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AbstractWe present and analyze a new aggregate model of urban traÆ
.The obje
tive is to analyti
ally 
apture the 
orrelation between thedi�erent 
omponents of the network while maintaining a tra
tablemodel that 
an be used in an optimization framework.Existing analyti
al queueing models for urban networks are formu-lated for a single interse
tion, and thus do no take into a

ount theintera
tions among upstream and downstream roads. We formulate amodel that 
onsiders a set of interse
tions and 
aptures the 
orrelationstru
ture between 
onse
utive roads based on �nite 
apa
ity queueingtheory. It therefore provides a detailed des
ription of 
ongestion. Itidenti�es the sour
es of 
ongestion (e.g. bottlene
ks), des
ribes how
ongestion propagates and dissipates; and quanti�es the impa
t onthe network performan
e.We use the model in the 
ontext of �xed-time traÆ
 signal opti-mization. Although there is a great variety of signal 
ontrol method-ologies in the literature, there is still a need for solutions that areappropriate and eÆ
ient under saturated 
onditions, where the per-forman
e of signal 
ontrol strategies and the formation and propaga-tion of queues are strongly related. To the best of our knowledge, theexisting signal 
ontrol strategies based on analyti
al network modelshave not taken spillba
ks into a

ount. We formulate a �xed-time sig-nal 
ontrol problem where the network model is in
luded as a set of
onstraints. We apply this methodology to a subnetwork of the Lau-sanne 
ity 
enter and use a mi
ros
opi
 traÆ
 simulator to analyzeits performan
e. We 
ompare its performan
e to that of several othermethods. The results show the importan
e of taking the 
orrelationbetween 
onse
utive roads into a

ount.



1 IntroductionRoad traÆ
 
ongestion is a 
ostly phenomenon that is 
ommon to the vastmajority of urban road networks. A re
ent European Commission reportemphasizes that to alleviate 
ongestion \in 
ertain 
ases new infrastru
turemight be needed, but the �rst step should be to explore how to makebetter use of existing infrastru
ture" (CEC, 2007). Thus the importan
eof understanding the origins of 
ongestion, of quantifying its e�e
ts and of
ontrolling traÆ
 in order to optimize the use of existing infrastru
ture.Within this 
ontext the 
ontributions of this paper are two-fold.Firstly, we present an analyti
al sto
hasti
 network model derived fromthe queueing model proposed by Osorio and Bierlaire (forth
oming). Ex-isting analyti
al queueing network models have fo
used on the study ofuninterrupted traÆ
 
ow. To the best of our knowledge, the few studiesthat 
onsider interrupted traÆ
 
ow are formulated for a single interse
-tion. They therefore do no take into a

ount the intera
tion between up-stream and downstream roads. The framework that we present models aset of urban interse
tions. It 
aptures the 
orrelation stru
ture between
onse
utive roads using �nite 
apa
ity queueing theory. This 
orrelationprovides a detailed des
ription of 
ongestion: its sour
es, its propagationand its e�e
ts. In parti
ular, it identi�es both bottlene
ks and spillba
ks;and quanti�es their impa
t upon the overall network performan
e.The se
ond 
ontribution of this paper 
on
erns the improvement ofthe use of existing infrastru
ture. We formulate a �xed-time signal 
ontrolproblem where the network model is in
luded as a set of 
onstraints. To thebest of our knowledge, the existing signal 
ontrol strategies based on analyt-i
al network models have not taken spillba
ks into a

ount. More generally,most signal 
ontrol strategies do not a

ount for saturated or highly 
on-gested networks where spillba
ks are likely to o

ur (Papageorgiou et al.,2003). We therefore believe that the 
onsidered queueing model is an ap-propriate tool to improve urban signal settings, namely during peak hours.Furthermore, the sto
hasti
 nature of this model allows it to take into a
-
ount the variability of traÆ
 
ows, whi
h is parti
ularly important whendesigning �xed-time signal plans (Yin, 2008).This paper is stru
tured as follows. We present in Se
tion 2 a literaturereview and the signal 
ontrol optimization framework. In Se
tion 3 wedes
ribe the network model and formulate the optimization problem. We1



then dis
uss the role of a mi
ros
opi
 traÆ
 simulation tool used in thisframework (Se
tion 4.1). The methodology is applied to a subnetwork ofthe Lausanne 
ity 
enter. The optimized signal plan is then 
ompared withplans generated by several other methods. Se
tion 4.2 analyzes the addedvalue of the expli
it modeling of 
orrelation. In Se
tion 4.3 it is 
omparedwith a pre-existing signal plan for the 
ity of Lausanne, and to the plansderived by the methods proposed in Webster (1958) and in the HighwayCapa
ity Manual (TRB, 1994; Tian, 2002).
2 Literature Review

2.1 Analytic queueing modelsQueueing models have been used in transportation mainly to model high-way traÆ
 (Garber and Hoel, 2002). Several simulation models have beendeveloped, but few studies have explored the potential of the queueing the-ory framework to develop analyti
al urban traÆ
 models. Furthermore,existing urban queueing models have mainly fo
used on unsignalized in-terse
tions. Heidemann and Wegmann (1997) give an ex
ellent literaturereview for exa
t analyti
al queueing models of unsignalized interse
tions.They model the minor stream as an M/G2/1 queue. They emphasize theimportan
e of the pioneer work of Tanner (1962). Heidemann also 
on-tributed to the study of signalized interse
tions (1994), and presented aunifying approa
h to both signalized and unsignalized interse
tions (1996).These models 
ombine a queueing theory approa
h with a realisti
 des
rip-tion of traÆ
 pro
esses for a given lane at a given interse
tion. They yielddetailed performan
e measures su
h as queue length distributions or so-journ time distributions. Nevertheless, as exa
t analyti
al methods, theyare diÆ
ult to generalize to 
onsider multiple lanes, not to mention multipleinterse
tions.To the best of our knowledge no method has been proposed to modelthe traÆ
 pro
ess for a set of urban interse
tions using an analyti
 queueingnetwork framework. Nevertheless the methods proposed by Jain and Smith(1997) and Van Woensel and Vandaele (2007) whi
h are both based on theExpansion Method (Kerba
he and Smith, 2000) and formulated for highwaytraÆ
 
ould be extended to 
onsider an urban setting.2



2.2 Traffic signal controlTraÆ
 signal setting strategies 
an be either �xed-time or traÆ
-responsivestrategies. Fixed-time (also 
alled pre-timed) strategies use histori
al traf-�
 data, and yield one traÆ
 signal setting for the 
onsidered time of day.The traÆ
 signal optimization problem is solved o�ine. On the other handtraÆ
-responsive (also 
alled real-time) methods use real-time data to de-�ne timings for immediate implementation that are used over a short timehorizon. Furthermore, signal timings 
an be derived by 
onsidering either asingle or a set of interse
tions. These methods are 
alled isolated methodsand 
oordinated methods, respe
tively (Papageorgiou et al., 2003). Meth-ods that handle individual interse
tions are based on models that 
apturethe lo
al dynami
s of the network. They des
ribe in detail the dynami
s atan interse
tion, but at the expense of 
apturing less well the intera
tionsamong interse
tions.A phase is de�ned as a set of streams that are mutually 
ompatible andthat re
eive identi
al 
ontrol. The 
y
le of a signal plan is divided into asequen
e of periods 
alled stages. Ea
h stage 
onsists of a set of mutually
ompatible phases that all have green. Methods where the stage stru
ture(i.e. the sequen
e of stages) is given are known as stage-based approa
hes,whereas methods where the stage stru
ture is endogenous are referred toas phase-based or group-based approa
hes.Delay minimization and reserve 
apa
ity maximization are the most
ommon obje
tive fun
tions used by pre-existing methods. Delay may bedire
tly measured, leading to a data-driven approa
h, or estimated (model-based approa
h). The �rst approximate expression for the delay at an in-terse
tion was given by Webster (1958), and is still widely used. Other ex-pressions in
lude those of Newell (1965), Miller (1963), and M
Neil (1968).Viti (2006) provides a review of delay models; Dion et al. (2004) 
omparethe performan
e of di�erent delay models, and Chow and Lo (2007) deriveapproximate delay derivatives that 
an be integrated within a simulation-based signal setting optimization 
ontext in order to redu
e the 
ompu-tation time required to obtain numeri
al derivatives. The notion of thereserve 
apa
ity of an interse
tion is de�ned by Wong and Yang (1997) asthe greatest 
ommon multiplier of existing 
ows that 
an be a

ommodatedsubje
t to saturation and signal timing 
onstraints. This notion has beenextended to 
onsider several interse
tions (Wong and Yang, 1997; Ziyou3



and Yifan, 2002).The works of Allsop (1992) and of Shepherd (1994) review signal 
ontrolmethods. Allsop (1992) des
ribes in detail the 
orresponding terminologyas well as the di�erent formulations for isolated methods. More re
ently thereviews of Papageorgiou et al. (2003) and Cas
etta et al. (2006) 
over dif-ferent but 
omplementary aspe
ts of this resear
h �eld. Papageorgiou et al.(2003) provide an ex
ellent review of urban traÆ
 
ontrol methods, whilehighlighting their appli
ations (either via simulation or �eld implementa-tions). They also 
onsider freeways and route guidan
e methodologies.Cas
etta et al. (2006) review the more general problem of traÆ
 
ontroland demand assignment methods.
Fixed-time isolated strategiesThese strategies 
an be stage-based su
h as SIGSET (Allsop, 1971) andSIGCAP (Allsop, 1976). SIGSET minimizes delay using Webster's non-linear formulation (Webster, 1958), whereas SIGCAP maximizes reserve
apa
ity. Both methods 
onsider a set of linear 
onstraints. Improta andCantarella (1984) 
onsider a phase-based method formulated as a mixed-integer linear program. They give formulations for both delay minimizationand reserve 
apa
ity maximization problems.
Fixed-time coordinated strategiesOptimizing a set of signals along an arterial is the fo
us of the arte-rial progression s
hemes MAXBAND (Little et al., 1981) and MULTI-BAND (Gartner et al., 1991). These methods aim at maximizing the band-width of through traÆ
 along an arterial. MULTIBAND is an extensionof MAXBAND allowing, among others, for di�erent bandwidths for ea
hlink of the arterial. These problems are formulated as mixed-integer linearprograms. They have been extended to 
onsider a set of interse
ting arteri-als (Gartner and Stamatiadis, 2002). Heuristi
s have also been spe
i�
allydeveloped to solve this problem (Pillai et al., 1998). Nevertheless under
ongested s
enarios where there is a strong intera
tion among the di�erentqueues, the 
al
ulated bands fail to grasp this 
omplexity. Furthermore indense urban networks with 
omplex traÆ
 movements bandwidth has littlemeaning (Robertson and Bretherton, 1991).Several phase-based strategies have been proposed (Wong et al., 2002;Wong, 1997; Wong, 1996). The phase-based approa
h, although more gen-4



eral, is limited due to the exponential number of integer variables neededto des
ribe the pre
eden
e 
onstraints of in
ompatible phases.Chaudhary et al. (2002) 
ompares the performan
e of 3 �xed-time 
o-ordinated stage-based methods: TRANSYT, PASSER and SYNCHRO.TRANSYT is the most widely used signal timing optimization pa
kage.It is a ma
ros
opi
 model that aims at minimizing both delay and stops. Ades
riptive �gure of its underlying methodology is given by Papageorgiouet al. (2003). SYNCHRO and TRANSYT have similar traÆ
 models. SYN-CHRO seeks to minimize stops and queues, by using an exhaustive sear
hte
hnique to determine the optimal signal timings. PASSER determinesthe green splits (also known as the green ratios), stage stru
ture, 
y
lelength, and o�sets that maximize arterial progression (i.e. bandwidth-based method) for signalized arterials. PASSER performs an exhaustivesear
h over the range of 
y
le lengths provided by the user, and sets thegreen splits using Webster's method (Webster, 1958). These splits are thenadjusted to improve progression. Boillot et al. (1992) highlight that in 
on-gested 
onditions, TRANSYT and PASSER do not grasp the queue lengthappropriately. Traditionally TRANSYT's traÆ
 model 
onsidered verti-
al queueing (i.e. the spatial extension of the queue is ignored), thus not
apturing spillba
ks, making this software suitable only for undersaturateds
enarios. Although, more re
ent versions now take into a

ount the e�e
tsof queue formation using horizontal queueing models (Abu-Lebdeh andBenekohal, 2003), Chow and Lo (2007) emphasize that the use of TRAN-SYT is appropriate only for low to moderate degrees of saturation.
Traffic-responsive methodsTraÆ
-responsive methods use real-time measurements to drive the under-lying optimization algorithm. The signal plans of these methods are derivedeither by making small adjustments to a prede�ned plan, by 
hoosing be-tween a set of pre-spe
i�ed plans or by de
iding when to swit
h to the nextstages over a future time horizon (Boillot et al., 1992). The trend of real-time methods is the latter, where the optimization parameters are no longer
y
le time, splits or o�sets, but rather the swit
hing times. These methodsare referred to as non-parametri
 methods by Sen and Head (1997). Nev-ertheless these methods are limited by the exponential size of the sear
hspa
e, due to the introdu
tion of the integer variables that des
ribe theswit
hing times. 5



The British software SCOOT (Bretherton, 1989) is 
onsidered to be thetraÆ
-responsive version of TRANSYT. A des
ription of how TRANSYTevolved into SCOOT is given by Robertson and Bretherton (1991). SCOOTseeks to minimize the total delay by 
arrying out in
remental 
hanges to theo�-line timings derived by TRANSYT. It therefore makes a large numberof small optimization de
isions (typi
ally over 10000 per hour in a net-work of 100 jun
tions (Robertson and Bretherton, 1991)). The Australianmethod SCATS (Lowrie, 1982) modi�es signal timings on a 
y
le-by-
y
lebasis by minimizing stops and delay while 
onstraining the formation ofqueues. Both SCOOT and SCATS are widely used strategies suitable forundersaturated 
onditions, but as Aboudolas et al. (2007) and Dinopoulouet al. (2006) both des
ribe, their performan
e deteriorates under 
ongested
onditions.Dynami
 programming methods are used in the Fren
h system PRO-DYN (Henry and Farges, 1989) as well as in the US systems OPAC andRHODES. RHODES (Mir
handani and Head, 2001) uses the COP algo-rithm (Sen and Head, 1997) to determine the swit
hing times at a giveninterse
tion. This method does not rea
t to traÆ
 
onditions just observedbut rather proa
tively sets phase durations for predi
ted traÆ
 
onditions.A des
ription of the OPAC model and algorithm, as well as its implemen-tation are given by Gartner et al. (2001) and Gartner et al. (1991). TheItalian method UTOPIA is yet another method that has been evaluated andimplemented (Mauro and Di Taranto, 1989). As Dinopoulou et al. (2006)des
ribe, the exponential 
omplexity of these methods does not allow fornetwork-wide optimization. This is also emphasized by Boillot et al. (1992):\the existing systems are not 
apable of 
ontrolling a zone of several jun
-tions in a 
omplete and 
oordinated manner. The 
hosen 
ompromise is to
ontrol only one jun
tion as OPAC or to use a de
entralized optimizationmethod as UTOPIA, PRODYN or to make little 
hanges of the �xed-timesignal plan as SCOOT and SCATS." A
knowledging the importan
e andla
k of eÆ
ient 
ontrol strategies under saturated 
onditions has lead to thedevelopment of the Fren
h system CRONOS (Boillot et al., 2006; Boillotet al., 1992), and of the TUC method (Dinopoulou et al., 2006).The method proposed in this paper belongs to the 
ategory of �xed-time 
oordinated methods. Traditionally, �xed-time strategies have been
onsidered suitable only for undersaturated traÆ
 
onditions (Abu-Lebdeh6



and Benekohal, 1997; Shepherd, 1994; Chow and Lo, 2007; Papageorgiouet al., 2003). Thus methods for saturated 
onditions have fo
used on real-time strategies. Nevertheless, we believe that the development of optimal�xed-time methods is of primary importan
e. First, they 
an be used asben
hmark solutions to evaluate traÆ
-responsive strategies. Se
ond, theyrepresent robust 
ontrol solutions (Yin, 2008). Finally, they may be dire
tlyor indire
tly used as building blo
ks to derive real-time methods.Although there is a vast range of signal 
ontrol methodologies in theliterature, there is still a need for solutions that are appropriate and ef-�
ient under saturated 
onditions (Dinopoulou et al., 2006). Under 
on-gested 
onditions the performan
e of signal 
ontrol strategies and the for-mation and propagation of queues are strongly related. Models that ignorethe spatial extension of queues fail to 
apture 
ongestion e�e
ts su
h asspillba
ks, and gridlo
ks. Adopting a verti
al queueing model is thereforeonly reasonable when the degree of saturation is moderate. Both Chowand Lo (2007) and Abu-Lebdeh and Benekohal (1997), illustrate the ef-fe
ts of ignoring this spatial dimension. Therefore a signal 
ontrol strategysuitable for 
ongested 
onditions must take into a

ount the 
orrelationbetween queues. Nevertheless, most existing strategies do not a

ountfor this 
orrelation and are thus unsuitable for highly 
ongested networks(Papageorgiou et al., 2003; Abu-Lebdeh and Benekohal, 2003). Further-more Abu-Lebdeh and Benekohal (2003) emphasize that a

ounting forthe e�e
ts of queue propagation remains a se
ondary 
onsideration withina signal timing framework. We therefore believe that the queueing modelproposed in this paper is an appropriate tool both to improve urban signalsettings during peak hours and to emphasize the importan
e of a

ountingfor the between-queue 
orrelation.
3 Methodological frameworkWe 
onsider an urban transportation network, 
omposed of a set of bothsignalized and unsignalized interse
tions. We 
apture the traÆ
 dynami
swith a set of queuing models organized in a network, or a queueing networkmodel.Ea
h road in the network is divided into segments su
h that the numberof lanes is 
onstant on ea
h segment. Segment boundaries are therefore7



either interse
tions, or lo
ations where the number of lanes 
hanges betweeninterse
tions. They 
orrespond to 
hanges of 
apa
ity.A queue is then asso
iated with ea
h lane of ea
h segment in the net-work. The intera
tions among the queues are expli
itly 
aptured by linkingthe parameters of the queues (su
h as the 
apa
ity and the arrival 
ow)with the state of other queues.We 
onsider a �xed-time signal 
ontrol problem where the o�sets, the
y
le times and the all-red durations are �xed. The stage stru
ture is alsogiven. In other words, the set of lanes asso
iated with ea
h stage as well asthe sequen
e of stages are both known.The 
ontrol problem 
onsists in minimizing the average time T spentin the network, by adjusting the green splits at ea
h interse
tion (i.e. theproportion gp of 
y
le time that is allo
ated to ea
h phase p). The traveltime is derived from a traÆ
 model whi
h 
ombines both exogenous (�xed)parameters, su
h as the total demand, the route 
hoi
e de
isions and thetopologi
al stru
ture of the street network, with endogenous variables, su
has the 
apa
ities and the probability of spillba
ks. The latter are dire
tlylinked with the de
ision variables. Consequently, we now formulate themodel 
apturing the traÆ
 dynami
s that derives T from g, the exoge-nous parameters and the endogenous variables, as well as the 
onstraintsasso
iated with the traÆ
 signal settings.
3.1 The network modelIn a previous paper (Osorio and Bierlaire, forth
oming), we have proposeda new analyti
 queueing network model that a

urately des
ribes the for-mation and the di�usion of 
ongestion. We provide below a general de-s
ription of the existing model, and then detail its adaptation for urbantraÆ
 networks.In the original model, we assume both the total demand and the 
apa
i-ties to be given, and derive a set of performan
e measures su
h as stationarydistributions and 
ongestion indi
ators. Ea
h queue is de�ned a

ording toa set of exogenous stru
tural parameters. The key feature is the des
riptionof the intera
tions among the di�erent queues. Congestion and spillba
ksare modeled by what is referred to in queueing theory as blo
king. Thiso

urs when a queue is full, and thus blo
ks arrivals from upstream queuesat their 
urrent lo
ation. This blo
king pro
ess is des
ribed by endogenous8



variables su
h as blo
king probabilities and unblo
king rates. The overallpro
ess is des
ribed by a set of equations 
apturing the queue dynami
s.Given the exogenous parameters, the values of the endogenous variables areevaluated by solving a system of nonlinear equations. We extend this for-mulation by 
onsidering the 
apa
ities endogenous, as they are determinedby the de
ision variables (i.e. the green splits).
3.2 QueuesA queue is asso
iated with ea
h lane of ea
h segment in the network. Ea
hqueue is 
onne
ted to the downstream segments where a turning of theunderlying lane is permitted. Note that 
onne
ting a queue to a segmentsmeans that it is 
onne
ted to all of the queues in that segment.All queues have one server, whi
h represents the servi
e due to the
hange of 
apa
ity at the boundary of a segment. The size of a queue i isdenoted by ki. It is 
omposed of the server and the bu�er. Note that kiis known as the 
apa
ity of the queue in queueing theory. In this paperthe term 
apa
ity will be used a

ording to its traÆ
 theory de�nition(VSS, 1998), and we therefore refer to ki as the queue size. Heidemann(1996), as well as Van Woensel and Vandaele (2007), divide ea
h road intosegments of length 1/kjam, where kjam is the jam density, and thus 1/kjamrepresents the minimal length that ea
h vehi
le needs. We also follow thistype of reasoning and de�ne the queue size as:

ki = ⌊(ℓi + d2)/(d1 + d2)⌋,where ℓi denotes the length of lane i, d1 is the average vehi
le length (e.g.4 meters), and d2 is the minimal inter-vehi
le distan
e (e.g. 1 meter). Thisfra
tion is then rounded down to the nearest integer. In this model allqueues have a �nite size. This is referred to in queueing theory as �nite
apa
ity queues, and is ne
essary in order to a

ount for 
ongestion andspillba
k e�e
ts.The exogenous parameters used to des
ribe the distribution of the de-mand throughout the network are the external arrival rates and the tran-sition probabilities. The external arrival rate of a queue i 
orrespondsto vehi
les rea
hing the queue 
oming from outside of the network, andnot from another queue. This typi
ally applies to the boundaries of the9



network, or parking lots inside the network. The transition probability be-tween queue i and queue j, is the proportion of 
ow from queue i that goesto queue j, whi
h may be obtained from a route 
hoi
e model (Bierlaireand Frejinger, 2008).The servi
e rates of the queues are de�ned as the 
apa
ities of theunderlying lanes. For segments that lead to interse
tions the servi
e rateof its queues is de�ned as the 
apa
ity of the interse
tion for that approa
hor lane. We derive formulations for the 
apa
ities of the di�erent types ofinterse
tions based on the Swiss national transportation standards.For unsignalized interse
tions (e.g. two-way stop 
ontrolled interse
-tions, yield-
ontrolled interse
tions) the standard VSS (1999a) is used. Theturning movements are ranked. For ea
h movement the 
on
i
ting 
ow is
al
ulated based on a set of equations that depend on the type of movementand its rank. Then their potential 
apa
ity and their movement 
apa
ityis 
al
ulated. Finally the 
apa
ity of the lanes with multiple turnings areadjusted to take into a

ount the la
k of side lanes.The 
apa
ity of the lanes leading to, on, or exiting roundabouts arederived based on the standard VSS (2006). They take into a

ount the sameparameters as for unsignalized interse
tions but are based on a di�erentset of equations. This standard a

ounts for roundabouts with either onelane or one large lane. For networks that 
ontain roundabouts with twolanes, the 
apa
ity of these lanes is 
al
ulated based on the equations forroundabouts with one large lane.For signalized interse
tions we use the standard VSS (1999b), whi
hde�nes the 
apa
ity of a lane as the produ
t of the saturation 
ow and theproportion of green time allo
ated to that lane per 
y
le. This approa
h isalso proposed in Chapter 9 of the Highway Capa
ity Manual (TRB, 1994).When a segment does not lead to an interse
tion (e.g. segments whereall of the vehi
les leave the network, or segments that lead dire
tly toanother segment) the servi
e rate of its queues is set to the saturation 
owof the 
orresponding lane.
3.3 System of equationsIn this paper all queues have a single server. Thus the equations presentedby Osorio and Bierlaire (forth
oming) simplify. In the following notation10



all rates are average rates and the index i refers to a given queue.
π(i) stationary distribution;
S(i) state spa
e;
Q(i) transition rate matrix;
γi external arrival rate;
λi total arrival rate;
µi servi
e rate of a server;~µi unblo
king rate;
µ̂i e�e
tive servi
e rate (a

ounts for both servi
e and eventual blo
king);
Pf

i probability of being blo
ked at queue i;
pij transition probability from queue i to queue j;
ki queue size;
Ni total number of vehi
les in queue i;
P(Ni = ki) probability of queue i being full, also known as the blo
king probability;
I+ set of downstream queues of queue i.Sin
e we 
onsider a single server network, the ve
tor denoted by ~µ(i, b) inthe initial model, redu
es to a single value that is now denoted ~µi. Thesystem of equations is thefore given by:

π(i)Q(i) = 0, (1)∑

s∈S(i)

π(i)s = 1, (2)
Q(i) = f(λi, µi, P

f
i, ~µi), (3)

λi = γi +

∑
j pjiλj(1 − P(Nj = Kj))

(1 − P(Ni = ki))
, (4)

1~µi

=
∑

j∈I+

λj(1 − P(Nj = Kj))

λi(1 − P(Ni = ki))µ̂j

, (5)
1

µ̂i

=
1

µi

+ Pf
i

1~µi

, (6)
Pf

i =
∑

j

pijP(Nj = Kj).. (7)We brie
y des
ribe these equations, for more details the reader is referredto the initial paper. The exogenous parameters are γi, pij and ki. All othervariables are endogenous. Equations (1) and (2) are known as the global11



balan
e equations, they link the stationary distribution of a queue to itstransition rate matrix, Q(i). This matrix des
ribes the rates at whi
h atransition 
an take pla
e between any pair of states. It is de�ned by Equa-tion (3), where fun
tion f is detailed in Table 1 of Osorio and Bierlaire(forth
oming). We approximate the transition rates using stru
tural pa-rameters that 
apture the between-queue 
orrelation (Equations (4)-(7)).These equations link the endogenous parameters of a given queue (e.g. ar-rival rate, servi
e rate) with the parameters of its upstream and downstreamqueues. In parti
ular, Pf
i gives the probability with whi
h a spillba
k 
ano

ur, while ~µi des
ribes the rate at whi
h su
h a spillba
k will dissipate.Ea
h queue has 6 endogenous variables (λi, µi, ~µi, µ̂i, P(Ni = ki), P

f
i). Forea
h queue the dimension of its distribution is 2ki + 1. Thus the system ofequations 
onsists of ∑

i (2ki + 7) nonlinear equations.
3.4 Optimization problemIn order to formulate the signal 
ontrol problem we intordu
e the followingnotation:
yi available 
y
le time of interse
tion i (
y
le time minus the all-red times ofinterse
tion i) [se
onds℄;
bi available 
y
le ratio of interse
tion i (ratio of yi and the 
y
le time ofinterse
tion i);
gp green split of phase p (green time of phase p divided by the 
y
le time of its
orresponding interse
tion);
gL ve
tor of minimal green splits for ea
h phase (minimal green time allowedfor ea
h phase divided by the 
y
le time of its 
orresponding interse
tion);
s saturation 
ow rate [veh/h℄;
x endogenous queueing model variables;
α exogenous queueing model parameters;
I set of interse
tion indi
es;
L set of indi
es of the signalized lanes;
PI(i) set of phase indi
es of interse
tion i;
PL(ℓ) set of phase indi
es of lane ℓ.The problem is formulated as follows:min

g,x
T(g, x, α) (8)12



subje
t to
∑

p∈PI(i)

gp = bi, ∀i ∈ I (9)
µℓ −

∑

p∈PL(ℓ)

gps = 0, ∀ℓ ∈ L (10)
h(x, α) = 0 (11)

g ≥ gL (12)
x ≥ 0. (13)The obje
tive is to redu
e the average time that vehi
les spend in the net-work, whi
h is represented by T (Equation (8)). T is a nonlinear fun
tion ofthe queueing model parameters. Resorting to the notation of the previousse
tion, T is given by

∑

i

E[Ni]

λi

.The linear 
onstraints (9) link the green times with the available 
y
le timefor ea
h interse
tion. Equation (10) links the green times of the signalizedlanes to their 
apa
ities. The bounds (12) 
orrespond to minimal greentime values for ea
h phase. These have been set to 4 se
onds a

ordingto the Swiss standard VSS (1992). Equation (11) represents the networkmodel, presented in Se
tion 3.3.The optimization problem is solved with the Matlab routine for 
on-strained nonlinear problems, fmin
on, whi
h resorts to a sequential quadrati
programmingmethod (Coleman and Li, 1996, 1994). A feasible initial pointis obtained by �xing a 
ontrol plan and solving the network model (Equa-tion (11)). We refer the reader to Osorio and Bierlaire (forth
oming) formore details on the solution pro
edure of this system of equations as wellas for its own initialization settings.
4 Empirical analysis

4.1 Microscopic traffic simulation model of the city of
LausanneTo perform the empiri
al analysis, we use a 
alibrated mi
ros
opi
 traÆ
simulation model of the Lausanne 
ity 
enter. This model (Dumont and13



Bert, 2006) is implemented with the AIMSUN simulator (TSS, 2008). It
ontains 652 roads and 231 interse
tions, 49 of whi
h are signalized. Weuse this model for two purposes.Firstly, we use it to extra
t the network data (e.g. road 
hara
teristi
s,demand distribution) needed to estimate the exogenous parameters of thequeueing model. The interse
tion 
hara
teristi
s in
lude an existing �xed-time signal 
ontrol plan of the 
ity of Lausanne. For more information
on
erning this 
ontrol plan we refer the reader to Dumont and Bert (2006).Based on this 
ontrol plan we give initial values to the 
apa
ities of thesignalized lanes.The demand distribution is des
ribed in terms of roads, whereas werequire lane spe
i�
 distributions. For ea
h road we have three types of
ow data: external out
ow (
ow that leaves the network), road-to-roadturning 
ow, external in
ow (
ow that arises from outside of the network).In order to obtain lane spe
i�
 distributions we disaggregate the 
ow dataas follows.
External outflow. We assume that this 
ow is distributed with equalprobability a
ross all the lanes of the road. If the road is modeled withseveral segments the out
ow is asso
iated with the last (most downstream)segment. In other words departures only o

ur at the end of the road.
Turning flow. We 
onsider that this 
ow is distributed with equal prob-ability a
ross all the lanes involved in the turning.
External inflow. We assume that this 
ow is distributed with equal prob-ability a
ross all the lanes of the road. If the road is modeled with severalsegments the in
ow is asso
iated with the �rst segment. In other wordsarrivals only o

ur at the beginning of the road.Se
ondly, we use this simulation model to evaluate and 
ompare theperforman
e of di�erent signal plans. On
e a new plan is determined, it isintegrated in the simulation model, its performan
e is evaluated and then
ompared with that of other plans. The simulation setup 
onsists of 100repli
ations of the evening peak period (17h-19h), pre
eded by a 15 minutewarm-up time. Within this time period 
ongestion gradually in
reases. Theaverage 
ow of the roads in the subnetwork steadily de
reases from 339 to25 (veh/h); and the average density in
reases from 10 to 57 (veh/km).We now 
ompare the performan
e of several methodologies, by 
onsid-ering a subnetwork of the Lausanne 
ity 
enter. For ea
h methodology wederive the optimal signal plan for the subnetwork, and then use the simu-14



Figure 1: Subnetwork of the Lausanne 
ity 
enterlation model to evaluate its e�e
t upon the entire Lausanne network. Thesubnetwork (Figure 1) 
ontains 48 roads and 15 interse
tions. Nine inter-se
tions are signalized and 
ontrol the 
ow of 30 roads. There are a totalof 51 phases that are 
onsidered variable. The interse
tions have a 
y
letime of either 90 or 100 se
onds. The queueing model of this network 
on-sists of 102 queues. The optimization problem 
onsists of 2288 endogenousvariables with their 
orresponding lower bound 
onstraints, 1829 nonlinearequality 
onstraints, and 417 linear equality 
onstraints.
4.2 Between-queue correlationThe queueing model proposed in this paper des
ribes 
ongestion by tak-ing into a

ount the 
orrelation between upstream and downstream roads.In this se
tion we illustrate the added value of a

ounting for the 
orre-lation. We 
ompare this model with the same model where independen
eof the queues is assumed. The optimization problem is solved for bothqueueing models (
orrelated queues versus independent queues), and theperforman
e of the 
orresponding signal plans are 
ompared. We will de-note these as the 
orrelated and the independent plans, respe
tively.Assuming independent queues leads to the following simpli�
ations:� the arrival rates are now exogenous;15



� the e�e
tive servi
e rates, are no longer linked to the potential spill-ba
ks of downstream roads, i.e. the total time spent on a road isentirely determined by its 
apa
ity.We 
onsider the average number of vehi
les that have exited ea
h origin-destination (OD) pair at a given time. The simulation time is segmentedinto 40 3-minute intervals. Figure 2 displays for ea
h time interval a boxplotof the di�eren
e between the average number of vehi
les for the indepen-dent and the 
orrelated plans. Ea
h point within a boxplot represents thisdi�eren
e for a given OD pair. This �gure illustrates how the number ofOD pairs that have a higher 
ow under the 
orrelated plan than under theindependent one in
reases as 
ongestion in
reases.This �gure also shows that there is no di�eren
e for the majority of theOD pairs. It makes sense, sin
e only 51% of the 2096 OD pairs have morethan 2 trips assigned per hour, 14% have more than 10 trips, and 6.6%have more than 20 trips. Thus for the majority of the OD pairs we wouldnot expe
t a di�eren
e larger than a 
ouple of vehi
les.Figure 3 displays the empiri
al 
umulative distribution fun
tion of thesedi�eren
es for the intervals 10, 20, 30 and 40. It also shows that as 
onges-tion in
reases there is a higher proportion of OD pairs that perform betterwhen the 
orrelation is taken into a

ount. The asymmetry of Figures 2and 3 are eviden
e of the added value of a

ounting for the dependen
e ofqueues in signal optimization.We have also looked at the densities in the network. We did not expe
tany noti
eable di�eren
e, as the network is highly 
ongested, so that onlythe global throughput 
ould be a�e
ted. Nevertheless, we found 3 lo
ationswith a signi�
ant di�eren
e in densities. Ea
h plot of Figure 4 displays thedensity of one of these 3 roads as a fun
tion of time. For all three 
ases,there is a signi�
antly smaller density under the 
orrelated plan. Figure 5displays errorbars su
h that the distan
e from the average to the upper(respe
tively, the lower) limit of the bar is equal to the standard deviation.The plots in the left 
olumn 
orrespond to the independent plan, thosein the right 
olumn 
orrespond to the 
orrelated plan. Ea
h row of plots
onsiders one of the 3 previously mentioned roads. These plots illustratehow with in
reasing 
ongestion there is less variability in the density a
rossrepli
ations under the 
orrelated plan.16
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We have also performed an analysis of the impa
t on the average traveltime per vehi
le on these roads. In this 
ase the average travel times donot exhibit a signi�
ant di�eren
e (Figure 6), ex
ept for the end of thesimulation period on road 1. The added value of the method with 
orre-lated queues 
learly appears in the analysis of the standard deviations, asillustrated in Figure 7. These results illustrate well the added value of themethod, not only on the global throughput but also lo
ally.
4.3 Comparison with pre-existing methodsWe now 
ompare the signal settings derived by the method proposed in thispaper with a pre-existing �xed-time signal settings for the 
ity of Lausanne,the method derived by Webster (1958) and with the method suggested inthe Highway Capa
ity Manual (TRB, 1994; Tian, 2002).
Base plan The 
alibrated simulation model of the Lausanne 
ity 
enter isbased on an existing �xed-time signal 
ontrol plan. For more infor-mation 
on
erning this 
ontrol plan we refer the reader to Dumontand Bert (2006). This signal plan will be referred to as the base plan.
HCM/Webster By allo
ating the green times su
h that the 
ow to 
a-pa
ity ratios for the 
riti
al movements of ea
h phase are equal, themethod suggested in the Highway Capa
ity Manual (TRB, 1994;Tian, 2002) leads to the same green split equations as Webster'smethod (1958). This equivalen
e is detailed in Osorio and Bierlaire(2008).Webster's method is based on an estimate of the average delay pervehi
le at a signalized interse
tion. It determines 
y
le times andgreen-splits of pre-timed signals that minimize delay. These greensplits are used in signal setting softwares su
h as SYNCHRO andPASSER V (Chaudhary et al., 2002); and the delay estimate is oneof the best known (Cas
etta, 2001). The analysis is based on isolatedinterse
tions under the assumption of the number of arrivals followinga Poisson distribution, and undersaturated 
onditions (traÆ
 inten-sity ρ < 1).In this approa
h ea
h phase is represented by one approa
h only: theone with the highest degree of saturation (ratio of 
ow to saturation20
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Figure 8: Empiri
al 
umulative distribution fun
tion of the di�eren
e inthe average number of vehi
les that have exited the OD pairs for timeintervals 10, 20, 30 and 40
ow). This maximum ratio for phase p is denoted Yp. More spe
i�-
ally, assuming no yellow times and no lost times per phase, Webster'smethod leads to:
gp =

Yp∑
j∈PI(i) Yj

bi ∀p ∈ PI(i). (14)This method requires as input the 
ows and saturation 
ows for ea
happroa
h. These have been derived as follows. For a signalized inter-se
tion the saturation 
ow is set to a 
ommon value for all approa
hes,this value is based on the standards VSS (1999b). The approa
h 
owsare set using the observed 
ows derived by the simulation model.We 
onsider the network and simulation setup des
ribed in Se
tion 4.1.We 
ompare the methods in terms of the average number of vehi
les thathave exited ea
h OD pair a
ross time. The des
ription of how these 
om-parisons are 
arried out has been des
ribed in Se
tion 4.2. The empiri
al
umulative distribution fun
tions of Figure 8 show that there is a highproportion of OD pairs for whi
h the new plan yields an in
rease in out-
ow. This �gure also shows that this proportion in
reases with 
ongestion.The asymmetry of this �gure illustrates the signi�
ant superiority of theproposed method. 21
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Contrarily to the previous experiment, we observe here a signi�
ant im-provement in terms of densities and travel times. The 3 plots of Figure 9
onsider the 
ow, the density and the travel time of the roads of the sub-network, plotted a
ross time. The 
rosses, squares and 
ir
les denote thebase plan, the HCM/Webster plan and the new plan, respe
tively. Theseplots illustrate how the new plan leads to improved subnetwork densityand travel times, whereas for the 
ow there is no trend.
5 ConclusionIn this paper we have formulated a �xed-time traÆ
 signal optimizationproblem, where the underlying traÆ
 model is based on a queueing networkmodel. By using a set of stru
tural parameters that 
apture the between-queue 
orrelation, this queueing model provides a detailed des
ription ofhow 
ongestion arises and how it spreads.We have solved the signal 
ontrol problem for a subnetwork of the 
ityof Lausanne. The new signal plan has been evaluated with a mi
ros
opi
traÆ
 simulation tool. Its performan
e has been 
ompared with the samemodel assuming independent queues, with a �xed-time plan that existsfor the 
ity of Lausanne, with Webster's method and with the methodproposed by the Highway Capa
ity Manual. As 
ongestion in
reases, thenew method leads to performan
e measures that improve on average andare less variable.This model makes an attra
tive trade-o� between a detailed des
rip-tion of 
ongestion and analyti
al tra
tability. It is therefore parti
ularlyappropriate for the study and management of 
ongested urban networks.Future resear
h will follow two main tra
ks. On the one hand, the frame-work will be extended to 
onsider 
oordinated and traÆ
-responsive signalsettings. On the other hand, it will be adjusted for large-s
ale s
enarios by
onsidering de
omposition te
hniques.
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