algorithm.

We illustrate the application of the method to the Discrete Split De-
livery Vehicle Routing Problem with Time Windows (DSDVRPTW) for
which the approach results in the first exact approach known. A compre-
hensive computational study and analysis on instances of the DSDVRPTW
is the subject of an ongoing working paper dedicated to the exact solution
of the problem.

The method can be applied to other combinatorial problem and in par-
ticular we plan to tackle the Tactical Berth Allocation Problem (TBAP)
presented in Giallombardo et al. (2008). In this context, the integration
of two planning problems, namely the berth allocation and the quay crane
assignment, consists of assigning and scheduling incoming ships to berthing
positions, and quay crane to ships. The concept of QC profile discussed in
the paper (i.e. number of quay cranes per working shift) defines the service
time of a ship. QC profiles are combinatorially many and the selection
of a QC profile is a decision variable of the associated compact formula-
tion: the problem seems to be an appropriated candidate for the two-stage
framework.

As shown by Irnich et al. (2007) for the VRPTW, a considerable number
of arcs (i.e. variables in the original formulation) can be proven to be sub-
optimal and removed from the formulation. Interestingly, the application
of the two-stage column generation framework, i.e. the idea of starting with
a meaningful subset of compact formulation variables, might be promising
even in this context. We intend to investigate further in this direction.
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