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Abstract
Fifty years ago, transportation and logistics problems were primarily analyzed either from a
supply-side or a demand-side perspective, with the fields of operations research and demand
modeling evolving separately. Since then, there has been a growing interest in behavioral op-
timization models, aiming to integrate both supply and demand aspects. The purpose of this
survey is to offer a historical perspective on the evolution of behavioral optimization models in
transportation and logistics. It does so by delving into significant works in demand modeling and
choice-based optimization, highlighting their interconnections. In particular, we focus on three
important optimization applications, namely the facility location problem, the airline scheduling
and fleet assignment problem, and the urban transportation planning problem. Additionally,
we identify potential avenues for future research to bridge existing gaps in the literature and
promote behavioral models in transportation and logistics.

1 Introduction
Over the past half-century, the field of transportation and logistics has undergone an important
transformation in the representation of humans and demand within optimization models. This
evolution has been driven by the recognition that traditional approaches, which primarily focused
on operational efficiency and profit maximization, fell short in capturing the complex interplay
between supply and demand, as well as the preferences and choices of individuals within these
systems. In transportation, as in other fields, demand can be characterized by aggregating the
choices made by a heterogeneous population of actors (travelers, customers, etc.); the primary
method for representing disaggregate demand is the use of choice models. Using this more com-
plex representation of demand, behavioral, or choice-based, optimization models are an answer
to the challenge of capturing the interactions between supply and demand. These models aim
to influence the behavior and choices of individuals by incorporating their preferences into the
optimization process. A prime example of behavioral change is an individual’s decision to adopt
a new transportation mode, such as using public transportation instead of a personal car for
daily commuting or switching to a different supplier for purchasing products. In this article,
we delve into the historical development of these behavioral optimization models, tracing their
evolution over time and shedding light on their significance in the fields of transportation and
logistics.

One key aspect of this transformation is the changing role of humans in optimization mod-
els. Initially, transportation and logistics models predominantly centered on operators, aiming
to maximize revenues without considering the utility of passengers or customers. However, a
paradigm shift occurred over time, leading to the emergence of passenger-centric models. This
shift gained prominence at the end of the 2000s, with seminal works like that of Lu et al. (2009),
and has continued to grow in popularity. As evidence of this trend, 36 publications with the
term ’passenger-centric’ in their title, abstract, or keywords were found within the Web of Science
database, with half of them being published in the last five years.

Simultaneously, the representation of demand within transportation and logistics models has also
undergone major evolution within the operations research literature. Fifty years ago, demand
was often represented using simplified models, but these representations have since evolved into
more complex and accurate forms. Demand can be represented through aggregated or disag-
gregated models. The former treats demand as aggregated flows and thus tends to overlook
individual preferences. One of the pioneering works in aggregated demand modeling is Talvitie
(1973), which introduced the so-called econometric model. In contrast, disaggregated models
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incorporate individual preferences and sometimes account for heterogeneity among individuals
within a population. The state-of-the-art of disaggregated demand modeling is discrete choice
models (Pacheco Paneque, 2020), with most of them being random utility models, assuming that
economic agents are solving an optimization problem. The popularization of the logit model
(Ben-Akiva, 1973; McFadden, 1973) marked the beginning of this trend fifty years ago, along
with the development of new mathematical reformulations for the transportation problem, often
referred to as the Monge–Kantorovich problem (Intrator, 1973; Appa, 1973). It is worth noting
that the identification of discrete choice models is a specific instance of the Monge–Kantorovich
problem (i.e., the solution of the dual of this Monge–Kantorovich problem corresponds to the
individual preferences) (Chiong et al., 2016). In recent years, more complex and realistic discrete
choice models, such as the mixture of logit model, have been proposed, enriching the repertoire
of tools available to researchers in this domain.

These two parallel changes— the shift towards passenger-centric models and the development
of more sophisticated demand representations— are closely interconnected. Models centered on
passengers require a disaggregated representation of demand to accurately capture the nuanced
choices and preferences of individuals within the transportation and logistics systems.

This article aims to provide transportation researchers with a historical perspective on the devel-
opment of behavioral optimization models in transportation and logistics. Our objective is not to
offer a comprehensive literature review but rather to offer insightful commentary on the historical
evolution and prospective future of these models. We will review significant works in the fields
of demand modeling and choice-based optimization from the past half-century, discussing their
contributions and implications. Furthermore, we will present perspectives for future research in
this dynamic and evolving field. The remainder of this paper is organized as follows. Section 2
introduces the key foundations of demand modeling in transportation and logistics and reviews
major works published over the past fifty years. Section 3 discusses the methodological develop-
ments in the choice-based optimization field, makes connections between contributions for three
applications in transportation and logistics, gives a general overview of the challenges inherent in
this type of model. Section 4 highlights several promising research perspectives. Finally, Section
5 concludes the paper.

2 Modeling demand
Demand is defined here as “the quantity of a good that consumers are willing and able to purchase
at various prices during a given time” (Wikipedia). It is intimately related to human behavior and
choice, as individuals make decisions based on their preferences, needs, and constraints.

In logistics, demand can take various forms, such as the number of customers buying from a
firm, the volume of products, or the count of students registering at a school. In contrast, in
transportation, travel demand encompasses both short-term decisions (e.g., choosing activities,
departure times, transportation modes, and itineraries) and long-term decisions (e.g., whether
to purchase a car or not and housing decisions). It can be considered a ‘derived’ demand because
individuals do not travel to get around per se, but rather to carry out activities distributed
in space and time. Traditionally, it was modeled using the four-step approach, but it can also
be represented using disaggregated models or discrete choice model extensions, such as activity-
based modeling and dynamic choice models. In this section, we will review the latter approaches.
Note that they all (except the four-step model) also apply to choices made by individuals in a
logistics system.
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2.1 Aggregate demand model: the four-step model
The evolution of travel demand modeling has witnessed the development of various approaches
and techniques. One of the seminal models in the field is the four-step model, which emerged
in the 1950s during the post-war development era in the United States (McNally, 2007). This
model provides a structured framework for analyzing demand and can be applied to various
transportation scenarios.

In the four-step model, demand is represented as flows, with the modeling process decomposed
into four sequential subproblems:

1. trip generation— the objective is to estimate the number of trips originating from different
areas. This problem can be framed as a location choice problem, where individuals decide
where to start their journeys.

2. trip distribution— distribute the trips to potential destinations. This step can be con-
ceptualized as a multi-commodity flow problem, where trips are allocated among available
destinations.

3. mode split— allocate trips to different travel modes. This allocation can be based on
predetermined choices or modeled using choice models.

4. trip assignment— assign trips to specific travel routes. This process can be viewed as an
‘all-or-nothing’ assignment, where for each trip the shortest path is selected. In order to
account for congestion, it must be treated as a Nash equilibrium problem and solved using
methods like the Frank-Wolfe algorithm.

While the four-step model offers a comprehensive framework for travel demand modeling, it pri-
marily focuses on aggregated decisions. The representation of demand with flows is associated
with an implicit assumption of behavioral homogeneity. Although several approaches have at-
tempted to relax this assumption by defining multiple classes of travelers, the need to capture
travel behavior at the individual level has become necessary.

2.2 Disaggregated demand models: discrete choice models
While there exist several types of disaggregated choice models, e.g., Markov chain models and
rank-based models, we focus here on the state-of-the-art approaches, namely discrete choice
models. These models are rooted in microeconomic principles and random utility theory. They
assume that individuals are rational decision-makers who seek to maximize their utility, subject
to budget constraints. Formally, each individual solves

max
q∈X

{u(q)|pT q ≤ I},

where X is the set of all possible decisions, I is the total budget or capacity, p is a vector of the
prices or resource consumption, q is a decision, and u(q) its utility.

When X = RL, i.e., when the decisions are continuous, this optimization problem corresponds
to continuous optimization. However, when some or all decisions are discrete, it transforms into
a mixed integer optimization problem (MIP). Since first-order (and second-order) optimality
conditions do not apply to MIPs, demand functions (i.e., functions that output the quantity of
each product purchased or chosen as a function of its attributes) cannot easily be derived, as is
the case for the continuous case.
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Consider the case with two alternatives. Uin is the utility associated with individual n and
with alternative i and Ujn with alternative j. In reality, Uin is a random variable defined as
Uin = vin+εin, where vin is deterministic and the error term εin is a continuous random variable.
The deterministic term vin is usually expressed as a linear function vin = βT

n xin of the model’s
parameters βT

n and the vector of variables xin, including the socioeconomic characteristics of
individual n and the attributes of alternative i. Discrete choice models differ in terms of the
assumptions they make about the distribution of the error term, and the fact that the whole
population can be modeled by the same β parameters or not.

The binary logit model is the specific case where we assume the error terms εin and εjn to be
independent and identically distributed across i and n and their difference εn = εjn−εin to follow
a logistic regression. This model and its version with multiple alternatives has a closed-form
probabilistic expression. It was popularized by the American economist and Economics Nobel
Prize winner Daniel McFadden in McFadden (1973) and is still widely used in the literature.
However, the logit model has been widely criticized because of its assumptions that can lead to
unrealistic forecasts of individual choice. Particularly, it performs poorly when there are complex
substitution patterns due to one of its properties called Independence of Irrelevant Alternatives
(IIA), which is a direct consequence of the independence assumption for the error terms.

To address these limitations, more complex discrete choice models have been introduced over the
past 50 years:

1. nested logit— alternatives are grouped into nests such that in each nest the IIA assumption
holds. This model has a closed form probabilistic expression, like the logit model.

2. cross-nested logit (Small, 1987; Vovsha, 1997; Papola, 2004; Bierlaire, 2006)— alterna-
tives are grouped into nests such that nests may overlap. This model can capture mixed
interactions among alternatives and has a closed-form probabilistic expression.

3. mixture of logit— various parameters of the logit model can be assumed to be distributed,
in order to capture unobserved taste heterogeneity. McFadden and Train (2000) showed
that a mixture of logit model can approximate any discrete choice model. However, it does
not have a closed-form probabilistic expression.

These models generally represent individual behavior better than the simple logit model, but
parameter estimation is more difficult. Note that the logit, the nested logit, and the cross-nested
logit models are part of the so-called multivariate extreme value (MEV) family of choice models
introduced by McFadden (1978), which includes many other models (some of which have not
yet been exploited). Interested readers can find complementary information on discrete choice
models in the following textbooks: Ben-Akiva and Lerman (1985) and Train (2009).

2.3 Disaggregate demand models: beyond discrete choice models
Traditionally, demand modeling often focuses on isolated trip-level decisions, failing to account
for correlations between multiple trips made by the same individual or within a household. Two
innovative approaches have emerged to address these shortcomings: activity-based modeling and
dynamic choice models.

Activity-based modeling. These models represent a shift in perspective, viewing travel not
as an end in itself but as a mean to fulfill specific activities within time and space constraints.
It provides a more comprehensive understanding of traveler behavior by considering the broader
context of activities and their dependencies. Recent advancements in activity-based modeling,
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such as the framework proposed by Pougala et al. (2023), have further enhanced our ability to
capture the dynamics of demand in activity-based contexts. We refer interested readers to the
survey of Rasouli and Timmermans (2014) for further details on this topic.

Dynamic choice models. These models extend discrete choice modeling to capture sequential
decision processes where each decision depends on previous ones. These models are particularly
relevant when analyzing long-term correlations in decision-making, such as purchasing a house
at time t followed by buying a car at time t+1, and planning a road trip for the holidays at time
t + 2. To accommodate such correlations, discrete choice models may rely on synthetic data to
infer future individual or household attributes. Recent works by Aguirregabiria and Mira (2010),
Bierlaire et al. (2021), and Cirillo and Xu (2011) have made significant contributions to the field
of dynamic choice modeling, allowing for a more nuanced understanding of complex decision
sequences.

3 Choice-based optimization
Individual choice is best represented by disaggregated choice models, for which discrete choice
models are the state-of-the-art. In this section, we review optimization models accounting for
endogenous demand through an explicit incorporation of discrete choice models inside the opti-
mization problem. Note, however, that there is a large number of works introducing optimization
models based on aggregated demand models, such as

1. Time-varying unimodal origin-destination matrices (see, e.g., Yin et al., 2016, 2017; Binder
et al., 2017; Tong et al., 2017; Szymula and Bešinović, 2020; Polinder et al., 2022; Wang
et al., 2022),

2. Spatial-temporal demand models using massive data (see, e.g., Tu et al., 2016; Ma et al.,
2023),

3. Gravity models (see, e.g., Birolini, Jacquillat, Cattaneo and Antunes, 2021; Tiwari et al.,
2021; Birolini et al., 2023),

4. General attraction models (see, e.g., Wei et al., 2020; Yan et al., 2022).

Yet, integrating aggregated demand models into optimization problems is much more straight-
forward than integrating discrete choice models, thus our focus is on the latter. Note also that
many works in the literature embed another type of disaggregated choice model, namely Markov
chain choice models, into optimization problems (see, e.g., Blanchet et al., 2016; Feldman and
Topaloglu, 2017; Ahipaşaoğlu et al., 2019). This parallel research direction is however outside of
the scope of our review.

The remainder of this section is organized as follows. First, notable methodological developments,
both in terms of modeling and solution method, are presented in Section 3.1. Second, we review
in Section 3.2 three applications in transportation in logistics. Based on the models for these
applications, we provide general comments on challenges of choice-based optimization in Section
3.3.

3.1 Methodological development
Over the past few years, there have been methodological developments aimed at overcoming
the computational complexity of choice-based optimization and incorporating realistic features
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of optimization problems. On the one hand, when demand modeling is too complex to be
directly included in an optimization problem, two approaches can be employed: (i) simulation-
based optimization (Gosavi et al., 2015) and (ii) numerical approximation (Gilbert et al., 2014b).
However, while (i) is time-consuming, (ii) comes at the cost of a decrease in the quality of the
demand approximation. Therefore, one must carefully weigh the advantages and disadvantages
of each method to choose the most appropriate one in each context. On the other hand, several
works have proposed methodological advances for choice-based optimization with competition
among multiple suppliers. In the following section, we provide more details on these three crucial
methodological developments.

Simulation-based optimization. Simulation-based optimization is a family of techniques
that optimize a stochastic simulation to find good decisions or strategies. In the case of choice-
based optimization, simulation can be used to approximate the demand for a service or a product
by generating several random choices based on the utility functions and using a sample average
approximation method (see, e.g., Haase and Müller, 2013; Legault and Frejinger, 2022, for works
relying on simulated demand). This method avoids the use of the choice probabilities, which
may be highly nonlinear and not have a closed-form probabilistic expression.

Recently, Gupta et al. (2020) and Osorio and Atasoy (2021) developed simulation-based frame-
works for the transportation demand management problem, where the traffic assignment sub-
problems are simulated. The transportation demand management problem consists of optimiz-
ing a set of control strategies (e.g., tolls or ramp metering rates) to minimize traffic congestion.
Gupta et al. (2020) proposed a simulation-based model for the real-time transportation demand
management problem. A genetic algorithm is applied to solve this problem, treating the traf-
fic prediction simulation as a black box. In Osorio and Atasoy (2021), a non-linear analytical
network model is introduced. This network model can approximate the mapping between the
toll vector and the network performance (given, e.g., by the congestion level). The model is
integrated into a metamodel for simulation-based optimization, where the simulator is no longer
treated as a black box. Analytical information from the network model is combined with infor-
mation from the simulator, resulting in high computational efficiency and the ability to handle
large-scale cases.

In the context of MIPs, Pacheco et al. (2021) presented a general simulation-based framework
that can be applied to any problem and given any discrete choice model. In order to solve
instances of relevant size, the authors extended the latter framework in Pacheco et al. (2022) to
include a Lagrangian decomposition approach.

Numerical approximation. The demand (or flow) assignment can be replaced by numerical
approximations that can provide demand (or flow) in closed form. On the one hand, piecewise
uniform or linear approximations of the demand functions are common practice (see, e.g., Gilbert
et al., 2014b, 2015; Cadarso et al., 2017; Birolini, Antunes, Cattaneo, Malighetti and Paleari,
2021). Alternatively, for a mixture of logit model, the distributions of the factors specifying the
heterogeneity in the population (e.g., the price sensitivity of individuals) can also be approxi-
mated by piecewise uniform or linear distributions. In Birolini, Antunes, Cattaneo, Malighetti
and Paleari (2021), the number of pieces, the breaking points, and the feasible region of the
piecewise linear function are selected such that the approximation error is minimized based on a
least squared fit. On the other hand, a stochastic choice model can be replaced by a deterministic
choice model (also referred to as an “all-or-nothing” assignment) by dropping the error term (see,
e.g., Gilbert et al., 2014b, 2015).

6



Competition. Bortolomiol et al. (2021), Cadarso et al. (2017), Liu et al. (2019), and Gallego
and Wang (2014) have investigated supply and demand interactions involving multiple suppliers.
This situation can be characterized as a noncooperative game, either a Nash-type game when
all players possess the same status or a Stackelberg-type game when there is a hierarchical
relationship among the players. Nash games have been extensively researched in the context of
an oligopolistic marketplace (i.e., a marketplace with a small number of competing suppliers).
Bortolomiol et al. (2021) introduced a simulation-based optimization heuristic that is close to
a fixed-point iteration algorithm for approximating equilibria in oligopolistic-type competition.
Furthermore, the existence and uniqueness conditions of equilibrium in games involving various
discrete choice models are studied in Milgrom and Roberts (1990), Bernstein and Federgruen
(2004), Gallego et al. (2006), Kök and Xu (2011), and Li and Huh (2011), among others.

3.2 Applications
We review choice-based optimization through the prism of three key problems: facility location,
airline scheduling and fleet assignment, and urban transportation planning. These problems differ
in terms of their complexity, structure, and supply-demand interactions, among other things, as
we discuss next.

3.2.1 Facility location

The facility location problem (or the maximum capture location problem) is to locate r new
facilities in a market such that the number of customers buying from the facilities of the firm is
maximized. Let M be the set of available locations for the facilities and J ⊂ M be the facility
locations selected in the problem solution to be opened. Existing competitors in the market,
denoted by X ⊂ M, can be considered or not. The customers are located in zones i ∈ I, where
each zone is associated with a number qi of customers. This problem can be formulated as

max z =
∑
i∈I

qi
∑
j∈J

P (i, j|J ,X ) (1)

(2)

where P (i, j|J ,X ) is the proportion of customers located in i choosing facility j ∈ J . When
the choice probability P (i, j|J ,X ) is given by a logit model, this problem can be formulated
as

max z =
∑
i∈I

qi

∑
j∈M evijyj∑

j∈X evij +
∑

j∈M evijyj
, (3)

s.t.
∑
j∈M

yj = r, (4)

yj ∈ {0, 1}, ∀j ∈ J , (5)

where vij is the deterministic part of the utility of location j for customers in zone i (i.e.,
uij = vij + εij) and yj is equal to 1 if facility j is selected and 0 otherwise.

In recent years, there have been significant developments in both the formulation of the facility
location problem and the solution techniques used to solve it, as detailed next. The seminal
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work of Benati and Hansen (2002) introduced the logit-based facility location problem which
was proven to be NP-hard (Benati, 1999). Additionally, they provided the first two linear refor-
mulations of this problem, one of which is taking advantage of the submodularity of the objective
function—a key insight from an earlier work (Benati, 1997). Furthermore, an exact branch-and-
bound method to solve the linearized problems and a variable neighborhood search heuristic to
solve larger instances are proposed.

The logit-based facility location problem was later enhanced when Haase (2009) introduced
another linear reformulation, leveraging the constant substitution pattern inherent to the logit
model. Subsequently, in Haase and Müller (2014), this new reformulation was compared to the
ones proposed in Benati and Hansen (2002), and it was found to be more efficient. Furthermore,
Haase (2009) proposed a second formulation that considers discrete choice models with flexible
substitution patterns. To address this formulation, they employed a simulation-based approach,
specifically a sample average approximation framework, to derive solutions.

In Freire et al. (2016), the mixed integer linear optimization problem (MILP) reformulation of
Haase (2009) is strengthened by incorporating tighter coefficients in some inequalities. Further-
more, they developed a new branch-and-bound algorithm with a greedy approach. Their method
was found to be more efficient than benchmark approaches on several numerical experiments,
notably for instances of the park-and-ride facility location problem.

Ljubić and Moreno (2018) made a significant contribution by introducing a new branch-and-
cut algorithm that combines two types of cutting planes, namely outer-approximation cuts and
submodular cuts. Their approach significantly improved the state-of-the-art exact approaches
for the facility location problem. This work stayed state-of-the-art until Mai and Lodi (2020)
introduced more efficient outer-approximation cuts that generate cuts for groups of zones instead
of cuts for each zone. Their solution method also differs from that of Ljubić and Moreno (2018)
because they use their cuts in a cutting plane approach instead of a branch-and-cut. Moreover,
they tested their approach for both a logit and a mixture of logit discrete choice model.

Dam et al. (2022) studied the facility location problem employing the MEV family of discrete
choice models, which includes the logit and the nested logit models, but not the mixture of logit.
They demonstrated that the objective function is submodular under any MEV type of discrete
choice model and developed a new algorithm combining a greedy heuristic with gradient-based
local search and an exchange procedure to solve their mixed-integer nonlinear optimization prob-
lem. Legault and Frejinger (2022) extended the submodularity proof for objective functions with
any random utility function maximization model. They estimated demand using a generalized
version of the sample average approximation method of Haase (2009) and developed a new
branch-and-cut algorithm.

A facility location problem with a sequential decision process is introduced in Méndez-Vogel
et al. (2023). A nested logit models the sequential decision process of first choosing a firm, and
then choosing the store to buy from (i.e., the stores are nested by their firm). The resulting
mixed-integer nonlinear optimization model is solved using a branch-and-cut algorithm featuring
new cuts.

Müller et al. (2009) and Haase and Müller (2013) addressed a variant of the problem for school
location planning with free school choice. In Müller et al. (2009), a two-step problem for the
multi-period variant is proposed. In the first step, a set of school planning scenarios is generated
and, for each scenario, a mixture of logit model gives the share of students choosing the available
schools given capacity constraints. Then, in the second step, the scenario that minimizes the
costs is selected. Later, Haase and Müller (2013) presented a model for the school location
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planning problem that can accommodate any random utility function while considering capacity
and budget constraints. School choice is given by simulated utility values obtained using a
sample average approximation framework and the resulting problem is solved using a standard
MIP solver.

Zhang et al. (2012) developed a model for the preventive care facility location and configuration
problem considering constraints on mean waiting time, workload requirements, capacity, and
server availability. In addition to selecting the location of the new facilities to open, the capacity
of each facility (i.e., the number of servers allocated) must be decided. Each facility is modeled
as a M/M/c queuing system, where c is the number of servers. The MIP formulation is solved
using two heuristics, a probabilistic search-based algorithm and a genetic algorithm.

Finally, a park-and-ride facility location problem using a logit model for the mode choice is intro-
duced in Aros-Vera et al. (2013). The linearized problem is solved using a heuristic concentration
integer approach.

Table 1 summarizes the main attributes of the literature on the choice-based facility location
problem reviewed. The columns display the discrete choice model used, the choices modeled by
the discrete choice models, the type of problem (linear - L, non-linear - NL, and integer - INT),
the solution method employed (Sol. method), and the additional constraints included (Add.
constr.).

Authors Discrete choice model Choice Type of problem Sol. method Add.
Logit NeL MoL L NL INT constr.

Benati (1999) • firm • • MILP, MH
Haase (2009) • firm • • MILP, SAA
Müller et al. (2009) • school • • QP capacity
Zhang et al. (2012) • hospital • • MH capacity, service quality
Aros-Vera et al. (2013) • mode • • MILP, MH
Haase and Müller (2013) • school • • MILP, SAA capacity, budget
Freire et al. (2016) • firm • • B&B
Ljubić and Moreno (2018) • firm • • B&C
Mai and Lodi (2020) • • firm • • B&C
Dam et al. (2022) • • firm • • H
Legault and Frejinger (2022) • • firm • • B&C, SAA
Méndez-Vogel et al. (2023) • firm, store • • B&C

Table 1: Main attributes of selected choice-based facility location problems. NeL - nested logit
model, MoL - mixture of logit model, L - linear, NL - nonlinear, INT - (mixed-)integer. So-
lution method: B&B - branch-and-bound method, B&C - branch-and-cut, H - heuristic, MH -
metaheuristic, MILP - mixed integer linear optimization method, QD - quadratic optimization
method, SAA - sample average approximation

We can observe that our understanding of the facility location problem, especially the submodu-
larity of its objective function under different classes of discrete choice models, has evolved over
the years. Nowadays, we know that the submodularity of the objective function holds for any
random utility function maximization model (including MEV’s type of discrete choice model)
(Legault and Frejinger, 2022). This feature allows the problem to be easily transformed into a
MILP. Furthermore, efficient branch-and-cut algorithms are readily available. For specific appli-
cations, additional constraints, such as capacity or budget constraints, may make this problem
more complex to solve, and efficient heuristics are often needed to tackle real-life instances.
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3.2.2 Airline scheduling and fleet assignment

The integrated airline schedule design and fleet assignment problem consists of determining flight
schedules (departure and arrival times) and assigning an airline fleet type to each scheduled flight
in order to maximize profit. This problem was formulated as a multicommodity flow problem
in Hane et al. (1995). We present here a general mathematical formulation for the incremental
airline schedule design and fleet assignment problem, which considers an initial schedule with
mandatory and optimal flight legs.

Let L denote the set of flight legs, with Lm and Lo the sets of mandatory and optional flights,
respectively. Let also F be the set of all fleet types and F(ℓ) be the set of fleet types compatible
for a given flight leg ℓ ∈ L. For each fleet type f ∈ F , we build a time-space network with node
set Nf . In this time-space network, In(v), Out(v) are the sets of inbound and outbound flight
arcs from node v ∈ Nf , respectively. Furthermore, yv represents the number of aircraft on the
ground at node v. For every fleet type f ∈ F , let TF (f) and TN (f) denote the sets of flight
and ground arcs in the time-space network at count time, respectively. The count time is set
arbitrarily.

We denote H the set of cabin classes (e.g., economy and business). Let also I be the set of flight
itineraries, and I(ℓ) be the itineraries requiring flight ℓ ∈ L. For each cabin class h ∈ H and
itinerary i ∈ I, pih is the price of the flight ticket, and sih is the demand for the corresponding
product.

The mixed-integer problem also uses the following notation. Let xℓf be a binary variable equal to
1 if fleet type f is assigned to flight ℓ and 0 otherwise. This problem can be expressed as:

max
∑
i∈I

∑
h∈H

pihsih −
∑
ℓ∈L

∑
f∈F(ℓ)

cℓfxℓf , (6)

s.t.
∑

f∈F(ℓ)

xℓf = 1,∀ℓ ∈ Lm, (7)

∑
f∈F(ℓ)

xℓf ≤ 1,∀ℓ ∈ L0, (8)

yv− +
∑

ℓ∈In(v)

xℓf = yv +
∑

ℓ∈Out(v)

xℓf ,

∀f ∈ F , v ∈ Nf ,

(9)

∑
v∈TN (f)

yv +
∑

ℓ∈TF (f)

xℓf ≤ nf ,∀f ∈ F , (10)

∑
h∈H

∑
i∈I(ℓ)

sih ≤
∑

f∈F(ℓ)

Qfxℓf ,∀ℓ ∈ L, (11)

sℓh ≥ 0,∀ℓ ∈ L, h ∈ H, (12)
yv ≥ 0,∀f ∈ F , t ∈ T , v ∈ Nft, (13)
xℓf ∈ {0, 1},∀f ∈ F(ℓ), ℓ ∈ L, (14)

where v− is the predecessor node of node v, nf is the number of available aircraft of type f , Qf

is the capacity of aircraft type f , and cℓf is the operational costs of flight ℓ when using aircraft
type f . Note that pih, for i ∈ I, h ∈ H, can be fixed or considered as a decision variable. In
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the latter case, the problem includes a pricing component. The objective function (6) maximizes
the profit, defined as the revenue minus the operational costs. Constraints (7) and (8) ensure
that the mandatory flights and the optional flights are covered exactly once and at most once,
respectively. The flow conservation in each time-space network is guaranteed by constraints (9).
Constraints (10) limit the number of aircraft of each type used and constraints (11) are to ensure
the sales on a flight do not exceed the seat capacity of the aircraft.

The choice-based integrated airline schedule design and fleet assignment problem is when the
demand variables sih, for all i ∈ I, h ∈ H, are considered endogenous to scheduling decisions
and represented by a discrete choice model. Atasoy et al. (2014) proposed a mixed-integer
nonlinear optimization problem for the integrated airline schedule design, fleet assignment, and
pricing problem approximating the passenger spill and recapture effects. The itinerary choice
model (i.e., a logit model) computes the market share of each itinerary based on the price, the
travel time, the number of stops, and the departure time of the itinerary. Unfortunately, the
highly nonlinear parts of this model pose computational issues and limit its implementation
to small-scale instances. Later, Dong et al. (2016) proposed two mixed-integer models, one of
which includes the itinerary price elasticity. The nonlinear constraints associated with demand
(i.e., the constraints that ensure the market share of an itinerary is proportional to its utility) are
approximated by two fractional constraints. The heuristic developed can scale to larger instances
and outperforms the CPLEX MIP solver.

Cadarso et al. (2017) and Xu et al. (2023) tackled the choice-based integrated airline schedule
design and fleet assignment problem with competition effects. In Cadarso et al. (2017), compe-
tition between airlines and a high-speed train new to the market is examined. The demand is
estimated using a nested logit model, but the prices for all itineraries are considered fixed. The
nonlinear function of the demand for an airline in terms of the frequency of the service is approx-
imated by piecewise linear functions. The resulting mixed-integer linear optimization problem
is solved using CPLEX to near-optimal solutions. The work of Xu et al. (2023) is an extension
that further considers endogenous pricing and a comprehensive design approach (in opposition to
the commonly used incremental approach). The problem is framed as a differentiated Bertrand
game and an efficient algorithm combining column generation and large neighborhood search
algorithms is proposed.

Birolini, Antunes, Cattaneo, Malighetti and Paleari (2021) proposed an efficient approach for the
choice-based integrated airline schedule design and fleet assignment problem able to solve mid-
size instances of hub-and-spoke networks using a regular MILP solver. The demand functions
are linearized by using piecewise linear functions.

Table 2 summarizes the main attributes of the literature on the choice-based integrated airline
schedule design and fleet assignment problem reviewed. The columns display the discrete choice
model used (DCM), consideration of passenger spill and recapture (S/R), endogeneity of pricing
(pricing probl.), if the demand functions are approximated, for example using piecewise linear
functions (approx. demand), implementation of complete or incremental timetabling (Incr.),
whether the solution method is exact or heuristic (heur.), as well as some attributes of the
largest instance solved, namely the number of itineraries (|I|), fleet types (|F|), fare class (|H|),
and airports (# airp.).

Overall, we observe that when considering the price as a decision variable, the problem complexity
increases and heuristic solution methods must be employed. Furthermore, all the works except
the one of Atasoy et al. (2014) which is limited to small-scale cases use a numerical approximation
method to address the tractability issues associated with the nonlinear part of the problem.
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Authors DCM S/R Pricing Approx. Incr. Method Instances
Logit NeL probl. demand Exact Heur. |I| |F| |H| # airp.

Atasoy et al. (2014) • • • • • 36 3 2 3
Dong et al. (2016) • • • • • 876 5 3 NA
Cadarso et al. (2017) • • • • 104 3 NA 23
Birolini, Antunes, Cattaneo, Malighetti and Paleari (2021) • • • • 2,170 2 NA 100
Xu et al. (2023) • • • • 110 14 2 56

Table 2: Main attributes of selected choice-based airline scheduling and fleet assignment contri-
butions. NeL - nested logit model.

3.2.3 Urban transportation planning

Transportation planning traditionally encompasses public transportation planning and traffic
flow optimization (e.g., through efficient road pricing schemes), the latter being complemented
by the planning of emerging mobility services like car-sharing, electric bike-sharing, and ride-
sourcing. In this section, we will first describe the key aspects of these three urban transportation
planning components before going through relevant choice-based optimization models proposed
in the literature.

First, public transport service planning involves the identification of routes to serve, the planning
of trips along these routes, and the allocation of resources (both material and human) to cover
the planned trips. In this context, the primary objective of public authorities is to provide a
given population with the highest level of service, including service availability and quality, while
adhering to budgetary constraints. This can be interpreted as aiming to maximize the user’s
utility, where the utility can be a function of spatial, temporal, and capacity availability, as well
as safety, reliability, average travel time, average waiting time, and comfort, among other factors.
The overall public transportation planning problem is too complex to be addressed as a whole
and is therefore usually divided into sub-problems that are solved either sequentially or in an
integrated manner. These sub-problems are:

1. Network design, which involves identifying the links to be integrated into the transportation
network and aggregating these links to form coherent routes,

2. Frequency setting and timetabling, which entails determining the frequency of service on
each route and establishing the exact schedule,

3. Vehicle scheduling, aimed at assigning vehicles to timetabled trips,

4. Crew scheduling, involving the establishment of anonymous driver workdays and personal-
ized driver schedules that are valid for several weeks,

5. Maintenance scheduling, relating to the planning and management of maintenance tasks
and downtime for vehicles and infrastructure,

6. Real-time control, which allows for adjustments to the operational plan during execution.

The network design as well as the frequency setting and timetabling sub-problems both rely
on demand models, whether they are aggregated or disaggregated, to determine the demand
on each route within a given network and route frequencies. Consequently, these problems
can be formulated as choice-based optimization problems. On-demand (or demand-responsive)
transportation (see, e.g., Nelson et al., 2010; Liu and Ceder, 2015; Vansteenwegen et al., 2022)
can complement fixed-line and scheduled public transportation systems by serving low-density
areas and feeding the traditional public transportation system. The planning of an on-demand
transportation system involves determining the number of vehicles in the system, the location
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of stations (if using any), and the route (if using any). Subsequently, vehicles are dispatched to
meet the real-time demand or requests placed a few hours in advance.

The second facet of transportation planning is optimizing traffic congestion. The primary ob-
jective of traffic congestion optimization is typically either reducing the average waiting time
in traffic or lowering greenhouse gas emissions resulting from traffic. For many decades, the
predominant approach to mitigating traffic congestion was expanding road capacity. However, it
has been demonstrated that this approach, due to induced demand (Goodwin and Noland, 2003;
Duranton and Turner, 2011), does not necessarily improve the situation and may even make it
worse. Today, transportation demand management strategies aims at influencing the choice of
travel mode, departure time, route, and even the decision to engage or not in an activity (thus
necessitating travel). One of the most commonly applied measures involves the implementation
of road pricing, often referred to as congestion pricing, network pricing, or toll pricing.

Finally, emerging mobility services, like bike-sharing (Fishman, 2016), car-sharing (Shaheen and
Cohen, 2013), scooter-sharing, and ride-haling (Tirachini, 2020) have complemented traditional
transportation systems in recent years. The planning decisions for such a service are fixing
the number of vehicles in the system and determining the stations and their capacity (if using
any).

The network pricing problem based on the choice of individuals has been studied in Gilbert et al.
(2014a), Gilbert et al. (2015), and Gilbert et al. (2014b). A nonlinear logit network pricing
problem is proposed in Gilbert et al. (2014a). Leveraging the model’s analytical properties, new
network simplification rules based on the notion of “cells” are proposed and a class of network
typologies that is unimodal is identified. A heuristic yielding quasi-optimal solutions is proposed
in the companion paper Gilbert et al. (2015). This heuristic combines MILP approximations
(either by considering the deterministic problem or a piecewise linear function approximation of
the demand) and local ascent methods (a line search and a trust region method are implemented).
Gilbert et al. (2014b) extended these works by incorporating a mixture of logit choice model to
accommodate for the nonuniform perception of travel time (or equivalently price) among the
population. This new formulation is challenging to solve as the demand (i.e., the flow) on each
arc of the network has no closed-form expression. The MILP approximation step of Gilbert et al.
(2015) is therefore adapted to approximate path flows.

The works of Gilbert et al. (2014a), Gilbert et al. (2015), and Gilbert et al. (2014b) highlight
the challenging nature of the choice-based network pricing problem, even when congestion is not
taken into account (i.e., without incorporating equilibrium constraints). In Wu et al. (2012),
an optimization problem with equilibrium constraints for the congestion pricing problem with
credit schemes is proposed. Their model incorporates heterogeneous mode and itinerary choices,
represented by a nested logit model. Income is factored into this choice model to capture the
distributional impact of congestion on different income groups. Due to the numerical integration
involved in their model, a derivative-free solution algorithm is employed. In the context of ride-
sourcing, Li et al. (2021) addressed the spatial pricing problem with congestion charges. In this
problem, the ride-sourcing platform sets ride prices, while a regulatory agency determines toll
prices. The authors proposed a nonconvex network economic equilibrium model in which indi-
viduals’ mode choices are determined by a logit model. The equilibrium constraints considered in
this problem imply that travel time in a congested area depends on the number of ride-sourcing
trips. They introduced a heuristic based on grid search and a dual decomposition algorithm,
along with a tight upper bound to evaluate the performance of their solution approach.

In Robenek et al. (2016), a model addressing cyclic and non-cyclic train timetabling problems,

13



taking into account passenger satisfaction through a deterministic passenger satisfaction function
is proposed. The bi-objective problem is reformulated as a single-objective problem with an ϵ-
constraint, where the main objective is the operators’ profit, calculated as the revenues minus
the operating costs. The ϵ-constraint ensures a minimum level of satisfaction. The challenge in
this problem lies in routing passengers within the network and adjusting train capacities to meet
capacity constraints. This work was further extended in Robenek et al. (2018), by considering
stochastic and endogenous demand and passenger satisfaction. This extension allows for a more
accurate representation of train occupation levels, but at the cost of nonlinear constraints to
account for the logit choice model. In addition, the work of Robenek et al. (2018) incorporates a
competing operator and the ticket pricing decisions to capture the elasticity in passenger demand.
A simulated annealing heuristic is proposed for solving a real-world case study.

Recently, Liu et al. (2019) and Sharif-Azadeh et al. (2022) proposed models for the design of
on-demand transportation systems. On the one hand, Liu et al. (2019) introduced a bilevel
problem aimed at optimizing supply-side parameters, such as fleet size and the discount factor
for shared trips, within an on-demand transportation system comprised of both private and
shared vehicles with varying capacities. The outer loop of the bilevel problem optimizes these
supply-side parameters while considering the transportation system’s simulation as a black-box
function. The inner loop updates service-specific attributes at traffic equilibrium by simulating
the transportation system. They employed a Bayesian optimization approach to maximize the
operator’s profit and passenger surplus. On the other hand, Sharif-Azadeh et al. (2022) presented
a MILP model for the integrated on-demand and fixed transportation scheduling problem. In
this context, on-demand transportation has fixed pick-up and drop-off locations but flexible
routes. The problem revolves around assigning stations to either the on-demand transportation
network, the fixed transportation network, or both. This model does not account for congestion
equilibrium and vehicle capacity constraints, and it assumes fixed fares. Consequently, the choice
probabilities can be provided as input to the model and the expected ridership is computed using
linear equations in the optimization model.

Table 3 summarizes the main attributes of the literature on choice-based urban planning problems
reviewed. The columns display the discrete choice model used, the choices modeled by discrete
choice models, consideration of traffic equilibrium constraints (Traffic equili.), consideration of
vehicle capacity constraints, endogeneity of pricing (Pricing prob.), the type of problem (linear
- L, non-linear - NL, integer - INT, and BL - bilevel), and the solution method employed (Sol.
method).

Authors Discrete choice model Choice Traffic Vehicle Pricing Type of problem Sol. Method
Logit NeL MoL equili. capacity prob. L NL INT BL

Wu et al. (2012) • mode, itinerary • • • DF
Gilbert et al. (2014a) • itinerary • • H
Gilbert et al. (2014b) • itinerary • • H
Robenek et al. (2018) • itinerary • • • • H
Liu et al. (2019) • mode • • • • BO
Li et al. (2021) • mode • • • H
Sharif-Azadeh et al. (2022) • mode • • LP

Table 3: Main attributes of selected choice-based urban planning problems. NeL - nested logit
model, MoL - mixture of logit model, L - linear, NL - nonlinear, INT - (mixed-)integer, BL
- bilevel. Solution method: BO - Bayesian optimization, DF - derivative-free algorithm, H -
heuristic, LP - linear optimization method.
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3.3 General comments
The overview of these three applications, which involve increasing levels of complexity - the facil-
ity location problem, airline scheduling and fleet assignment, and urban transportation planning
- provides insights into the challenges of incorporating individual choice into optimization prob-
lems. The facility location problem possesses a unique structure that facilitates the integration
of discrete choice models. Specifically, its objective function is submodular under any random
utility maximization model (including the MEV family of discrete choice models and the mixture
of logit model) (Legault and Frejinger, 2022). However, this favorable structure is not present in
the latter two problems. The airline scheduling and fleet assignment problem is more complex
due to its inclusion of fleet capacity constraints and pricing components that interact with the de-
mand functions. Finally, urban transportation planning problems can additionally involve traffic
equilibrium constraints. In this case, the optimization problems transform into noncooperative
games, making them even more challenging to solve.

We have seen that the implementation of the logit model in optimization problems is relatively
straightforward due to its closed-form probabilistic expression, which offers an analytical form for
modeling choices. Consequently, it is by far the most common option for modeling individuals’
choices. Many optimization problems, including the facility location problem, can effectively
integrate a homogeneous logit model by exploiting the problem structure in order to linearize
the model. However, when dealing with more complex discrete choice models that lack an
analytical form, their implementation in optimization problems becomes inherently challenging.
This holds true even for problems with a desirable structure like the facility location problem.
To address this complexity, methods such as simulation and numerical approximation must be
employed, as detailed in Section 3.1.

4 Research perspectives
Choice-based optimization is a growing field that intersects operations research, transportation,
logistics, and economics. As researchers continue to delve into this area, several promising
research directions emerge, each with the potential to advance our understanding and practical
applications of choice-based optimization. In this section, we outline some of these promising
research avenues.

Assess the impact of complex discrete choice models. One research avenue involves
assessing the potential gains of considering complex discrete choice models in choice-based opti-
mization problems. While the logit model is commonly used due to its simplicity, more advanced
models may offer improved accuracy in capturing decision behaviors. In this train of thought,
some studies evaluate the impact of not considering certain parameters affected by demand as
endogenous. For example, Lurkin et al. (2017) assessed the impact of considering exogenous
versus endogenous price in the itinerary choice model of the airline network planning problem,
highlighting the shortcomings of not accounting for price endogeneity. Similarly, Talluri and van
Ryzin (2004) conducted such an analysis for airline revenue management problems. Extend-
ing these studies to compare objective value losses when employing the logit model or aggregate
demand models instead of complex discrete choice models would provide valuable insights.

Moreover, conducting a comprehensive study across various applications to assess the added value
of considering complex discrete choice models over simpler alternatives is crucial. This would
provide evidence encouraging the development of methodological contributions to choice-based
optimization using complex discrete choice models.
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Exploring decomposition methods and simulation-based optimization. Continuing
to explore the interplay between decomposition methods and simulation-based optimization is
another promising direction. Various decomposition methods have been proposed in the con-
text of choice-based optimization in the past, such as column generation (see, e.g., Bront et al.,
2009; Szymula and Bešinović, 2020; Van Den Eeckhout et al., 2021), dynamic programming de-
composition (see, e.g., Koch et al., 2017), Lagrangian decomposition (see, e.g., Pacheco et al.,
2022), and Benders’ decomposition (see, e.g., Yan et al., 2022). However, to the best of our
knowledge, leveraging the power of decomposition methods to handle large-scale choice-based
optimization problems solved by simulation-based optimization methods has only been proposed
for Lagrangian and Benders decomposition in Pacheco et al. (2022) and Haering et al. (2023),
respectively. This avenue is promising because simulation-based optimization is one of the two al-
ternative methods to incorporate complex discrete choice models into choice-based optimization
(as explained in Section 3.1). Still, it has the disadvantage of increasing solving time. Decom-
position methods could help reduce this computing time, making it possible to solve large-scale
optimization problems based on complex discrete choice models.

Modeling combined choices. In reality, individuals often face multiple combined choices
that should not be treated independently. For example, the choice of transportation mode and
the choice of trip itinerary are interdependent and often selected simultaneously by individuals.
However, for reasons of tractability, these decisions are almost always considered sequentially
and independently in the choice-based optimization literature. Addressing the modeling of such
correlated choices is a promising research direction. Developing methods to capture and optimize
interdependencies between choices could lead to more realistic and effective decision-support tools
in various domains.

Integration of activity-based modeling and dynamic choice models. Taking choice-
based optimization a step further, integrating activity-based modeling or dynamic choice models
is an intriguing avenue. These approaches consider the dynamic nature of decision-making pro-
cesses and account for individual preferences and constraints over time. Incorporating such
models into choice-based optimization can enhance its applicability in dynamic and evolving
environments.

Machine learning for choice-based optimization. Machine learning techniques have been
increasingly adopted in choice modeling (Hillel et al., 2021). While much of the focus has been
on demand estimation using machine learning (e.g., works by Ben-Elia and Shiftan, 2010; Chen
et al., 2017; Ke et al., 2017; Dabiri and Heaslip, 2018; Lhéritier et al., 2019; Cheng et al., 2019;
Yan et al., 2020; Zhao et al., 2020; Ke et al., 2021; Zhang and Zhao, 2022), another promising
avenue is the integration of machine learning within choice-based optimization itself. This area
remains relatively unexplored, with notable exceptions like the work of Clarke et al. (2023) in
the context of simultaneous and non-cooperative games. Leveraging machine learning within
the optimization process itself has the potential to reduce computing time and thus address the
current scalability issues present in most choice-based optimization problems.

5 Conclusions
Fifty years ago, the analysis of the supply-side and the demand-side of transportation problems
was conducted by two disconnected communities. In their PhD thesis on the so-called “trans-
portation problem”, Jakob Iterator from the Weizmann Institute described the demand-side in
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the first sentence of their manuscript as follows:

In this research, we consider the L.P. transportation problem which can be formulated
as follows. Let ai be the quantity of a certain product available at an origin Oi and
bj be the quantity of the same product required at a destination Dj (Intrator, 1973).

The same year, Moshe Ben-Akiva, who first introduced the nested-logit model, referred in their
PhD thesis to the supply-side using the general and particularly vague term “transport ser-
vices”:

Decision making in transportation planning, as in any other planning activity, re-
quires the prediction of impacts from proposed policies. One of the inputs to the
prediction process is the demand function which describes consumers’ expected us-
age of transport services (Ben-Akiva, 1973).

Jakob Iteraror and Moshe Ben-Akiva considered demand and supply as a simple inputs to their
respective models. This practice was common at the time. Today, both communities acknowledge
the need to leverage the remarkable developments made by the other community over the past
50 years. This is an exciting era where integrating operations research and discrete choice is
recognized as essential, presenting intriguing research challenges. However, while choice-based
optimization has received some attention in the fields of transportation and logistic over the
past fifty years, we have observed that in three important optimization applications - namely,
the facility location problem, the airline scheduling and fleet assignment problem, and the urban
transportation planning problem - the literature on discrete choice models and choice-based
optimization is still not harmoniously connected.

First, while several advanced discrete choice models have been proposed in the demand modeling
literature, these models are almost non-existent in the choice-based optimization literature. The
logit model remains by far the most common choice model in choice-based optimization, probably
due to its closed-form probabilistic expression and the relatively straightforward estimation of
its parameters. Second, extensions of discrete choice models (e.g., activity-based modeling and
dynamic choice models) have not been implemented in the operations research literature to
the best of our knowledge. Yet, such models are becoming increasingly prevalent in the choice
modeling literature as they offer an alternative to modeling multiple decisions in isolation and
independently.

To bridge this gap in the literature, we argued that more general solution approaches tailored
to choice-based optimization (i.e., methodological contributions) are needed. Several potential
methodological contributions, including exploring decomposition methods for simulation-based
optimization, modeling correlated choices, and developing machine learning tools for choice-
based optimization, have been identified. A new emphasis on this topic appears essential for the
flourishing of behavioral models in transportation and logistics.
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