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Abstract

We propose a new type of timetable that would combine both the regularity of the cyclic
timetables and the flexibility of the non-cyclic ones. In order to do so, several combinations of
the two timetables are considered. The regularity is incorporated in their design and the flexibility
is evaluated using the passenger satisfaction (in monetary units). Each of the tested timetables is
constructed using the Passenger Centric Train Timetabling Problem, that is solved using a sim-
ulated annealing heuristic. The performance of each of the considered timetables is assessed on
the real network of Israeli Railways. The results of the case study show that our proposed hybrid
cyclic timetable can provide the benefits of the cyclic and the non-cyclic timetable simultaneously.
This timetable consists of 75% of cyclic trains (securing the regularity of the service) and of 25%
of non-cyclic trains (deployed as supplementary trains during the peak hours and capturing the
demand fluctuation). The level of the passenger satisfaction of the hybrid cyclic timetable is sim-
ilar to the level of the non-cyclic one, which has about 18.5% of improvement as compared to the
purely cyclic one.

Keywords: Railway Timetable, Cyclicity, Passenger Satisfaction, Simulated Annealing, Pas-

senger Centric Train Timetabling Problem
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1 Introduction
A train timetable is the main product of a Train Operating Company (TOC). It consists of the departure
times of every train from each of its stopping stations. When creating a timetable the TOCs usually
focus on its operational aspects rather than the actual passenger demand that it is supposed to serve.
According to the literature, two types of timetables (in passenger railway service) exist: cyclic and
non-cyclic.

The cyclicity originates from the Periodic Event Scheduling Problem (PESP), where a given set
of events is scheduled in equally spaced intervals (first defined in Serafini and Ukovich (1989)). In
the case of passenger railway service, a special type of cyclic timetables is the clock-faced timetable,
where the cycle is one hour. It is especially popular within railways, following the assumption that
such timetables are easy to remember and thus preferred by the passengers. Some studies confirm
that indeed a regularity of a timetable leads to an increase in the passenger demand (Wardman et al.
(2004), Johnson et al. (2006)). However, such a timetable design provides an inefficient operation
system as there is a mismatch between the supply (determined by the timetables) and the demand
(characterized by the time dependent passengers arrival rate).

In the non-cyclic timetable, on the other hand, no special rule is imposed on the departure time of
the trains (see Caprara et al. (2002) for instance). This makes the non-cyclic timetable more flexible
in accounting for the passenger demand. A recent study of Robenek et al. (2016) shows that this
is especially true for high volumes of passengers. The flexibility has been compared based on the
passenger satisfaction. But given the structure of a non-cyclic timetable (no repeating pattern), it
might discourage some passengers from choosing the train as their mode of transport.

Given the above, one cannot make a statement about the superiority of one timetable over the other.
A combination of the two is needed. In this paper, we investigate hybrid timetables that combine the
benefits of both - the regularity of the cyclic timetable and the flexibility of the non-cyclic one. The
approach consists in imposing various levels of cyclicity and to evaluate the corresponding flexibility.

The timetables are obtained by solving the Passenger Centric Train Timetabling Problem (PCTTP)
using a large neighborhood search heuristic combined with simulated annealing. The performance
of each of the newly proposed timetables is assessed and compared to the cyclic and non-cyclic
timetables on the real network of Israeli Railways.

The manuscript is structured as follows: in the literature review (Section 2), a survey on train
timetabling models is presented. The PCTTP model to construct a timetable while maximizing the
passenger satisfaction is introduced in Section 3. The definitions of the existing types of the timetables
and the constraints that they impose on the PCTTP model are given in Section 4. Similarly in Section
5, the hybrid timetables and their impacts on the PCTTP are discussed. Section 6 provides the insights
about the solution methodology that is used to obtain the results for our case study in Section 7. The
paper is finalized by drawing some conclusions and discussions of possible extensions in Section 8.

2 Literature Review
Since the goal of this study is a new type of timetable, the literature review focuses on the timetable
design, which is typically done by solving the Train Timetabling Problem (TTP). The main goal of
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the TTP is to resolve any potential track occupation conflicts among the trains, in order to construct an
operational timetable. Two versions of this problem exist in the literature: cyclic and non-cyclic. The
difference between the two versions is that the cyclic TTP imposes additional rules on the departure
times.

2.1 Non-Cyclic TTP
This version of the problem is either formulated as an Integer Linear Programming (ILP) or as a
Mixed Integer Linear Programming (MILP). The ILP model uses discretized time, whereas the MILP
model uses continuous time.

Model One of the main differences, between the two formulations, is the way how they handle
the conflicts among the trains. The ILP model discretizes the time and splits the lines into blocks
(Brannlund et al. (1998)). One train at a time can occupy a block. Clique constraints are then im-
posed to secure the safety (Caprara et al. (2002, 2006), etc.). Their number grow exponentially with
the size of the problem. Several other ILP re-formulations exist (Cacchiani et al. (2010a)). The
ILP formulation can also allow for the scheduling of extra freight trains within the planning of the
passenger service (Cacchiani et al. (2010b)).

The MILP model, on the other hand, is considering the departure times as continuous variables.
The minimum headway between two trains is secured using binary variables that indicate the order
of the trains in which they leave from a given station (Carey and Lockwood (1995), Higgins et al.
(1997), etc.).

Objective Function For the ILP formulations, it is assumed that ideal timetables are known a priori.
The ideal timetable is defined as the most profitable one. The objective of the problem is to minimize
the changes made to the ideal timetables (Caprara et al. (2002, 2006, 2007), etc.). Note that we did
not find in the literature a methodology to create such an ideal timetable.

The MILP formulations have various objective functions: minimization of the overall cost asso-
ciated with the allocation of a train path (Carey and Lockwood (1995)), minimization of the total
weighted travel time (Higgins et al. (1997)), minimization of the delays on the arrival and departure
times (Harrod (2012)), mimimization of the deviation from the originally planned timetable expressed
as a delay (Oliveira and Smith (2000)), minimization of the feasibility violation by penalization (Bur-
dett and Kozan (2010)), etc.

A recent approach consists in relaxing the assumptions that the passengers would always take their
shortest path and thus use the total travel time minimization as the objective (Schmidt and Schöbel
(2015)). This approach is further extended by taking into account the whole passenger satisfaction,
which is to be maximized (Robenek et al. (2016)).

Solution Approach A common methodology to solve the ILP formulation is the lagrangian relax-
ation of the track capacity constraints (Brannlund et al. (1998); Caprara et al. (2002, 2006); Cacchiani
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et al. (2012)). However, the column generation framework seems to find better bounds than the afore-
mentioned relaxation (Cacchiani et al. (2008)). One may also use dynamic programming to solve the
clique constraints (Cacchiani et al. (2013)).

For the MILP formulation, the literature agrees on using a heuristic as a common solution ap-
proach: a heuristic that considers one train at a time to solve the MILP based on the already scheduled
trains (Carey and Lockwood (1995)), as well as local search, tabu search, genetic and hybrid heuristics
(all presented in Higgins et al. (1997)), among others.

2.2 Cyclic TTP
The aim of the cyclic TTP is to resolve any potential track occupation conflicts and to make the
departure times of all trains cyclic, i.e. the departure time of every train on a given line is equally
spaced with an interval of a cycle. This class of problems is referred to as Periodic Event Scheduling
Problems (PESP). The PESP were first defined by Serafini and Ukovich (1989). Due to the nature of
the problem (repeating pattern), it is sufficient to solve the cyclic TTP for one cycle only (typically
the peak hour as it is the most dense part of the day) and repeat the solution in every other cycle. A
special case of a cyclic timetable is the clock-faced timetable, where the cycle is equal to one hour
(typical for railways).

Model The majority of the cyclic TTP formulations are based on the PESP. In some cases, the PESP
is extended with additional constraints such as train synchronization (Peeters (2003)) or symmetry
(Liebchen (2004)). The symmetry can be described as follows: two trains of the same line traveling
in opposite directions meet at time 0, i.e. if a train leaves at 14th minute of the cycle in one direction,
then the train in the opposite direction leaves from the same station at time 46 for a cycle of one hour.
The sum of the departure times at any station is equal to the cycle. The symmetry is a popular measure
in Switzerland and Germany.

The basic PESP formulation considers one universal cycle, known a priori, for the whole railway
network. However, one may consider to allow for varying sizes of the cycle over the planning horizon
(Zhong et al. (2013)) or to make the size of the cycle a decision variable (Heydar et al. (2013)). The
proposed measures have the intention of securing better transfers or to maximize the utilization of the
infrastructure respectively.

Objective Function While the model of the cyclic TTP is well defined and recognized, the same
can not be said about the objective function of the problem. In the very beginning, there were models
without any objective (Odijk (1996)), thus an ad-hoc feasible solution would be generated. Later
on, an objective function that would minimize the total waiting time has been introduced (Nachtigall
(1996); Nachtigall and Voget (1996); Yang et al. (2010), etc.). In some studies, the waiting time has
been further decomposed among the different types of passengers such as transferring, throughput
and others (Vansteenwegen and Oudheusden (2006, 2007)). The focus on the waiting time only came
from the assumption that the passengers would always take their shortest path between their origin and
destination, thus rendering the total travel time irrelevant. In the recent literature, this assumption has
been released and the cyclic TTP integrates the routing of the passengers. One can either minimize the

3



total travel time of the passengers (Hoppmann et al. (2015)), to maximize the number of transported
passengers (Cordone and Redaelli (2011)) or to maximize the passenger satisfaction (Robenek et al.
(2016)).

Solution Approach Similarly to the objective function, one superior methodology for solving the
problem does not exist. The applied techniques span from the semi/exact methods, such as branch
and bound (Nachtigall (1996)), constraint generation (Odijk (1996)), modulo simplex (Nachtigall and
Opitz (2008)), cycle periodicity reformulation (Peeters (2003); Liebchen and Peeters (2009)), satisfi-
ability reformulation (Großmann et al. (2012)), etc., to heuristic methods, such as genetic algorithm
(Nachtigall and Voget (1996)), and simulated annealing with particle swarm optimisation (Jamili et al.
(2012)).

Remark Due to the restrictive (cyclicity) constraints, a feasible solution might not always be ob-
tained. Two options for correction exist: the adjustment of the underlying assumptions (to keep the
cyclicity intact) or allowing for some degrees of irregularity in the timetable. One of the assumptions
that can be changed is the running time of a train in between two stations. Typically, the cyclic TTP
treats it as a fixed input, but it can be turned in to a decision on an interval of a minimal and a maximal
value and possibly result into having a feasible solution (Kroon and Peeters (2003)). The other option
is to affect the cyclicity itself. When a railway network is highly dense (such as in China), one can
decide to have some lines cyclic and the others non-cyclic. This framework has been proposed by
Yang et al. (2010), where the cyclicity is primarily given to the most busy lines in terms of the trans-
ported passengers. This approach would make a whole train line non-cyclic, but sometimes it might
be sufficient to allow only for a small deviation from the cyclic departure time of only a few trains.
Such a framework is proposed by Caimi et al. (2011), where the problem has a periodic service as an
intention and not as a hard constraint.

2.3 Summary
From the above survey, we have learned that most often the goal is to provide either a fully non-cyclic
or a fully cyclic timetable. A partially cyclic timetable is considered, only when no feasible solution
can be obtained. However, a new direction of relaxing the cyclicity to achieve the benefits of the
non-cyclic timetables is emerging. In this paper, we are going to further exploit this concept.

3 Timetable Construction
A timetable, in the passenger railway service, is formally defined as a set of arrival and departure
times of every train at each of its stopping stations. The frequency (number of trains) and the stopping
patterns are given by the Line Planning Problem (LPP, Schöbel (2012)) and are fixed. By imposing
rules on these times, one can obtain different types of timetables. At first, we present a timetable de-
sign approach (irrespective of the timetable type) which is based on the overall passenger satisfaction.
The existing types of timetables are presented in Section 4 and our proposed types of timetables are
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presented in Section 5. For the convenience of the reader, we organize all mathematical notation by
its type and order of appearance in Table 1 at the end of this section.

The passenger satisfaction serves as the indicator of the flexibility of a timetable. In order to con-
struct a timetable, we use the model of the Passenger Centric Train Timetabling Problem (PCTTP)
proposed by Robenek et al. (2016). In PCTTP, the objective is to construct a timetable (either cyclic
or non-cyclic) that would maximize the overall passenger satisfaction. The model combines the
timetable design with the routing of the passengers. Unlike the traditional TTP, this model does
not deal with the conflicts among trains. The time is discretized into minutes.

The inputs of the PCTTP can be categorized into two groups: the network layout and the passenger
demand data. The network layout consists in the train lines given by the LPP. A line ` ∈ L is an ordered
set of stopping stations, that includes the dwell times at the stations and the travel times in between.
Each line has an assigned frequency by the LPP, i.e. the set of available trains v ∈ V ` serving the line
` during a given time horizon h in minutes, which remains fixed. From now on, we refer to a train as
a combination of indices (`, v). Based on the lines, the set of paths p ∈ Pi for all Origin-Destination
(OD) pairs i ∈ I is given. An example of an algorithm to construct the set of paths is presented in
Appendix A. A path consists in an ordered set of lines Lp to be traversed from an origin to a destination
with a given train of each line (`, v). Different trains on the same line constitute different paths. Each
line can be further decomposed into unique segments. A segment is the part of the infrastructure,
where a train does not stop. A train (`, v) is characterized by its line `, departure time d`v from the
origin of the line in minutes (the travel times and dwell times are fixed) and its capacity that cannot
be exceeded on any of the traversed segments. Unlike the TTP, the PCTTP model considers the dwell
times fixed, hence a decision on the departure time from the origin station of each line is sufficient.

As for the passengers, they can form groups that share the same OD pair i ∈ I and preferred arrival
time to the destination t ∈ Ti. A passenger group is denoted as (i, t) and contains nti passengers. The
model does not allow splitting of the groups. However, one may create groups of size one, in order
to treat the passengers individually. The actual value of the preferred arrival time to the destination is
given by the parameter ati . The routing of each passenger group is determined based on the available
paths p ∈ Pi from the origin to the destination. Within each path, a passenger group is given a
minimum transfer time m, in order to be able to realize a transfer from one train to another in the
transferring stations. Any other additional time spent in the transferring stations is counted as the
waiting timewtpi . A passenger group has to use exactly one path to get from an origin to a destination.
When no path is available within the planning time horizon h, due to the train capacity issues, a so-
called penalty path Pti is offered. The penalty path consists in the shortest path between the given OD
pair realized after the end of the planning horizon h.

The satisfaction of a passenger group (i, t) using a path p is denoted as Stpi . The value of Stpi
depends on four attributes considered by the passengers: the in-vehicle-time, the waiting time at
transfers, the number of transfers and the schedule passenger delay. The in-vehicle-time is the sum of
the running times rp`i of all train lines ` used in the path p, when traveling between OD pair i. Note
that the running times have the same value for different trains of the same line, but differ among the
OD pairs. The different OD pairs get on and off the train line at different stations. Similarly for the
paths, different paths within the same OD pair use either different lines or use the same lines, but
transfer from one to another in different stations. The waiting timewtpi is the sum of all waiting times
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within the path. The number of transfers is equal to the number of train lines in the path minus one
(|Lp| − 1). The schedule passenger delay indicates whether the passenger group has arrived early to
the destination (max(ati − δ

t
ip, 0)), on time (= 0) or late (max(0, γtip − a

t
i)). Note that the schedule

passenger delay is related to the preferred arrival time to the destination and that it is not a delay of
the train.

Each of the above attributes is transformed into in-vehicle-time units using parameters collected
from the literature (βW ,βT ,βE and βL). Details are provided in Appendix A. The sum of these trans-
formed attributes constitutes the generalized time (in minutes), that can be transformed into the gen-
eralized cost (in monetary units) by multiplying it with the Value-Of-Time (VOT). The VOT is an
indicator of how many of monetary units are the passengers willing to pay, in order to achieve given
savings in time. For instance in Israel, the commuting passengers are willing to pay 21.12 New Israeli
Shekels (estimated in 2012 by Shiftan et al. (2008)) for a saving of one hour. The lower the gener-
alized cost is, the higher is the passenger satisfaction. Based on the above description, the passenger
satisfaction of a path p with respect to the passenger group (i, t) is formulated as follows:

Stpi = −VOT ·

(∑
`∈Lp

rp`i + βW ·wtpi + βT · (|Lp|− 1) + βE · δtip + βL · γtip

)
, ∀i ∈ I, ∀t ∈ Ti, ∀p ∈ Pi,

(1)
By solving the PCTTP model, one obtains the exact timetable as well as the subsequent routings of

the passengers through the network. The decision of which passenger group is assigned to which path
is carried out by the model. This decision is driven by the objective function (passenger satisfaction
maximization). The result is a system optimum. The PCTTP as such generates a non-cyclic timetable.
It is needed to include additional cyclicity constraints (described in the next section) to obtain a cyclic
timetable. Since the PCTTP provides the routing of the passengers, the profit of a train operating
company associated with the resulting timetable can be estimated. However, given that it is assumed
that the passengers have railways as their only mode of transport (the penalty path consists in trains),
the demand is inelastic. Thus the profit for different timetables is similar. For this reason, we omit the
profit estimation in this study.

Name Description Units Type
L set of operated train lines given by the LPP – set
V ` set of available trains for the line ` (frequency) – set
I set of origin-destination pairs – set
Pi set of possible paths between OD pair i – set
Lp set of lines in the path p – set
Ti set of preferred arrival times for OD pair i – set

(`, v) a train v serving the line ` – index
(i, t) a passenger group traveling between OD pair i with a pre-

ferred arrival time t
– index

K set of cycles within the planning horizon – set
h duration of the planning horizon min parameter
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nti number of passengers wishing to travel between OD pair i at
time t

– parameter

ati preferred arrival time of a passenger group (i, t) to its desti-
nation

min parameter

Pti penalty path when not serving passenger group (i, t) within
h

monetary parameter

m minimum transfer time from one train to another min parameter
rp`i running time for OD pair i on path p using line ` min parameter

|set| size of the set – parameter
(|Lp|− 1) is the number of transfers in path p – parameter

βW value of the waiting time in the relation to the in-vehicle-time – parameter
βL coefficient of being late in the relation to the in-vehicle-time – parameter
βE coefficient of being early in the relation to the in-vehicle-

time
– parameter

βT penalty for having a train transfer min parameter
VOT value of (in-vehicle-) time (VOT) monetary/min parameter

c size of the cycle min parameter
θ maximum allowed deviation from a cyclic departure time min parameter
ξ percentage of cyclic trains within a timetable % parameter
η number of cyclic trains per line – parameter
d`v the departure time of a train v on the line ` (from its first

station)
min decision

wtpi waiting time of a passenger group (i, t) using path p min decision
Stpi satisfaction of a passenger group (i, t) using path p monetary decision
δtpi the schedule passenger delay of being early in path p of a

passenger group (i, t)
min decision

γtpi the schedule passenger delay of being late in path p of a
passenger group (i, t)

min decision

z`v dummy variable to help modelling the cyclicity correspond-
ing to a train v on the line `

N\{0} decision

∆`v deviation of a train v on the line ` from its cyclic departure
time

min decision

q`v 1 - if a train has a cyclic departure time, 0 - otherwise binary decision
y`k 1 - if there is a cyclic train scheduled in the cycle k on the

line `, 0 - otherwise
binary decision

d`vmod c modulo time of a train v on the line ` min decision

Table 1: Mathematical notations
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4 Existing Timetables
As mentioned in the previous section, we define a timetable as a set of departure times d`v of every
train v ∈ V ` from its origin station on every line ` ∈ L. Even though the lines consist of several
stopping stations, in the PCTTP it is sufficient to decide only the departure time of every train from
the origin station of a line, as the arrival times to the subsequent stations are derived from the fixed
travel times and dwell times. By imposing rules on train departure times, one can obtain two types of
timetables: cyclic and non-cyclic.

Cyclic Timetable The cycle c represents the difference between the departure times of two consec-
utive trains on every line. It is given in minutes and its value holds for the whole timetable. When
varying size of the cycle is needed, one can either solve a TTP model of variable cycles (Zhong et al.
(2013)) or (more often) to conceptually split a line into several ones. However, the split of a line is
viable only when the various sizes of the cycle are its multiples. In railways, the typical value of the
cycle c is 60 minutes. The regularity is enforced by including the cyclicity constraints in the model.
They can take the following form:

d`v − d
`
v−1 = c, ∀` ∈ L, ∀v ∈ V ` : v > 1. (2)

Adding cyclicity constraints to the model creates a strictly cyclic timetable, i.e. once the operation
of a line ` has started, there would be a train departing in every cycle. An example of such a timetable
is shown in Table 8 (in Appendix B). This type of timetable is not always desirable. The passenger
demand is time dependent and is lower in between the peak hours. Therefore operators might choose
to interrupt their operation for the duration of the off-peak hours. In this case, constraints (2) can be
modified to a version where the departures of two consecutive trains are spaced in multiples of cycles
z`v. In other words, the difference between two consecutive trains can now have values of 60, 120, 180,
etc. minutes. The values of these variables are integers with the lowest value being 1. The constraints
(2) are reformulated as:

d`v − d
`
v−1 = c · z`v, ∀` ∈ L,∀v ∈ V ` : v > 1. (3)

In this manuscript, we name a PCTTP containing constraints (3) as cyclic. An example of such a
timetable is presented in Table 7 (in Appendix B).

Non-Cyclic Timetable In the non-cyclic timetable, no rule is enforced on the departure times of
trains. However, one can add the below constraints, in order to avoid the symmetry in the model.

d`v ≤ d`v+1 − 1, ∀` ∈ L,∀v ∈ V ` : v < |V `|. (4)

No other buffer time between two consecutive trains, than the above one minute, is needed. The
decision, if two trains are being scheduled close to each other, is driven by the objective function.
Note, that the PCTTP model does not handle potential conflicts among trains. Since no rule on the
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departure times is enforced, the non-cyclic timetables are better in accordance with the time depen-
dency of the demand. Therefore, the non-cyclic timetable is more flexible than the cyclic one. An
example of such timetable is shown in Table 10 (in Appendix B).

5 Hybrid Timetables
In this section, we introduce the concept of hybrid timetables which are a combination of cyclic and
non-cyclic timetables. Each type of hybrid timetable is described in the form of the additional con-
straints that are imposed on the original PCTTP formulation. The regularity of the hybrid timetables
is taken care of by design and the flexibility is evaluated using the passenger satisfaction upon solv-
ing the respective PCTTP formulation. Later on (in Section 7), we test and evaluate these timetables
against each other (including the existing ones) using real case data.

θ Shifted Cyclic Timetable The first hybrid timetable is inspired by Caimi et al. (2011). They allow
small deviations from the cyclic departure times, in order to obtain a feasible solution. We introduce
a variable ∆`v capturing the deviation from the cyclic departure time of a train v on line ` given in
minutes. This deviation is restricted within the bounds [−θ, θ] in minutes, in order to control it. To
obtain such a timetable for a given θ, we add constraints (5) and (6) in the model of the PCTTP.

(
d`v − ∆

`
v

)
−
(
d`v−1 − ∆

`
v−1

)
= c · z`v, ∀` ∈ L,∀v ∈ V ` : v > 1, (5)

−θ ≤ ∆`v ≤ θ, ∀` ∈ L,∀v ∈ V `. (6)

Constraints (5) impose that the original cyclic departure times must respect the cycle. Constraints
(6) set the maximum shift from the cyclic departure times. 0 min shifted cyclic timetable is equivalent
to the cyclic one. For a cycle of one hour, 30 min shifted cyclic timetable denotes the highest possible
deviation, otherwise the trains would overlap. Due to the case, where two consecutive trains might
have +30 minutes and -30 minutes deviations, the constraints (6) have to be adjusted to the form:

−θ ≤ ∆`v ≤ θ− 1, ∀` ∈ L,∀v ∈ V `. (7)

Therefore, we test this type of timetable for all values of θ between 3 and 30 in 30 minute intervals.

ξ Partially Cyclic Timetable This hybrid timetable is constructed by allowing a percentage of
trains on a given line to be non-cyclic. The degree of the regularity is then expressed as ξ%, where
ξ is a parameter decided a priori. Since different lines are served by a different amount of trains,
applying the ξ to each line separately might significantly disrupt the regularity of the service. Instead,
we propose to treat the ξ as a percentage of the number of trains of the most frequent line (max(|V `|))
denoted as η. The η number of trains of each line are having a cyclic departure time and the rest of
the trains is having a non-cyclic departure time. The decision on which trains are to be cyclic and
non-cyclic is arbitrary. Indeed, the order of appearance within the set V ` does not have any impact.
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The optimal solution will consist in the same values of the departure times no matter the internal order
of the trains. For a notation convenience, we assign the first η trains to be cyclic.

d`v − d
`
v−1 = c · z`v, ∀` ∈ L,∀v ∈ V ` : 1 < v ≤ η = max(|V `|) · ξ

100
. (8)

We test this timetable for all values of ξ between 10% and 90% in 10% intervals. The 100% par-
tially cyclic timetable is equivalent to the cyclic one and the 0% partially cyclic timetable is equivalent
to the non-cyclic one. Note, that the ξ of 0% is a special case. Since zero divided by any number is
equal to zero, the above constraint does not hold. However, since the 0% partially cyclic timetable
is equivalent to the non-cyclic one, it is sufficient to solve the non-cyclic version of the PCTTP. The
non-cyclic trains are most likely to be scheduled within the high demand density periods of the day.

This hybrid timetable is inspired by Yang et al. (2010). They allow a certain number of lines to
be non-cyclic. The motivation is again the infeasibility of the problem due to the high density of the
trains.

Hybrid Cyclic Timetable Even though both, θ shifted cyclicity and ξ% partial cyclicity, keep some
degree of regularity, the newly created patterns might be too disorganized for the passengers to see.
Therefore we propose one additional type of a hybrid timetable. The hybrid cyclic timetable schedules
non-cyclic trains only in the hours/cycles where there is already a cyclic train being scheduled. Note
that according to constraints (7), not every cycle is required to have a cyclic train scheduled. With
such pattern, all of the passengers would obtain the same level of service as a cyclic timetable, with
more flexibility. Within a given cycle, the passenger can decide to use the cyclic train or the non-cyclic
one (if there is any). The ratio, between the amount of cyclic and non-cyclic trains, is a decision of the
model. To obtain such a timetable, the constraints (9)-(11) need to be included in the PCTTP model.

q`v · q`v ′ · d`v − q`v · q`v ′ · d`v ′ = q`v · q`v ′ ·
(
c · z`vv ′

)
, ∀` ∈ L,∀v, v ′ ∈ V ` : v > 1, v 6= v ′, (9)

y`k ≤
∑

v∈V`:d`v/c=k

q`v, ∀k ∈ K, ∀` ∈ L, (10)

(
1− q`v

)
· d`v ≤ y`d`v/c · h, ∀` ∈ L,∀v ∈ V `. (11)

The cyclicity of a train is modeled through the binary decision q`v. Value 1 indicates that the train
is a cyclic one, 0 otherwise. The cyclicity pattern only among the departure times of the cyclic trains
is enforced by the constraints (9). The planning horizon consists of K = h/c cycles. For a planning
horizon of one day, the value of k is on the interval from 1 to 24. Since the non-cyclic trains can be
scheduled only in the cycles, where there is a cyclic train running, the binary decision y`k indicates
whether there is such a train in the cycle k (equals to 1) or not (equals to 0). Since there is at most one
cyclic train per cycle, the right hand side of constraints (10) is either eqaul to 1 (when there is a cyclic
train scheduled in cycle k) or equal to 0 (otherwise). Lastly, the constraints (11) allow for non-cyclic
trains to exist only in the cycles, where there is a cyclic train scheduled. Note that the constraints
(9)-(11) introduce non-linearity in the model.
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6 Solution Methodology
We use the Simulated Annealing (SA) heuristic to solve the PCTTP. Since the SA is a well known
heuristic (defined by Kirkpatrick et al. (1983)), we focus only on the description of the specifics of the
heuristic with respect to the PCTTP. The general pseudocode of the heuristic is shown in Algorithm
1.

Algorithm 1: Simulated Annealing
Data: N, xc, ρ, Tc, Tf
Result: Best timetable x∗

1 begin
2 Initialize
3 repeat
4 reset operators
5 for n ∈ N do
6 select a neighborhood move
7 impose this move on xc and obtain x ′c
8 perform passenger assignment on x ′c
9 apply acceptance criterion on x ′c

10 update weights ρ

11 cooling of the Tc
12 until Tc ≤ Tf

6.1 Solution Representation
A solution of the PCTTP problem consists in the departure times d`v for every train (`, v), that con-
stitute the timetable, and its underlying flexibility. We distinguish among four types of a solution:
the initial solution, the current solution xc, the potential new solution x ′c and the best found solution
x∗. Any cyclic timetable can be used as an initial solution. Indeed, the other types of timetable have
less constraints, so that a cyclic timetable verifies their constraints as well. A cyclic timetable can be
constructed for instance by randomly generating the departure time of the first train of every line and
setting the departure times of every subsequent train on every line by adding the value of the cycle to
the departure time of the previous train. The other three types of a solution follow the standard SA
logic.

The flexibility of a solution is its passenger satisfaction that is estimated using the value function
(see Section 6.2).
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6.2 Value Function And Its Estimation
The value function of the problem is the overall passenger satisfaction that is to be maximized. In
order to estimate its value, the passenger assignment to the trains is carried out on the associated
timetable. We design our own passenger assignment procedure. The typical assignment in the liter-
ature is not suitable for our value function. The classical assignment approach is based on the first
come first serve (FCFS) policy. Such an assignment provides user optimum whereas the goal of the
PCTTP is the global optimum. Moreover, since the demand elasticity is not modeled, the FCFS might
give priority to a passenger that might not realize her journey and a passenger that would is either left
out or re-routed on a worse path due to the capacity issues. Whereas in the PCTTP, the goal is to take
care of the demand elasticity implicitly by maximizing the overall passenger satisfaction.

Algorithm 2: Passenger Assignment
Data: I, Ti, Pi, nti
Result: S

1 begin
2 S = 0
3 for i ∈ I do
4 for t ∈ Ti do
5 for p ∈ Pi do
6 calculate Stpi
7 sort paths Pi according to Stpi descending

8 sort (i, t) according to St|Pi|i ascending
9 for i ∈ I do

10 for t ∈ Ti do
11 for j = 1 .. nti do
12 for p ∈ Pi do
13 if path p does not violate capacity of any of its trains then
14 assign passenger j of the group (i, t) to path p
15 S = S + Stpi
16 break

The general pseudocode of the proposed passenger assignment is shown in Algorithm 2. In the
first stage of the algorithm, the satisfaction of every path of each of the passenger groups is calculated
and sorted in the descending order. This part of the algorithm is parallelized. In the second stage
of the algorithm, the passenger groups are sorted according to their last (worst) path (index |Pi|) in
the ascending order. This means that, in the next stage, the first processed passenger is having the
worst possible satisfaction of the whole problem within her choice set. However, since the paths are
sorted in the descending fashion, she will be first offered her best possible path. The algorithm splits
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the passenger groups into individuals, in order to achieve better values of the overall satisfaction.
For each of the passengers, the algorithm iterates through the respective set of possible paths and
assigns the first realizable path. Such a path does not violate the capacity constraints of the trains.
No passenger remains unassigned as each set Pi contains the respective penalty path. The algorithm
terminates once all of the passengers are assigned to the paths.

6.3 Neighborhood Structure
Each type of a timetable is having a different neighborhood structure. A neighborhood is defined as a
set of candidate solutions that can be reached by a modification of the current solution xc using a single
neighborhood move. A timetable type can have more than one neighborhood that is characterized by
its move. An overview of all the moves per type of a timetable is shown in Table 2.

N. Cyclic θ Shifted C. ξ Partially C. Hybrid Cyclic Distribution

Select

(`, v) U(1, |L|), U(1, |V`|)

` U(1, |L|)

q`v = 0
q`v = 1

Modify

d`v U(0, h − 1)

d`vmod c U(0, c − 1)

k U(0, h/c − 1)

∆`v U(−θ, θ)

Apply
∀q`v = 1
y`k/c = 0

y`
d`v/c

= 1

Table 2: Overview of the neighborhood moves by the type of a timetable

The columns represent the moves and the rows represent a stage of a move. The moves are
categorized by the type of a timetable they belong to. The first column denoted N. stands for the
non-cyclic timetable. The last column shows the distributions from which to draw randomly, in order
to obtain the respective attribute’s value. Only the cells with a grey background constitute a move.
Each move is decomposed into 3 parts: selection, modification and application. Two entities can
be selected: a specific train (`, v) or the whole line `. The selection of a specific train might be
conditioned by its type (q`v). If no condition is specified, any train can be selected.

The aim of the modification is to replace the value of one of the 4 attributes with a new one. The
only not yet defined attribute is d`vmodc. This attribute represents the modulo time within any cycle.
For instance, when the cycle c is equal to one hour and the departure time of a train is 5:45, then the
modulo time is 45 minutes. This time is the same among all cyclic trains of the same line.

The application of the modification is always performed on the pre-selected entity. However, its
application might be conditioned. Some applications are made only to the cyclic trains of the given
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line (∀q`v = 1). Other applications are conditioned that the new cycle k does not already contain a
cyclic train (y`k/c = 0) or that the new departure time d`v is in a cycle that does already contain a cyclic
train (y`

d`v/c
= 1). If the newly generated values of attributes fail to fulfil the last two conditions (when

they are required), the modification is repeated (until they do).
For illustration, consider the first move of the hybrid cyclic timetable: at first a train is selected by

drawing the line ` from U(1, |L|) and subsequently drawing the v from U(1, |V `|). The drawing from
the distribution(s) is repeated until the condition q`v = 0 is satisfied. Hence, a non-cyclic train has
been selected. In the second phase, a new departure time d`v of this train is drawn from U(0, h − 1).
In the third phase, this new departure time is applied given that it is in the cycle where there is a
cyclic train scheduled (y`

d`v/c
= 1). Otherwise the modification phase is repeated until this condition

is complied.
When a timetable type has more than one neighborhood move j, each of the moves is associated

with a weight ρj. Each ρj is initialized to 1 at the beginning of every new temperature Tc. Based on
the performance of the move, its weight is being updated according to the below scheme (f(x) is the
value function):

• If f(xc ′) ≥ f(x∗) → ρj = ρj + 3

• If f(xc ′) ≥ f(xc) → ρj = ρj + 2

• If f(xc ′) < f(xc) and the new solution has been accepted with a probability r < exp(−(xc −
xc ′)/Tc), where r is drawn from U(0, 1), then ρj = ρj + 1

In each iteration of the SA heuristic, a move is selected using the roulette wheel mechanism based
on the weights ρ of the currently solved type of a timetable.

6.4 Values Of The Parameters
We set the value of the final temperature Tf to be zero and the initial temperature T0 to be a function
of the passenger satisfaction value of the initial timetable f(x0) where T0 = 10−5 · f(x0). The other
two parameters, which values need to be tested, are the cooling scheme and the total number of
iterationsN per temperature Tc. The cooling scheme provides the information on how to decrease the
temperature Tc. We test the cooling schemes of 5, 10 and 20% of the initial temperature T0 and the
values of N of 100, 500 and 1 000 iterations.

The tests were performed on 5 realistic instances of the S-train network of Canton Vaud in Switzer-
land as desribed by Robenek et al. (2016) for cyclic and non-cyclic timetables. As the rest of the
timetables uses a combination of the neighborhood moves contained in the two timetables, there is
no need for an explicit testing of the other types. We have performed 10 runs of each combination of
the parameter settings for both types of the timetables. The cooling scheme of 5% and the number
of iterations N = 1000 provided on average the best values of the passenger satisfaction. Given that
the solution time was fast (on average 5 minutes for both cyclic and non-cyclic timetables), we have
selected it as our final parameter setting.
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6.5 Validation
In this section, we validate the SA algorithm as compared to CPLEX on a small artificial network.
The considered instances vary in the distribution and the number of passengers, and the capacity of
the trains. The precise information of each of the instances is incorporated in their names: 0 - if the
demand was evenly distributed across the planned horizon (the horizon is 3 hours), 1 - otherwise; d
- provides the total number of the passengers in the network; c - is the capacity of a single train (in
total there are 16 trains).

The detailed numerical results can be found in Table 3. They have been categorized by the type
of the solved timetable: cyclic or non-cyclic. The first column provides the information about the
solved instance. The optimal solution is the passenger satisfaction obtained by CPLEX and SA is the
passenger satisfaction obtained by the SA heuristic. Both values are in Swiss Francs. All the methods
have solution time reported in seconds. The gap between the optimal solution and the solution found
by the SA heuristic is reported in percentages.

Cyclic Timetable Non-Cyclic Timetable

Instance Optimal Time [s] SA Time[s] Gap [%] Optimal Time [s] SA Time[s] Gap [%]

0-d35-c1 -3 269 4 -3 358 11 2.72 -3 208 2 -3 272 12 1.98
0-d41-c2 -2 504 59 -2 624 13 4.80 -2 482 127 -2 589 12 4.29
0-d40-c2 -2 515 385 -2 570 14 2.20 -2 479 152 -2 507 10 1.15
1-d37-c2 -2 184 18 -2 236 11 2.37 -2 165 40 -2 215 11 2.30
0-d53-c3 -3 729 6 177 -3 887 13 4.25 -3 698 716 -3 826 13 3.45
1-d36-c3 -3 020 4 -3 066 11 1.50 -2 989 3 -3 019 11 0.99
0-d52-c4 -5 686 20 -5 761 12 1.32 -5 641 7 -5 720 13 1.41
1-d63-c4 -6 568 2 686 -6 656 14 1.34 -6 531 2 905 -6 613 14 1.26
1-d63-c4 -6 854 6 853 -6 966 12 1.63 -6 803 1 854 -6 904 14 1.49
1-d80-c4 -11 204 1 457 -12 021 15 7.29 -11 133 32 -11 866 15 6.58

Avg. -4 753 1 766 -4 914 13 2.94 -4713 584 -4853 13 2.49

Table 3: Validation of SA as compared to the optimal solutions

The SA heuristic can find solutions with a reasonable gap from the optimal solution. The worst
performance is for the instances 0-d41-c2, 0-d53-c3 and 1-d80-c4. The first two instances are hard
to solve as the demand is almost matching the supply. Therefore the order, in which the passengers
are being processed in the assignment procedure, plays a crucial role. The FCFS policy would obtain
worse values. The instance 1-d80-c4, on the other hand, has the most extreme passenger distribution:
90% of the passengers in the first hour and 5% in each of the two subsequent hours. The average gap
for the cyclic timetable is 2.94% and for the non-cyclic timetable 2.49%. In terms of the time, the SA
heuristic performs better than CPLEX.

7 Case Study
In order to evaluate the performance of the various timetables, we apply the proposed methodology on
the network of Israeli Railways (IR) shown in Figure 1. The aim is to compare the level of passenger
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satisfaction for different timetables. The exact procedures, assumptions and information about the
data can be found in Appendix A.

Figure 1: Network of Israeli Railways (www.rail.co.il)

We consider two instances in our study: the 2008 demand and the 2014 demand. The 2008 demand
is build from the ticket selling machines’ data of an average working day (from 6 a.m. to 1 a.m.) in
2008 in Israel. This data was kindly provided to us by Mor Kaspi and Tal Raviv, who have used it in
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their study Kaspi and Raviv (2013). The 2008 demand constitutes in 126 036 passengers. The 2014
demand constitutes in 193 886 passengers and it has been created from the 2008 demand multiplied
by the constant factor of 1.6 per OD pair (based on the newspaper article in Globes (2015)).

The demand data is available for the year 2008. Therefore, we consider the network layout of
2008: there were 47 stations and the red line in Figure 1 was operated only between Hod HaSharon
and Tel Aviv - HaHagana. We do not consider the night line (blue with black bordering) as it runs
mainly in the period for which we do not have the demand data (i.e. between 1 a.m. and 6 a.m.).
Even though there are only 18 unidirectional lines visualized in Figure 1, in reality there are 34
unidirectional lines in the timetable (some lines are operated with higher frequency of 2 or more
modulo times). Since some of the trains follow different stopping patterns within a line, we have
taken a union of stopping stations for each line (but same colored lines with different modulo times
may operate different stopping patterns). Since the OD matrix is given for an average working day,
we have removed the trains that operate only during the holidays.

The timetable operated in Israel is cyclic with a cycle of 60 minutes. We have processed the
timetable of 2013/141 where 6 out of 388 trains have non-cyclic departure times. The planning horizon
h of this case study is one day. Even though the demand is between 6 a.m. and 1 a.m., we allow the
PCTTP model to schedule trains during any time of the day. We solve the PCTTP using the SA
heuristic for the following timetables:

• Non-Cyclic – no specific rule on the departure times is enforced.

• Cyclic – the departure times have to be cyclic according to the constraints (3).

• θ Shifted Cyclic – the departure times are subject to the constraints (5) and (6). The values of
θ vary between 3 and 30 in 3 minute intervals. Since θ of 0 is equivalent to the cyclic timetable,
it does not need to be solved.

• ξ Partially Cyclic – the departure times are subject to the constraints (8). The values of ξ vary
between 10 and 90 in 10% intervals. Since ξ of 0 and 100 is equivalent to the cyclic and the
non-cyclic timetables respectively, they do not need to be solved.

• Hybrid Cyclic – the departure times have to comply with the constraints (9) - (11).

For the sake of the comparison, we show the performance of the two below timetables as well:

• IR 13/14 – the departure times are fixed to the ones of IR timetable of 13/14. The IR timetable
is cyclic as using the constraints (3), with an exception of having the aforementioned 6 non-
cyclic trains.

• IR 13/14 as Strictly Cyclic – is the same as IR 13/14, where the 6 non-cyclic trains are fixed to
their closest cyclic departure time, and the gaps between the first and the last scheduled train of
every line are filled with cyclic trains (in total 82 trains more). This is equivalent to having the
constraints (2). The exact difference between the two timetables can be observed on the train
distributions in Table 7 and Table 8 in Appendix B.

1Unlike Europe, the timetable change in Israel happens during the summer period, i.e. the naming 13/14.
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The passenger satisfaction of each type of timetable is given in New Israeli Shekels (NIS). All of
the tested instances have been run in Java on a Unix server with up to 24 cores of 3.33 GHz and 62
GiB RAM. Since we would typically run 3 instances at the same time, the average core usage would
be then 8.

7.1 Results
In this section, we present the results of our case study. We categorize the results into two groups:
existing and hybrid timetables. The existing ones are: strictly cyclic, cyclic and non-cyclic timetables.
The hybrid ones are: θ shifted cyclic, ξ partially cyclic and hybrid cyclic timetables.

At first, we construct the demand distributions over the day (Figure 2). Each distribution is in
fact a network load, where the passengers take their shortest path between their origin and destination
with just a minimum transfer time (i.e. no waiting time in transfers) and arriving to their destinations
exactly on time, thus their schedule passenger delay being zero. Note that this network load does not
involve any actual timetable and it is only used as a benchmark. We denote it as the perfect service.
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Figure 2: Demand distributions over the day

The passenger satisfaction of the 2008 demand distribution under the perfect service is -2 089 049
NIS and of the 2014 demand distribution -3 171 721 NIS. These two values are upper bounds of the
two instances for all the types of the timetables (no better solution exists). The aim of the timetable
design should be a network load as close as possible to the perfect service.
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7.1.1 Existing Timetables

The performance of each timetable can be found in Table 4 for the 2008 demand and in Table 5 for
the 2014 demand. For each timetable, we report the underlying passenger satisfaction in New Israeli
Shekels (NIS). The perfect service reports the satisfaction as it is and the different timetables report
the passenger satisfaction as a relative difference to the perfect service. Apart from the satisfaction,
the tables provide information on the number of train drivers needed to realize the operation, as well as
the needed number of train units, the percentages of passengers that were able to realize their journeys
and the solution time in seconds.

IR 13/14 as Strictly Cyclic IR 13/14 cyclic non-cyclic perfect service

satisfaction [NIS] -704 904 -537 503 -476 774 -424 529 -2 089 049
drivers [-] 470 388 388 388 48 960

rolling stock [-] 940 776 776 776 48 960
covered [%] 100 100 100 100 100

time [sec] 12 6 24 997 25 613 1

Table 4: Computational results of the existing timetables for the 2008 demand

IR 13/14 as Strictly Cyclic IR 13/14 cyclic non-cyclic perfect service

satisfaction [NIS] -3 792 733 -3 379 596 -2 392 909 -1 365 779 -3 171 721
drivers [-] 470 388 388 388 48 960

rolling stock [-] 940 776 776 776 48 960
covered [%] 99.17 99.32 99.32 99.23 100

time [sec] 11 8 86 627 88 342 2

Table 5: Computational results of the existing timetables for the 2014 demand

It is interesting to see (from the tables) that even though the IR 13/14 as strictly cyclic timetable
offers more trains, its passenger satisfaction is lower than of the IR 13/14 timetable for both demand
distributions. The reason behind this, is the fact that there are 6 non-cyclic trains in the IR 13/14
timetable that need to have a cyclic departure time in the strictly cyclic one. The decrease is then
caused by the additional waiting time between the original non-cyclic departure and the new (strictly)
cyclic one. Overall, running a strictly cyclic timetable is not desirable as the operating cost is higher
and the additional benefit is either low or non-existent.

When we compare the IR 13/14 timetable with the cyclic timetable, we can see that proportionally
large increase in passenger satisfaction can be achieved: approx. 60 000 NIS for the 2008 demand
and approx. 1 million NIS for the 2014 demand. As the passenger coverage is 100% and 99.32%
respectively, we can assume that the 2014 demand is just about the maximum capacity of the network,
whereas the 2008 demand is over supplied.
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A similar situation happens for the difference between the cyclic and the non-cyclic timetable.
The differences in the passenger satisfaction are approx. 50 000 NIS and approx. 1 million NIS for
the two demand distributions respectively. The solution time of the SA heuristic is on average 7 hours
for the 2008 demand and one day for the 2014 demand. As the differences among the timetables in
the 2008 demand were marginal, we will from now on keep our focus only on the 2014 demand.
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Figure 3: Network load of the IR 13/14 and of the cyclic timetable for the 2014 demand

When we plot the network load for the 2014 case of the IR 13/14 timetable and of the cyclic
timetable (Figure 3), we can see that both timetables are fairly good in addressing the evening peak
hours, but fail at addressing the morning ones. The failure propagates into surrounding time periods:
early start of the morning peak (i.e. some passengers arriving early at their destinations) and a height-
ened level of passengers in the network in between the peak hours (i.e. late arrivals from the morning
peak and early arrivals for the evening peak). Both timetables exhibit the nature of the repeating
pattern inside the plot.

The improvement of the cyclic timetable over the IR 13/14 timetable is approx. 1 million NIS.
According to the breakdown of the passenger satisfaction (in Figure 5), the improvement is mainly
in the passenger schedule delay. This is due to the fact, that the cyclic timetable is having more
passengers arriving early in to their destinations than the IR 13/14 timetable. Indeed, the β estimate
of being early has lower value (= 0.5) than the β estimate of being late (= 1).

When we compare the network load of the cyclic and the non-cyclic timetable (Figure 4), we can
see that the non-cyclic one is indeed more flexible in accounting for the passenger demand. Especially
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Figure 4: Network load of the cyclic and of the non-cyclic timetable for the 2014 demand
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Figure 5: Breakdown of the passenger satisfaction for various timetables under the 2014 demand

within the peak hours, where there is often more than one train being scheduled (in some cases even
4 trains per hour, Table 10 in Appendix B). This brings about one more million NIS of improvement
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in the schedule passenger delay (Figure 5).
When we look at the breakdown of the passenger satisfaction (Figure 5), we can see that the most

important is the attribute of the schedule passenger delay representing the fact that the passenger
demand is time dependent. Thus, when designing a railway timetable, one should always take into
account the passengers and their travel time preferences.

7.1.2 θ Shifted Cyclic Timetable

As mentioned before, we solve this timetable for various values of θ within the interval between 3
and 30 in 3 minute step size (0 being the solution of the cyclic timetable). The plot of the passenger
satisfaction as a function of θ can be found in Figure 6.
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Figure 6: Passenger satisfaction of the θ shifted cyclic timetable for the 2014 demand

The 0 min shifted cyclic timetable is equivalent to the cyclic one, which is represented by the
dashed line. The 30 min shifted cyclic timetable, on the other hand, is not equivalent to the non-cyclic
one (the dotted line), as the maximum number of trains that are scheduled within one hour is 2 (Table
11 in Appendix B) and 4 (Table 10 in Appendix B) respectively. Thus the θ shifted cyclic timetable
can achieve at most half of the flexibility of the non-cyclic one (around half a million NIS). The trend
of the function is rather linear.

Overall, the improvement in flexibility of the newly proposed timetable is promising. It is a sign
that new alternative timetables exist and should be taken into account. As this was the more restrictive
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configuration, we expect even larger impacts from the other two hybrid timetables.

7.1.3 ξ Partially Cyclic Timetable

In this section, we present the computational results of the ξ partially cyclic timetable for different
levels of partiality under the 2014 demand (Table 6). The first column represents the level of the par-
tiality as a percentage. The second column shows the passenger satisfaction in NIS. The satisfaction
for ξ = 100 is given as it is and all other satisfactions are given as relative to this one. Next columns
give information on the η (which is the number of trains per line that have to follow the cyclic pattern,
Equation 8), the total number of trains that follow cyclic pattern, the total number of trains that are
non-cyclic and the solution time of the SA heuristic.

ξ [%] P. Satisfaction [NIS] η Cyclic Non-Cyclic Time[sec]

0 +1 027 131 0 0 388 –
10 +996 108 2 64 324 48 698
20 +998 444 4 124 264 59 889
30 +1 059 768 5 152 236 64 320
40 +991 634 7 207 181 69 351
50 +1 002 523 9 254 134 66 584
60 +973 353 11 296 92 72 352
70 +842 934 13 331 57 77 017
80 +811 925 14 346 42 69 147
90 +629 754 16 372 16 76 766

100 -5 564 631 18 388 0 –

Table 6: Computational results of partially cyclic timetables for different levels of partiality under the 2014
demand

We plot the passenger satisfaction as a function of ξ in Figure 7. The function is rather exponential.
At the partiality of 30%, it outperforms the non-cyclic timetable. This is caused due to the heuristical
solution approach, i.e. the non-cyclic timetable might have gotten traped in a local optimum.

More importantly, the 90% partially cyclic timetable can achieve slightly better values of the
passenger satisfaction than the 30 min shifted cyclic timetable by having only 16 trains non-cyclic.
Overall, the partially cyclic timetable achieves the passenger satisfaction values close to the ones of
the non-cyclic timetable already around 60% partiality. The ratio, of the cyclic and the non-cyclic
trains at this level of the partiality, is approximately 3:1. This means that a large improvement can
be achieved by having only small adjustments made to the cyclic timetable. We further support this
conclusion on the results of the hybrid cyclic timetable.

7.1.4 Hybrid Cyclic Timetable

The hybrid cyclic timetable as compared to the partially cyclic one, controls the ratio between the
number of the cyclic and the non-cyclic trains by itself. The resulting ratio is approximately 3:1,
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Figure 7: Passenger satisfaction of the ξ partially cyclic timetable for the 2014 demand

which is the same case as for the 60% partially cyclic timetable. The passenger satisfaction is close to
the one of the non-cyclic timetable (it is worse by only 13 405 NIS) and of the aforementioned 60%
partially cyclic timetable (it is better by 40 373 NIS).

When we consider the network load (Figure 8), it is having a similar shape as the one of the non-
cyclic timetable. In terms of the train distribution (Table 12 in Appendix B), we can see the trend
of the non-cyclic trains being mainly scheduled during the morning and evening peak hours. The
solution time of the SA heuristic is 60 113 seconds. Overall, the hybrid cyclic timetable has proven
to be the most suitable configuration as it achieves the flexibility of the non-cyclic one, while keeping
a good level of regularity.

7.2 Summary
Overall for this case study, the proposed hybrid timetables tend to reduce or to completely diminish the
quantitative impact of the regularity (cyclicity constraints). The original gap between the flexibility
of the cyclic and the non-cyclic timetable is 18.5%. The θ shifted cyclic timetable is able to reduce
this gap to a half (for θ = 30). The ξ partially cyclic timetable can further reduce this gap to zero
already at a level of ξ = 60. The ratio of the cyclic and the non-cyclic trains under this ξ is 75% and
25% respectively. This ratio of trains is further supported by the hybrid cyclic timetable, that aims at
providing more even offer of the regularity to the passengers than the other hybrid timetables. Cycles
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Figure 8: Network load of the non-cyclic and of the hybrid cyclic timetable for the 2014 demand

can have either only a cyclic train or both cyclic and several non-cyclic ones. The cyclic trains are
used to secure the regularity and the non-cyclic trains are used to improve the service level during
high demand periods.

8 Conclusion and Future Work
In this research, we consider the quantitative and the qualitative aspects of different passenger railway
timetables. The quantitative attributes (the passenger satisfaction) show that the non-cyclic timetable
is more flexible to account for the passenger demand than the cyclic one. On the other hand, the cyclic
timetable has some qualitative aspects that are favored by the passengers. Namely the regularity of
the service, which makes the timetable easy to be memorized by the passengers. Thus a superiority
of one over the other is difficult to estimate.

In the light of these findings, we propose several combinations of the two, that would implement
the qualitative aspects and allow us to explore and to reduce the quantitative impacts of the regularity.
We have considered three types of hybrid timetables. The first two are generalizations of existing
methods, where the relaxations of the cyclicity are explicitly modeled. The last one is an extension
of the cyclic timetable imposing the non-cyclic trains to be coordinated with cyclic ones. The basic
idea is that the passengers can choose between the flexibility and the regularity. We use the Passenger
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Centric Train Timetabling Problem to design the different timetables and solve it using the simulated
annealing heuristic, that has proven to be an efficient instrument. We illustrate our findings on the
network of Israeli Railways using the ticket selling machines’ data to construct the passenger demand
data. The results of our case study suggest that the hybrid cyclic timetable is the most promising
approach.

Our findings have important impacts for TOCs. Indeed, cyclicity is desired in order to encourage
the passengers to use train as a mode of transportation. Still, its lack of flexibility does not generate
a supply configuration that is satisfying for the travelers in terms of level of service. The concept of
hybrid timetables that we propose in this research allows to maintain the perception of regularity of
the cyclic timetable, and to introduce the necessary flexibility for a high level of service. Although, it
has not been explicitly analyzed in this paper, this added flexibility is expected to generate significant
cost reductions. This will be analyzed in more detail in a future research, where a discrete choice
model will be used to estimate, if a passenger would actually take the train or not. Such approach
allows for a direct estimation of a TOC’s profit based on the revenues and costs. Also, the actual
impact of the hybrid timetables are context dependent, and other case studies should be analyzed.
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A Data Description
The data used in this study were taken obtained from the IR’s website (www.rail.co.il/EN) and from
other studies concerning the IR’s network (Kaspi and Raviv (2013)). An algorithm in Java has been
coded, in order to find a set of all possible paths between every OD pair. The algorithm allows a
maximum of 3 consecutive lines to get from an origin to a destination. The algorithm iterates through
all OD pairs, where at first it considers the paths that consist of a single line and then the paths
that would transfer from the currently selected line up to two other lines. The transfer from one
line to another can be made only at one of the designated transfer points (there are 7 recommended
interchange stations in the network of Israel – Figure 1). Note that the fact, that a transfer is actually
possible depends on the operated timetable. Therefore, some paths might be eliminated later on by
the PCTTP model itself. When all the possible paths are generated, the algorithm removes the paths
that a passenger would not consider (note that these rules are related to the network layout of Israel
and might differ for other case studies):

• paths that consist of several lines including a direct line between the given OD pair, where both
options travel on the same infrastructure (i.e. the passenger would rather stay on the direct line
instead of transferring to another line).

• paths that consist of several lines, where two of them can reach the given destination. Changing
one train to another, when both of them are going to the same destination would not make sense
(the same does not happen for the origin).

• paths that take 25% longer generalized time (sum of in-vehicle-times and transfer penalties)
than the shortest possible path.

• paths that consist of redundant transfers, i.e. transferring from one line to another line that
covers the same stations.

Each passenger is having one extra path that represents their shortest path between an origin and
their destination, when using the first scheduled train after the planning horizon. This path represents
a penalty of not being served. The largest number of paths between an origin and a destination is 73
and the total amount of paths in the network is 21 469.

The traveling times have been extracted from the IR’s website along with the dwell times at sta-
tions that remain fixed (as of the timetable 2013/14). The minimum transfer time has been set to
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4 minutes as in Kaspi and Raviv (2013). The Value Of Time of commuters in Israel as of the year
2012 is 21.12 New Israeli Shekel (NIS)/hour (the updated value was given to us by the author of Shif-
tan et al. (2008)). The β parameters and their values are as follows: βW = 2.5 (Wardman (2004)),
βT = 10 (de Keizer et al. (2012)), βE = 0.5 and βL = 1 (Small (1982)).

A.1 Passenger
The OD flows were kindly provided by Mor Kaspi and Tal Raviv, who have cleaned the ticket selling
machines’ data for the year 2008 and produced the flows of an average working day in Israel. They
have used this data in their study Kaspi and Raviv (2013). The OD matrix consists of hourly passenger
rates between 6 a.m. and 1 a.m. The flows were smoothed into minutes by using non-homogenous
Poisson process, where the hourly flows per OD pair were used as the arrival rate variable. Since the
schedule passenger delay is related to the destination, we have added the time that it takes to get from
an origin to a destination using the shortest path (if the path consisted of transfers, we assumed the
perfect connection, i.e. only the minimum transfer time without any additional waiting at the transfer
station). In total there are 1 505 out of 2 162 OD pairs with 126 036 passengers.

A.2 Operator
As no information about the rolling stock fleet of IR is available, we have introduced the following
assumptions:

• The fleet is homogenous

• A train unit has a passenger capacity of 250

• Each train can consist of up to 2 train units

• The number of train units remains the same between the start and the end station of a train

In order to verify that the assumed train capacity is reasonable, we have solved the un-capacitated
PCTTP of the IR 13/14 timetable under the 2008 demand, where the average train occupation was
172 passengers per train per segment (pptps), minimum occupation was 0 pptps, maximum occupation
1188 pptps and median was 124 pptps. Thus the capacity of 250 passengers per train unit offers a
good level of service.

B Train Distributions
In the tables of this section, we present the train distributions of various types of timetables. The first
row of each table, represents the hour of the day. Each subsequent row, represents each of the lines
in the network (in total 34 lines). The number in each cell gives the information about the number
of trains scheduled in that given hour on that given line. The minimum value found is 0 and the
maximum value found is 4.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
0 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0 0
0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 0 1 0 0 1 0 1 1 1 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 0 1 0 1 1 1 1 1 0 0 0 0 0

Table 7: Train distribution of the IR 13/14 timetable
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

Table 8: Train distribution of the IR 13/14 as strictly cyclic timetable
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0 0 0 0 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
0 0 0 0 0 0 1 1 1 1 0 1 0 0 1 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 0 0
0 0 0 0 0 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 1 1 0 0 1 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0
0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 1 1 1 1 1 0 0 0
0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 0 1 0 1 0 1 1 1 1 0 0 0 0 1

Table 9: Train distribution of the cyclic timetable under the 2014 demand
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0 0 0 0 0 2 2 2 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 0
0 0 0 0 0 0 1 1 1 1 1 0 1 0 1 2 2 2 2 0 2 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 2 4 1 1 0 1 0 1 1 1 0 2 0 1 0 1 0 0
0 0 0 0 0 0 2 1 2 1 1 1 1 0 2 2 1 1 1 1 0 0 0 0
0 0 0 0 0 1 1 1 0 1 1 0 0 0 1 0 3 1 1 0 0 0 0 0
0 0 0 0 0 0 1 2 2 2 0 0 0 0 0 1 2 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 2 0 0 0 1 0 1 2 2 1 1 1 0 1 0 0
0 0 0 0 0 0 2 2 1 1 0 0 0 0 1 1 1 1 1 0 1 0 0 0
0 0 0 0 0 1 1 2 1 1 1 0 1 1 1 1 1 1 0 1 0 1 0 0
0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 2 2 2 1 0 1 0 1 0
0 0 0 0 0 1 1 2 1 1 1 1 1 0 2 1 3 1 1 1 0 0 0 0
0 0 0 0 0 2 2 2 2 0 1 0 1 2 0 1 1 0 2 0 1 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 1 1 0 1 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 2 3 2 0 1 1 0 0 1 3 2 1 2 0 0 0 0
0 0 0 0 0 1 1 2 2 1 0 1 0 1 2 1 1 1 2 0 1 0 1 0
0 0 0 0 0 0 1 2 1 1 1 0 0 0 0 2 1 1 3 0 0 1 1 0
0 0 0 0 0 0 2 1 2 3 1 0 1 0 0 1 0 2 0 1 1 0 1 0
0 0 0 0 0 0 1 0 0 0 1 1 1 2 1 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 3 0 0 1 0 0 0 1 0 2 0 1 0 0 0 0 0
0 0 0 0 0 1 2 1 1 1 1 0 2 0 1 4 0 1 1 1 1 0 0 0
0 0 0 0 0 0 1 1 3 2 0 1 2 0 2 0 1 2 1 0 1 1 0 0
0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 1 2 2 1 0 0 0 0 0
0 0 0 0 0 0 1 3 1 0 2 1 1 0 1 1 1 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 1 1 0 1 0 1 1 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 1 1 0 1 1 0 1 1 0 1 0 0 0 0
0 0 0 0 0 0 1 3 1 1 1 0 0 0 0 1 0 1 0 1 0 0 0 1

Table 10: Train distribution of the non-cyclic timetable under the 2014 demand
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0 0 0 0 0 1 2 1 1 1 1 1 1 1 0 2 1 1 1 0 1 1 0 1
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 2 0 1 2 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 2 0 2 0 1 1 1 1 1 1 0 1 0 0 0
0 0 0 0 0 0 1 2 1 1 1 0 1 1 1 1 2 1 1 1 1 0 1 0
0 0 0 0 0 0 1 1 2 0 0 1 0 0 1 1 1 2 0 1 0 0 0 0
0 0 0 0 0 0 2 1 1 1 1 1 0 0 0 1 1 0 2 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0
0 0 0 0 0 0 1 2 1 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 2 1 1 1 0 1 1 0 2 0 2 0 1 1 1 0 0
0 0 0 0 0 0 1 1 1 1 0 1 0 1 0 2 1 1 1 1 1 1 0 1
0 0 0 0 0 1 1 2 1 1 0 1 1 1 1 2 1 1 1 1 1 1 0 0
0 0 0 0 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0
0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 1 1 0 1 0 0 0 0
0 0 0 0 0 0 2 1 1 1 1 1 1 0 1 0 2 1 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
0 0 0 0 0 0 0 1 2 1 1 0 1 1 1 0 2 0 1 1 2 0 0 1
0 0 0 0 0 0 1 2 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0
0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 1 0 2 1 1 0 0 0 0
0 0 0 0 0 1 1 2 1 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
0 0 0 0 0 1 1 2 0 2 1 1 0 2 1 1 1 1 1 1 1 1 0 0
0 0 0 0 0 0 1 2 1 0 1 1 1 2 0 2 1 1 0 0 0 0 0 0
0 0 0 0 0 0 2 1 0 2 1 1 1 1 1 1 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 2 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 1 0 0 1 1 0 1 1 0 1 1 0 0 0 0 0
0 0 0 0 0 0 1 2 0 2 0 1 1 0 0 0 1 1 0 0 0 1 1 0

Table 11: Train distribution of the 30 min shifted cyclic timetable under the 2014 demand
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0 0 0 0 0 1 2 2 1 2 1 1 0 1 1 1 1 0 2 0 1 1 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 3 2 2 1 0 0 2 0 1 1 2 1 0 0 0 1 0 0
0 0 0 0 0 0 1 1 2 0 1 1 0 1 1 3 1 2 0 1 1 0 1 0
0 0 0 0 0 0 1 0 1 1 0 1 1 0 1 1 1 1 0 1 1 0 0 0
0 0 0 0 0 0 1 1 3 2 0 0 0 0 0 0 1 1 2 0 0 0 0 0
0 0 0 0 0 0 1 3 0 2 0 0 0 0 0 2 2 1 0 2 0 0 0 0
0 0 0 0 0 0 2 1 3 0 2 0 0 0 2 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 2 2 2 1 1 1 0 0 1 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 2 1 0 0 0 2 1 2 1 2 1 2 1 0 0 1 0
0 0 0 0 0 1 1 3 1 1 0 2 1 1 1 2 1 3 0 0 0 0 0 0
0 0 0 0 0 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 0 2 1 0 0 0 0
0 0 0 0 0 0 1 2 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 2 1 1 1 0 1 0 1 2 1 3 1 1 1 1 0 1 0
0 0 0 0 0 0 2 3 1 1 1 0 2 0 0 1 1 1 2 2 0 1 0 0
0 0 0 0 0 0 1 1 2 0 0 1 3 1 0 3 1 1 1 0 0 0 0 0
0 0 0 0 0 1 2 1 1 1 1 1 1 0 1 1 1 1 2 0 1 0 0 0
0 0 0 0 0 0 0 0 1 2 1 1 0 0 0 0 0 1 1 1 0 1 0 0
0 0 0 0 0 0 0 1 3 0 0 0 0 2 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 1 1 1 0 1 1 0 1 2 2 1 2 2 1 1 0 0 0
0 0 0 0 0 1 3 1 2 2 1 0 0 1 0 2 1 1 0 1 1 1 0 0
0 0 0 0 0 0 1 0 2 2 0 1 0 1 1 1 2 0 0 2 0 0 0 0
0 0 0 0 0 0 0 3 1 1 2 0 2 0 1 1 1 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 3 0 0 0 0 0
0 0 0 0 0 0 0 2 1 1 1 0 2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 1 1 0 0 0 1 1 0
0 0 0 0 0 0 2 2 0 0 0 1 0 1 1 1 0 0 1 0 0 0 0 1

Table 12: Train distribution of the hybrid cyclic timetable under the 2014 demand
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