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AbstractWe present and analyze a new aggregate model of urban traÆ.The objetive is to analytially apture the orrelation between thedi�erent omponents of the network while maintaining a tratablemodel that an be used in an optimization framework.Existing analytial queueing models for urban networks are formu-lated for a single intersetion, and thus do no take into aount theinterations among upstream and downstream roads. We formulate amodel that onsiders a set of intersetions and aptures the orrelationstruture between onseutive roads based on �nite apaity queueingtheory. It therefore provides a detailed desription of ongestion. Itidenti�es the soures of ongestion (e.g. bottleneks), desribes howongestion propagates and dissipates; and quanti�es the impat onthe network performane.We use the model in the ontext of �xed-time traÆ signal opti-mization. Although there is a great variety of signal ontrol method-ologies in the literature, there is still a need for solutions that areappropriate and eÆient under saturated onditions, where the per-formane of signal ontrol strategies and the formation and propaga-tion of queues are strongly related. To the best of our knowledge, theexisting signal ontrol strategies based on analytial network modelshave not taken spillbaks into aount. We formulate a �xed-time sig-nal ontrol problem where the network model is inluded as a set ofonstraints. We apply this methodology to a subnetwork of the Lau-sanne ity enter and use a mirosopi traÆ simulator to analyzeits performane. We ompare its performane to that of several othermethods. The results show the importane of taking the orrelationbetween onseutive roads into aount.



1 IntroductionRoad traÆ ongestion is a ostly phenomenon that is ommon to the vastmajority of urban road networks. A reent European Commission reportemphasizes that to alleviate ongestion \in ertain ases new infrastruturemight be needed, but the �rst step should be to explore how to makebetter use of existing infrastruture" (CEC, 2007). Thus the importaneof understanding the origins of ongestion, of quantifying its e�ets and ofontrolling traÆ in order to optimize the use of existing infrastruture.Within this ontext the ontributions of this paper are two-fold.Firstly, we present an analytial stohasti network model derived fromthe queueing model proposed by Osorio and Bierlaire (forthoming). Ex-isting analytial queueing network models have foused on the study ofuninterrupted traÆ ow. To the best of our knowledge, the few studiesthat onsider interrupted traÆ ow are formulated for a single interse-tion. They therefore do no take into aount the interation between up-stream and downstream roads. The framework that we present models aset of urban intersetions. It aptures the orrelation struture betweenonseutive roads using �nite apaity queueing theory. This orrelationprovides a detailed desription of ongestion: its soures, its propagationand its e�ets. In partiular, it identi�es both bottleneks and spillbaks;and quanti�es their impat upon the overall network performane.The seond ontribution of this paper onerns the improvement ofthe use of existing infrastruture. We formulate a �xed-time signal ontrolproblem where the network model is inluded as a set of onstraints. To thebest of our knowledge, the existing signal ontrol strategies based on analyt-ial network models have not taken spillbaks into aount. More generally,most signal ontrol strategies do not aount for saturated or highly on-gested networks where spillbaks are likely to our (Papageorgiou et al.,2003). We therefore believe that the onsidered queueing model is an ap-propriate tool to improve urban signal settings, namely during peak hours.Furthermore, the stohasti nature of this model allows it to take into a-ount the variability of traÆ ows, whih is partiularly important whendesigning �xed-time signal plans (Yin, 2008).This paper is strutured as follows. We present in Setion 2 a literaturereview and the signal ontrol optimization framework. In Setion 3 wedesribe the network model and formulate the optimization problem. We1



then disuss the role of a mirosopi traÆ simulation tool used in thisframework (Setion 4.1). The methodology is applied to a subnetwork ofthe Lausanne ity enter. The optimized signal plan is then ompared withplans generated by several other methods. Setion 4.2 analyzes the addedvalue of the expliit modeling of orrelation. In Setion 4.3 it is omparedwith a pre-existing signal plan for the ity of Lausanne, and to the plansderived by the methods proposed in Webster (1958) and in the HighwayCapaity Manual (TRB, 1994; Tian, 2002).
2 Literature Review

2.1 Analytic queueing modelsQueueing models have been used in transportation mainly to model high-way traÆ (Garber and Hoel, 2002). Several simulation models have beendeveloped, but few studies have explored the potential of the queueing the-ory framework to develop analytial urban traÆ models. Furthermore,existing urban queueing models have mainly foused on unsignalized in-tersetions. Heidemann and Wegmann (1997) give an exellent literaturereview for exat analytial queueing models of unsignalized intersetions.They model the minor stream as an M/G2/1 queue. They emphasize theimportane of the pioneer work of Tanner (1962). Heidemann also on-tributed to the study of signalized intersetions (1994), and presented aunifying approah to both signalized and unsignalized intersetions (1996).These models ombine a queueing theory approah with a realisti desrip-tion of traÆ proesses for a given lane at a given intersetion. They yielddetailed performane measures suh as queue length distributions or so-journ time distributions. Nevertheless, as exat analytial methods, theyare diÆult to generalize to onsider multiple lanes, not to mention multipleintersetions.To the best of our knowledge no method has been proposed to modelthe traÆ proess for a set of urban intersetions using an analyti queueingnetwork framework. Nevertheless the methods proposed by Jain and Smith(1997) and Van Woensel and Vandaele (2007) whih are both based on theExpansion Method (Kerbahe and Smith, 2000) and formulated for highwaytraÆ ould be extended to onsider an urban setting.2



2.2 Traffic signal controlTraÆ signal setting strategies an be either �xed-time or traÆ-responsivestrategies. Fixed-time (also alled pre-timed) strategies use historial traf-� data, and yield one traÆ signal setting for the onsidered time of day.The traÆ signal optimization problem is solved o�ine. On the other handtraÆ-responsive (also alled real-time) methods use real-time data to de-�ne timings for immediate implementation that are used over a short timehorizon. Furthermore, signal timings an be derived by onsidering either asingle or a set of intersetions. These methods are alled isolated methodsand oordinated methods, respetively (Papageorgiou et al., 2003). Meth-ods that handle individual intersetions are based on models that apturethe loal dynamis of the network. They desribe in detail the dynamis atan intersetion, but at the expense of apturing less well the interationsamong intersetions.A phase is de�ned as a set of streams that are mutually ompatible andthat reeive idential ontrol. The yle of a signal plan is divided into asequene of periods alled stages. Eah stage onsists of a set of mutuallyompatible phases that all have green. Methods where the stage struture(i.e. the sequene of stages) is given are known as stage-based approahes,whereas methods where the stage struture is endogenous are referred toas phase-based or group-based approahes.Delay minimization and reserve apaity maximization are the mostommon objetive funtions used by pre-existing methods. Delay may bediretly measured, leading to a data-driven approah, or estimated (model-based approah). The �rst approximate expression for the delay at an in-tersetion was given by Webster (1958), and is still widely used. Other ex-pressions inlude those of Newell (1965), Miller (1963), and MNeil (1968).Viti (2006) provides a review of delay models; Dion et al. (2004) omparethe performane of di�erent delay models, and Chow and Lo (2007) deriveapproximate delay derivatives that an be integrated within a simulation-based signal setting optimization ontext in order to redue the ompu-tation time required to obtain numerial derivatives. The notion of thereserve apaity of an intersetion is de�ned by Wong and Yang (1997) asthe greatest ommon multiplier of existing ows that an be aommodatedsubjet to saturation and signal timing onstraints. This notion has beenextended to onsider several intersetions (Wong and Yang, 1997; Ziyou3



and Yifan, 2002).The works of Allsop (1992) and of Shepherd (1994) review signal ontrolmethods. Allsop (1992) desribes in detail the orresponding terminologyas well as the di�erent formulations for isolated methods. More reently thereviews of Papageorgiou et al. (2003) and Casetta et al. (2006) over dif-ferent but omplementary aspets of this researh �eld. Papageorgiou et al.(2003) provide an exellent review of urban traÆ ontrol methods, whilehighlighting their appliations (either via simulation or �eld implementa-tions). They also onsider freeways and route guidane methodologies.Casetta et al. (2006) review the more general problem of traÆ ontroland demand assignment methods.
Fixed-time isolated strategiesThese strategies an be stage-based suh as SIGSET (Allsop, 1971) andSIGCAP (Allsop, 1976). SIGSET minimizes delay using Webster's non-linear formulation (Webster, 1958), whereas SIGCAP maximizes reserveapaity. Both methods onsider a set of linear onstraints. Improta andCantarella (1984) onsider a phase-based method formulated as a mixed-integer linear program. They give formulations for both delay minimizationand reserve apaity maximization problems.
Fixed-time coordinated strategiesOptimizing a set of signals along an arterial is the fous of the arte-rial progression shemes MAXBAND (Little et al., 1981) and MULTI-BAND (Gartner et al., 1991). These methods aim at maximizing the band-width of through traÆ along an arterial. MULTIBAND is an extensionof MAXBAND allowing, among others, for di�erent bandwidths for eahlink of the arterial. These problems are formulated as mixed-integer linearprograms. They have been extended to onsider a set of interseting arteri-als (Gartner and Stamatiadis, 2002). Heuristis have also been spei�allydeveloped to solve this problem (Pillai et al., 1998). Nevertheless underongested senarios where there is a strong interation among the di�erentqueues, the alulated bands fail to grasp this omplexity. Furthermore indense urban networks with omplex traÆ movements bandwidth has littlemeaning (Robertson and Bretherton, 1991).Several phase-based strategies have been proposed (Wong et al., 2002;Wong, 1997; Wong, 1996). The phase-based approah, although more gen-4



eral, is limited due to the exponential number of integer variables neededto desribe the preedene onstraints of inompatible phases.Chaudhary et al. (2002) ompares the performane of 3 �xed-time o-ordinated stage-based methods: TRANSYT, PASSER and SYNCHRO.TRANSYT is the most widely used signal timing optimization pakage.It is a marosopi model that aims at minimizing both delay and stops. Adesriptive �gure of its underlying methodology is given by Papageorgiouet al. (2003). SYNCHRO and TRANSYT have similar traÆ models. SYN-CHRO seeks to minimize stops and queues, by using an exhaustive searhtehnique to determine the optimal signal timings. PASSER determinesthe green splits (also known as the green ratios), stage struture, ylelength, and o�sets that maximize arterial progression (i.e. bandwidth-based method) for signalized arterials. PASSER performs an exhaustivesearh over the range of yle lengths provided by the user, and sets thegreen splits using Webster's method (Webster, 1958). These splits are thenadjusted to improve progression. Boillot et al. (1992) highlight that in on-gested onditions, TRANSYT and PASSER do not grasp the queue lengthappropriately. Traditionally TRANSYT's traÆ model onsidered verti-al queueing (i.e. the spatial extension of the queue is ignored), thus notapturing spillbaks, making this software suitable only for undersaturatedsenarios. Although, more reent versions now take into aount the e�etsof queue formation using horizontal queueing models (Abu-Lebdeh andBenekohal, 2003), Chow and Lo (2007) emphasize that the use of TRAN-SYT is appropriate only for low to moderate degrees of saturation.
Traffic-responsive methodsTraÆ-responsive methods use real-time measurements to drive the under-lying optimization algorithm. The signal plans of these methods are derivedeither by making small adjustments to a prede�ned plan, by hoosing be-tween a set of pre-spei�ed plans or by deiding when to swith to the nextstages over a future time horizon (Boillot et al., 1992). The trend of real-time methods is the latter, where the optimization parameters are no longeryle time, splits or o�sets, but rather the swithing times. These methodsare referred to as non-parametri methods by Sen and Head (1997). Nev-ertheless these methods are limited by the exponential size of the searhspae, due to the introdution of the integer variables that desribe theswithing times. 5



The British software SCOOT (Bretherton, 1989) is onsidered to be thetraÆ-responsive version of TRANSYT. A desription of how TRANSYTevolved into SCOOT is given by Robertson and Bretherton (1991). SCOOTseeks to minimize the total delay by arrying out inremental hanges to theo�-line timings derived by TRANSYT. It therefore makes a large numberof small optimization deisions (typially over 10000 per hour in a net-work of 100 juntions (Robertson and Bretherton, 1991)). The Australianmethod SCATS (Lowrie, 1982) modi�es signal timings on a yle-by-ylebasis by minimizing stops and delay while onstraining the formation ofqueues. Both SCOOT and SCATS are widely used strategies suitable forundersaturated onditions, but as Aboudolas et al. (2007) and Dinopoulouet al. (2006) both desribe, their performane deteriorates under ongestedonditions.Dynami programming methods are used in the Frenh system PRO-DYN (Henry and Farges, 1989) as well as in the US systems OPAC andRHODES. RHODES (Mirhandani and Head, 2001) uses the COP algo-rithm (Sen and Head, 1997) to determine the swithing times at a givenintersetion. This method does not reat to traÆ onditions just observedbut rather proatively sets phase durations for predited traÆ onditions.A desription of the OPAC model and algorithm, as well as its implemen-tation are given by Gartner et al. (2001) and Gartner et al. (1991). TheItalian method UTOPIA is yet another method that has been evaluated andimplemented (Mauro and Di Taranto, 1989). As Dinopoulou et al. (2006)desribe, the exponential omplexity of these methods does not allow fornetwork-wide optimization. This is also emphasized by Boillot et al. (1992):\the existing systems are not apable of ontrolling a zone of several jun-tions in a omplete and oordinated manner. The hosen ompromise is toontrol only one juntion as OPAC or to use a deentralized optimizationmethod as UTOPIA, PRODYN or to make little hanges of the �xed-timesignal plan as SCOOT and SCATS." Aknowledging the importane andlak of eÆient ontrol strategies under saturated onditions has lead to thedevelopment of the Frenh system CRONOS (Boillot et al., 2006; Boillotet al., 1992), and of the TUC method (Dinopoulou et al., 2006).The method proposed in this paper belongs to the ategory of �xed-time oordinated methods. Traditionally, �xed-time strategies have beenonsidered suitable only for undersaturated traÆ onditions (Abu-Lebdeh6



and Benekohal, 1997; Shepherd, 1994; Chow and Lo, 2007; Papageorgiouet al., 2003). Thus methods for saturated onditions have foused on real-time strategies. Nevertheless, we believe that the development of optimal�xed-time methods is of primary importane. First, they an be used asbenhmark solutions to evaluate traÆ-responsive strategies. Seond, theyrepresent robust ontrol solutions (Yin, 2008). Finally, they may be diretlyor indiretly used as building bloks to derive real-time methods.Although there is a vast range of signal ontrol methodologies in theliterature, there is still a need for solutions that are appropriate and ef-�ient under saturated onditions (Dinopoulou et al., 2006). Under on-gested onditions the performane of signal ontrol strategies and the for-mation and propagation of queues are strongly related. Models that ignorethe spatial extension of queues fail to apture ongestion e�ets suh asspillbaks, and gridloks. Adopting a vertial queueing model is thereforeonly reasonable when the degree of saturation is moderate. Both Chowand Lo (2007) and Abu-Lebdeh and Benekohal (1997), illustrate the ef-fets of ignoring this spatial dimension. Therefore a signal ontrol strategysuitable for ongested onditions must take into aount the orrelationbetween queues. Nevertheless, most existing strategies do not aountfor this orrelation and are thus unsuitable for highly ongested networks(Papageorgiou et al., 2003; Abu-Lebdeh and Benekohal, 2003). Further-more Abu-Lebdeh and Benekohal (2003) emphasize that aounting forthe e�ets of queue propagation remains a seondary onsideration withina signal timing framework. We therefore believe that the queueing modelproposed in this paper is an appropriate tool both to improve urban signalsettings during peak hours and to emphasize the importane of aountingfor the between-queue orrelation.
3 Methodological frameworkWe onsider an urban transportation network, omposed of a set of bothsignalized and unsignalized intersetions. We apture the traÆ dynamiswith a set of queuing models organized in a network, or a queueing networkmodel.Eah road in the network is divided into segments suh that the numberof lanes is onstant on eah segment. Segment boundaries are therefore7



either intersetions, or loations where the number of lanes hanges betweenintersetions. They orrespond to hanges of apaity.A queue is then assoiated with eah lane of eah segment in the net-work. The interations among the queues are expliitly aptured by linkingthe parameters of the queues (suh as the apaity and the arrival ow)with the state of other queues.We onsider a �xed-time signal ontrol problem where the o�sets, theyle times and the all-red durations are �xed. The stage struture is alsogiven. In other words, the set of lanes assoiated with eah stage as well asthe sequene of stages are both known.The ontrol problem onsists in minimizing the average time T spentin the network, by adjusting the green splits at eah intersetion (i.e. theproportion gp of yle time that is alloated to eah phase p). The traveltime is derived from a traÆ model whih ombines both exogenous (�xed)parameters, suh as the total demand, the route hoie deisions and thetopologial struture of the street network, with endogenous variables, suhas the apaities and the probability of spillbaks. The latter are diretlylinked with the deision variables. Consequently, we now formulate themodel apturing the traÆ dynamis that derives T from g, the exoge-nous parameters and the endogenous variables, as well as the onstraintsassoiated with the traÆ signal settings.
3.1 The network modelIn a previous paper (Osorio and Bierlaire, forthoming), we have proposeda new analyti queueing network model that aurately desribes the for-mation and the di�usion of ongestion. We provide below a general de-sription of the existing model, and then detail its adaptation for urbantraÆ networks.In the original model, we assume both the total demand and the apai-ties to be given, and derive a set of performane measures suh as stationarydistributions and ongestion indiators. Eah queue is de�ned aording toa set of exogenous strutural parameters. The key feature is the desriptionof the interations among the di�erent queues. Congestion and spillbaksare modeled by what is referred to in queueing theory as bloking. Thisours when a queue is full, and thus bloks arrivals from upstream queuesat their urrent loation. This bloking proess is desribed by endogenous8



variables suh as bloking probabilities and unbloking rates. The overallproess is desribed by a set of equations apturing the queue dynamis.Given the exogenous parameters, the values of the endogenous variables areevaluated by solving a system of nonlinear equations. We extend this for-mulation by onsidering the apaities endogenous, as they are determinedby the deision variables (i.e. the green splits).
3.2 QueuesA queue is assoiated with eah lane of eah segment in the network. Eahqueue is onneted to the downstream segments where a turning of theunderlying lane is permitted. Note that onneting a queue to a segmentsmeans that it is onneted to all of the queues in that segment.All queues have one server, whih represents the servie due to thehange of apaity at the boundary of a segment. The size of a queue i isdenoted by ki. It is omposed of the server and the bu�er. Note that kiis known as the apaity of the queue in queueing theory. In this paperthe term apaity will be used aording to its traÆ theory de�nition(VSS, 1998), and we therefore refer to ki as the queue size. Heidemann(1996), as well as Van Woensel and Vandaele (2007), divide eah road intosegments of length 1/kjam, where kjam is the jam density, and thus 1/kjamrepresents the minimal length that eah vehile needs. We also follow thistype of reasoning and de�ne the queue size as:

ki = ⌊(ℓi + d2)/(d1 + d2)⌋,where ℓi denotes the length of lane i, d1 is the average vehile length (e.g.4 meters), and d2 is the minimal inter-vehile distane (e.g. 1 meter). Thisfration is then rounded down to the nearest integer. In this model allqueues have a �nite size. This is referred to in queueing theory as �niteapaity queues, and is neessary in order to aount for ongestion andspillbak e�ets.The exogenous parameters used to desribe the distribution of the de-mand throughout the network are the external arrival rates and the tran-sition probabilities. The external arrival rate of a queue i orrespondsto vehiles reahing the queue oming from outside of the network, andnot from another queue. This typially applies to the boundaries of the9



network, or parking lots inside the network. The transition probability be-tween queue i and queue j, is the proportion of ow from queue i that goesto queue j, whih may be obtained from a route hoie model (Bierlaireand Frejinger, 2008).The servie rates of the queues are de�ned as the apaities of theunderlying lanes. For segments that lead to intersetions the servie rateof its queues is de�ned as the apaity of the intersetion for that approahor lane. We derive formulations for the apaities of the di�erent types ofintersetions based on the Swiss national transportation standards.For unsignalized intersetions (e.g. two-way stop ontrolled interse-tions, yield-ontrolled intersetions) the standard VSS (1999a) is used. Theturning movements are ranked. For eah movement the oniting ow isalulated based on a set of equations that depend on the type of movementand its rank. Then their potential apaity and their movement apaityis alulated. Finally the apaity of the lanes with multiple turnings areadjusted to take into aount the lak of side lanes.The apaity of the lanes leading to, on, or exiting roundabouts arederived based on the standard VSS (2006). They take into aount the sameparameters as for unsignalized intersetions but are based on a di�erentset of equations. This standard aounts for roundabouts with either onelane or one large lane. For networks that ontain roundabouts with twolanes, the apaity of these lanes is alulated based on the equations forroundabouts with one large lane.For signalized intersetions we use the standard VSS (1999b), whihde�nes the apaity of a lane as the produt of the saturation ow and theproportion of green time alloated to that lane per yle. This approah isalso proposed in Chapter 9 of the Highway Capaity Manual (TRB, 1994).When a segment does not lead to an intersetion (e.g. segments whereall of the vehiles leave the network, or segments that lead diretly toanother segment) the servie rate of its queues is set to the saturation owof the orresponding lane.
3.3 System of equationsIn this paper all queues have a single server. Thus the equations presentedby Osorio and Bierlaire (forthoming) simplify. In the following notation10



all rates are average rates and the index i refers to a given queue.
π(i) stationary distribution;
S(i) state spae;
Q(i) transition rate matrix;
γi external arrival rate;
λi total arrival rate;
µi servie rate of a server;~µi unbloking rate;
µ̂i e�etive servie rate (aounts for both servie and eventual bloking);
Pf

i probability of being bloked at queue i;
pij transition probability from queue i to queue j;
ki queue size;
Ni total number of vehiles in queue i;
P(Ni = ki) probability of queue i being full, also known as the bloking probability;
I+ set of downstream queues of queue i.Sine we onsider a single server network, the vetor denoted by ~µ(i, b) inthe initial model, redues to a single value that is now denoted ~µi. Thesystem of equations is thefore given by:

π(i)Q(i) = 0, (1)∑

s∈S(i)

π(i)s = 1, (2)
Q(i) = f(λi, µi, P

f
i, ~µi), (3)

λi = γi +

∑
j pjiλj(1 − P(Nj = Kj))

(1 − P(Ni = ki))
, (4)

1~µi

=
∑

j∈I+

λj(1 − P(Nj = Kj))

λi(1 − P(Ni = ki))µ̂j

, (5)
1

µ̂i

=
1

µi

+ Pf
i

1~µi

, (6)
Pf

i =
∑

j

pijP(Nj = Kj).. (7)We briey desribe these equations, for more details the reader is referredto the initial paper. The exogenous parameters are γi, pij and ki. All othervariables are endogenous. Equations (1) and (2) are known as the global11



balane equations, they link the stationary distribution of a queue to itstransition rate matrix, Q(i). This matrix desribes the rates at whih atransition an take plae between any pair of states. It is de�ned by Equa-tion (3), where funtion f is detailed in Table 1 of Osorio and Bierlaire(forthoming). We approximate the transition rates using strutural pa-rameters that apture the between-queue orrelation (Equations (4)-(7)).These equations link the endogenous parameters of a given queue (e.g. ar-rival rate, servie rate) with the parameters of its upstream and downstreamqueues. In partiular, Pf
i gives the probability with whih a spillbak anour, while ~µi desribes the rate at whih suh a spillbak will dissipate.Eah queue has 6 endogenous variables (λi, µi, ~µi, µ̂i, P(Ni = ki), P

f
i). Foreah queue the dimension of its distribution is 2ki + 1. Thus the system ofequations onsists of ∑

i (2ki + 7) nonlinear equations.
3.4 Optimization problemIn order to formulate the signal ontrol problem we intordue the followingnotation:
yi available yle time of intersetion i (yle time minus the all-red times ofintersetion i) [seonds℄;
bi available yle ratio of intersetion i (ratio of yi and the yle time ofintersetion i);
gp green split of phase p (green time of phase p divided by the yle time of itsorresponding intersetion);
gL vetor of minimal green splits for eah phase (minimal green time allowedfor eah phase divided by the yle time of its orresponding intersetion);
s saturation ow rate [veh/h℄;
x endogenous queueing model variables;
α exogenous queueing model parameters;
I set of intersetion indies;
L set of indies of the signalized lanes;
PI(i) set of phase indies of intersetion i;
PL(ℓ) set of phase indies of lane ℓ.The problem is formulated as follows:min

g,x
T(g, x, α) (8)12



subjet to
∑

p∈PI(i)

gp = bi, ∀i ∈ I (9)
µℓ −

∑

p∈PL(ℓ)

gps = 0, ∀ℓ ∈ L (10)
h(x, α) = 0 (11)

g ≥ gL (12)
x ≥ 0. (13)The objetive is to redue the average time that vehiles spend in the net-work, whih is represented by T (Equation (8)). T is a nonlinear funtion ofthe queueing model parameters. Resorting to the notation of the previoussetion, T is given by

∑

i

E[Ni]

λi

.The linear onstraints (9) link the green times with the available yle timefor eah intersetion. Equation (10) links the green times of the signalizedlanes to their apaities. The bounds (12) orrespond to minimal greentime values for eah phase. These have been set to 4 seonds aordingto the Swiss standard VSS (1992). Equation (11) represents the networkmodel, presented in Setion 3.3.The optimization problem is solved with the Matlab routine for on-strained nonlinear problems, fminon, whih resorts to a sequential quadratiprogrammingmethod (Coleman and Li, 1996, 1994). A feasible initial pointis obtained by �xing a ontrol plan and solving the network model (Equa-tion (11)). We refer the reader to Osorio and Bierlaire (forthoming) formore details on the solution proedure of this system of equations as wellas for its own initialization settings.
4 Empirical analysis

4.1 Microscopic traffic simulation model of the city of
LausanneTo perform the empirial analysis, we use a alibrated mirosopi traÆsimulation model of the Lausanne ity enter. This model (Dumont and13



Bert, 2006) is implemented with the AIMSUN simulator (TSS, 2008). Itontains 652 roads and 231 intersetions, 49 of whih are signalized. Weuse this model for two purposes.Firstly, we use it to extrat the network data (e.g. road harateristis,demand distribution) needed to estimate the exogenous parameters of thequeueing model. The intersetion harateristis inlude an existing �xed-time signal ontrol plan of the ity of Lausanne. For more informationonerning this ontrol plan we refer the reader to Dumont and Bert (2006).Based on this ontrol plan we give initial values to the apaities of thesignalized lanes.The demand distribution is desribed in terms of roads, whereas werequire lane spei� distributions. For eah road we have three types ofow data: external outow (ow that leaves the network), road-to-roadturning ow, external inow (ow that arises from outside of the network).In order to obtain lane spei� distributions we disaggregate the ow dataas follows.
External outflow. We assume that this ow is distributed with equalprobability aross all the lanes of the road. If the road is modeled withseveral segments the outow is assoiated with the last (most downstream)segment. In other words departures only our at the end of the road.
Turning flow. We onsider that this ow is distributed with equal prob-ability aross all the lanes involved in the turning.
External inflow. We assume that this ow is distributed with equal prob-ability aross all the lanes of the road. If the road is modeled with severalsegments the inow is assoiated with the �rst segment. In other wordsarrivals only our at the beginning of the road.Seondly, we use this simulation model to evaluate and ompare theperformane of di�erent signal plans. One a new plan is determined, it isintegrated in the simulation model, its performane is evaluated and thenompared with that of other plans. The simulation setup onsists of 100repliations of the evening peak period (17h-19h), preeded by a 15 minutewarm-up time. Within this time period ongestion gradually inreases. Theaverage ow of the roads in the subnetwork steadily dereases from 339 to25 (veh/h); and the average density inreases from 10 to 57 (veh/km).We now ompare the performane of several methodologies, by onsid-ering a subnetwork of the Lausanne ity enter. For eah methodology wederive the optimal signal plan for the subnetwork, and then use the simu-14



Figure 1: Subnetwork of the Lausanne ity enterlation model to evaluate its e�et upon the entire Lausanne network. Thesubnetwork (Figure 1) ontains 48 roads and 15 intersetions. Nine inter-setions are signalized and ontrol the ow of 30 roads. There are a totalof 51 phases that are onsidered variable. The intersetions have a yletime of either 90 or 100 seonds. The queueing model of this network on-sists of 102 queues. The optimization problem onsists of 2288 endogenousvariables with their orresponding lower bound onstraints, 1829 nonlinearequality onstraints, and 417 linear equality onstraints.
4.2 Between-queue correlationThe queueing model proposed in this paper desribes ongestion by tak-ing into aount the orrelation between upstream and downstream roads.In this setion we illustrate the added value of aounting for the orre-lation. We ompare this model with the same model where independeneof the queues is assumed. The optimization problem is solved for bothqueueing models (orrelated queues versus independent queues), and theperformane of the orresponding signal plans are ompared. We will de-note these as the orrelated and the independent plans, respetively.Assuming independent queues leads to the following simpli�ations:� the arrival rates are now exogenous;15



� the e�etive servie rates, are no longer linked to the potential spill-baks of downstream roads, i.e. the total time spent on a road isentirely determined by its apaity.We onsider the average number of vehiles that have exited eah origin-destination (OD) pair at a given time. The simulation time is segmentedinto 40 3-minute intervals. Figure 2 displays for eah time interval a boxplotof the di�erene between the average number of vehiles for the indepen-dent and the orrelated plans. Eah point within a boxplot represents thisdi�erene for a given OD pair. This �gure illustrates how the number ofOD pairs that have a higher ow under the orrelated plan than under theindependent one inreases as ongestion inreases.This �gure also shows that there is no di�erene for the majority of theOD pairs. It makes sense, sine only 51% of the 2096 OD pairs have morethan 2 trips assigned per hour, 14% have more than 10 trips, and 6.6%have more than 20 trips. Thus for the majority of the OD pairs we wouldnot expet a di�erene larger than a ouple of vehiles.Figure 3 displays the empirial umulative distribution funtion of thesedi�erenes for the intervals 10, 20, 30 and 40. It also shows that as onges-tion inreases there is a higher proportion of OD pairs that perform betterwhen the orrelation is taken into aount. The asymmetry of Figures 2and 3 are evidene of the added value of aounting for the dependene ofqueues in signal optimization.We have also looked at the densities in the network. We did not expetany notieable di�erene, as the network is highly ongested, so that onlythe global throughput ould be a�eted. Nevertheless, we found 3 loationswith a signi�ant di�erene in densities. Eah plot of Figure 4 displays thedensity of one of these 3 roads as a funtion of time. For all three ases,there is a signi�antly smaller density under the orrelated plan. Figure 5displays errorbars suh that the distane from the average to the upper(respetively, the lower) limit of the bar is equal to the standard deviation.The plots in the left olumn orrespond to the independent plan, thosein the right olumn orrespond to the orrelated plan. Eah row of plotsonsiders one of the 3 previously mentioned roads. These plots illustratehow with inreasing ongestion there is less variability in the density arossrepliations under the orrelated plan.16
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We have also performed an analysis of the impat on the average traveltime per vehile on these roads. In this ase the average travel times donot exhibit a signi�ant di�erene (Figure 6), exept for the end of thesimulation period on road 1. The added value of the method with orre-lated queues learly appears in the analysis of the standard deviations, asillustrated in Figure 7. These results illustrate well the added value of themethod, not only on the global throughput but also loally.
4.3 Comparison with pre-existing methodsWe now ompare the signal settings derived by the method proposed in thispaper with a pre-existing �xed-time signal settings for the ity of Lausanne,the method derived by Webster (1958) and with the method suggested inthe Highway Capaity Manual (TRB, 1994; Tian, 2002).
Base plan The alibrated simulation model of the Lausanne ity enter isbased on an existing �xed-time signal ontrol plan. For more infor-mation onerning this ontrol plan we refer the reader to Dumontand Bert (2006). This signal plan will be referred to as the base plan.
HCM/Webster By alloating the green times suh that the ow to a-paity ratios for the ritial movements of eah phase are equal, themethod suggested in the Highway Capaity Manual (TRB, 1994;Tian, 2002) leads to the same green split equations as Webster'smethod (1958). This equivalene is detailed in Osorio and Bierlaire(2008).Webster's method is based on an estimate of the average delay pervehile at a signalized intersetion. It determines yle times andgreen-splits of pre-timed signals that minimize delay. These greensplits are used in signal setting softwares suh as SYNCHRO andPASSER V (Chaudhary et al., 2002); and the delay estimate is oneof the best known (Casetta, 2001). The analysis is based on isolatedintersetions under the assumption of the number of arrivals followinga Poisson distribution, and undersaturated onditions (traÆ inten-sity ρ < 1).In this approah eah phase is represented by one approah only: theone with the highest degree of saturation (ratio of ow to saturation20
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Figure 8: Empirial umulative distribution funtion of the di�erene inthe average number of vehiles that have exited the OD pairs for timeintervals 10, 20, 30 and 40ow). This maximum ratio for phase p is denoted Yp. More spei�-ally, assuming no yellow times and no lost times per phase, Webster'smethod leads to:
gp =

Yp∑
j∈PI(i) Yj

bi ∀p ∈ PI(i). (14)This method requires as input the ows and saturation ows for eahapproah. These have been derived as follows. For a signalized inter-setion the saturation ow is set to a ommon value for all approahes,this value is based on the standards VSS (1999b). The approah owsare set using the observed ows derived by the simulation model.We onsider the network and simulation setup desribed in Setion 4.1.We ompare the methods in terms of the average number of vehiles thathave exited eah OD pair aross time. The desription of how these om-parisons are arried out has been desribed in Setion 4.2. The empirialumulative distribution funtions of Figure 8 show that there is a highproportion of OD pairs for whih the new plan yields an inrease in out-ow. This �gure also shows that this proportion inreases with ongestion.The asymmetry of this �gure illustrates the signi�ant superiority of theproposed method. 21
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Contrarily to the previous experiment, we observe here a signi�ant im-provement in terms of densities and travel times. The 3 plots of Figure 9onsider the ow, the density and the travel time of the roads of the sub-network, plotted aross time. The rosses, squares and irles denote thebase plan, the HCM/Webster plan and the new plan, respetively. Theseplots illustrate how the new plan leads to improved subnetwork densityand travel times, whereas for the ow there is no trend.
5 ConclusionIn this paper we have formulated a �xed-time traÆ signal optimizationproblem, where the underlying traÆ model is based on a queueing networkmodel. By using a set of strutural parameters that apture the between-queue orrelation, this queueing model provides a detailed desription ofhow ongestion arises and how it spreads.We have solved the signal ontrol problem for a subnetwork of the ityof Lausanne. The new signal plan has been evaluated with a mirosopitraÆ simulation tool. Its performane has been ompared with the samemodel assuming independent queues, with a �xed-time plan that existsfor the ity of Lausanne, with Webster's method and with the methodproposed by the Highway Capaity Manual. As ongestion inreases, thenew method leads to performane measures that improve on average andare less variable.This model makes an attrative trade-o� between a detailed desrip-tion of ongestion and analytial tratability. It is therefore partiularlyappropriate for the study and management of ongested urban networks.Future researh will follow two main traks. On the one hand, the frame-work will be extended to onsider oordinated and traÆ-responsive signalsettings. On the other hand, it will be adjusted for large-sale senarios byonsidering deomposition tehniques.
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