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Abstract
This study presents a flexible model for risk-taking behavior and accident injury severity. It is
specifically designed to evaluate the impact of Via Sicura, a Swiss road safety program, on the
severity of accident outcomes. Our proposed model treats the risk-taking behavior of each
driver as a latent variable that depends on a number of socioeconomic and contextual factors,
and whose manifestation can be measured by means of behavioral indicators. The aggregated
risk, a central feature of our framework, represents the combined latent risk-taking behaviors
among all drivers within an accident and is successfully identified as explanatory of the
severity of injuries sustained by all individuals involved. Our findings reveal that Via Sicura’s
repressive measures successfully deter risk-taking behavior among drivers, preventing an
estimated 63 fatal, 876 major and 2’303 minor injuries over a ten-year period.

Keywords: accident injury severity; driving behavior; latent variable model.
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1 Introduction
Road safety is a major concern of our modern, motorized society. According to the latest
World Health Organization global status report, almost 1.2 million people die each year
as a result of traffic accidents, and another 20 to 50 million suffer non-fatal injuries (World
Health Organization, 2023). In addition to the pain and suffering they cause, traffic accidents
also incur a heavy economic burden on victims and their families. In most countries, their
consequences are estimated to exceed 3% of the annual gross domestic product.

In Switzerland, considerable efforts in favor of road safety have been carried out for the past
50 years. As a result, between 1970 and 2020 the number of fatalities on Swiss roads has
dropped from 1’694 to 227. In 2013, as a further commitment to reach its ultimate target
of zero fatalities or major injuries (Swiss Council for Accident Prevention, 2002), the Swiss
Federal Council has initiated a road safety program called Via Sicura.

Via Sicura consists of a number of legislative measures that aim at improving road safety
by ensuring that “only the drivers who have received the necessary level of instruction and
possess a full driving capacity drive in safe motor vehicles and on forgiving roads” (Federal
Roads Office, 2005). In addition to several preventive measures that aim at reducing accident
occurrence, such as the ban on alcohol for new and professional drivers or the compulsory use
of lights during the day for all motor vehicles, Via Sicura has the particularity of introducing
some repressive measures too, which are believed to act as a deterrent against risk-taking
behavior. In particular, a new, stricter legislation governing extreme speeding offenders and
drunk drivers was introduced in January 2013, at the very beginning of the program.

The first official assessment of the program highlights its positive effect by comparing the
yearly totals of major and fatal injuries between 2013 and 2015 with the ones predicted by a
counterfactual model — i.e., without Via Sicura —estimated on the data from 2000 to 2012
(Swiss Federal Council, 2017): according to their analysis, an average of 33 fatal injuries
per year were prevented during the three first years of the program. Because it focuses
on yearly totals, however, this approach suffers two drawbacks: (i) heterogeneity at the
accident, vehicle and individual levels is ignored entirely; and (ii) the identified impact of
Via Sicura is actually the combination of two distinct effects, namely on accident occurrence
and on the severity of their outcomes, and those may have very different magnitudes.

To overcome these limitations, we propose a model that focuses on assessing the influence
of Via Sicura on injury severity at a disaggregate level, namely through the dissuasive effect
of its repressive measures on the behavior of drivers and, in turn, through the impact of the
resulting change in behavior on accident outcomes. The use of a disaggregate model enables
the effect of other variables to be controlled, which ultimately contributes to isolating the
effect of Via Sicura.

The contributions of our research are twofold. First, we introduce a new, flexible framework
for risk-taking behavior and accident injury severity modeling. Similar to the work of Lavieri
et al. (2016), our framework models the risk-taking behavior of drivers as a latent variable
whose value directly impacts the injury severity of all individuals involved in an accident, as
well as a number of behavioral indicators used for estimation. Our framework also includes
an innovative way of aggregating the risk-taking behavior of any number of drivers, meaning
that our model is not limited to accidents that involve a specific number of vehicles. This is
a requirement for our second contribution, which consists in using the presented framework
to evaluate the efficacy of Via Sicura in a comprehensive manner. The model developed
for this purpose is estimated on a dataset derived from all police reports of accidents that
occurred in Switzerland between 1992 and 2022, which represent over 3.4 million accidents
and 4.2 million individuals involved.
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The remainder of this paper is organized as follows: Section 2 provides an overview of the
existing literature on injury severity modeling and, in particular, on studies that account
for the effect of driver behavior; Section 3 introduces the framework for risk-taking behavior
and injury severity modeling; Section 4 presents the main characteristics of the available
dataset, together with the specifics of the model developed for the assessment of the Via
Sicura program; Section 5 gathers the results obtained from its estimation; finally, Section 6
summarizes the findings of this study and identifies the future steps of this research.

2 Literature review
While concerted efforts strive to reduce the drastic number of deaths and injuries around the
world, a deep understanding of the intricacy of factors influencing traffic accident outcomes
is crucial to the development of appropriate policies, laws and regulations. For this reason,
accident occurrence modeling and injury severity modeling have been active fields of research
for decades. Since the first accident occurrence model that included a regression component
(Weber, 1970, 1971), a wide variety of studies have investigated the effect of different factors
on the occurrence of accidents or on the severity of their outcomes. As concerns the latter,
the existing literature deals with explaining the influence of directly observable variables on
the vulnerability of individuals in different types of vehicles (de Lapparent, 2005, 2006; Xin
et al., 2017), seat positions (de Lapparent, 2008; Bogue et al., 2017), on different road types
(Huang et al., 2008; Qiu and Fan, 2021; Choudhary et al., 2018) or when involved in different
types of accidents (Shankar and Mannering, 1996; Kockelman and Kweon, 2002).

These studies are valuable in that they provide insights into the complex interactions that
vehicle, infrastructure, and human characteristics have on the severity of traffic accident in-
juries. Nevertheless, the vast majority entirely omits the yet crucial effects of driver behavior
from their models, despite the clear benefits its analysis could bring to road safety. Specifi-
cally, understanding the impact of driver behavior could be helpful designing more impactful
information campaigns and behavioral modification considerations (Mannering and Bhat,
2014). We see two obvious reasons for these omissions: (i) accident data generally do not
include behavioral characteristics or psychological measurements; and (ii) the specification
and estimation of models that enable the inclusion of attitudes and other latent constructs
can be rather tedious. Hence, to the best of our knowledge, and despite an ongoing stream of
research concerned with characterizing various driving behaviors (Tasca, 2000; Clapp et al.,
2011; Scott-Parker and Weston, 2017; Hu et al., 2021), only three studies attempt to include
such attitudinal aspects into their injury severity models. We briefly discuss these, as they
are of direct relevance to the current study.

Nevarez et al. (2009) appear to be the first to account for driving behavior in their binary
model of injury severity. They do so by introducing an “aggressive driving” dummy variable
that is based on whether the driver was “speeding, tailgating, failed to yield right of way,
changed lanes improperly, or disregarded other traffic control”. This simple approach is a
certain improvement in comparison to the above-mentioned studies; however, by treating
the aggressive behavior as exogenous, the model cannot provide insights into actions that
seek to decrease injury severity by reducing aggressiveness in driving behavior.

In comparison, Paleti et al. (2010) include a similar dummy variable in their model, but treat
it as endogenous — their “latent aggressive driving act propensity” is defined as a function of
observed environmental, vehicle, accident and driver factors— and interact it with a number
of explanatory variables in the injury-severity model. The framework proposed by Paleti
et al. (2010) is therefore analogous to a latent segmentation scheme, the segmentation being
based on the “aggressive driving propensity ”binary variable.
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Finally, the work of Lavieri et al. (2016) provides a valuable example of injury-severity
models that accounts for driver behavior. In this case, two distinct behaviors — risky and
distracted driving —are modeled as latent variables and their manifestation is measured by
means of binary indicators. Not only is the use of indicators helpful in model identification
and in increasing the efficiency of the estimated parameters (Walker, 2001), but it also mit-
igates the risks of endogeneity-related issues: in fact, the two indicators associated with the
risky behavior— seatbelt usage and alcohol consumption —are known in the literature for
being particularly problematic when treated as exogenous. The methodological framework
proposed in Lavieri et al. (2016) constitutes a significant advancement towards the inclusion
of driver behavior in accident-injury severity modeling; however, its symmetric structure is
specifically designed for two-vehicle accidents and the resulting hybrid model simply cannot
handle accidents involving fewer or more vehicles.

In this paper, we propose a new framework for risk-taking behavior and accident injury
severity modeling. With the model of Lavieri et al. (2016) as a baseline, the main method-
ological novelty presented in this paper is an effective and innovative way of aggregating
the risk-taking behaviors of any number of drivers. As it is demonstrated in the following
sections, our proposed model is therefore able to handle accidents that involve virtually
any number and type of vehicles, while maintaining a relatively straightforward modeling
approach.

3 Modeling framework

3.1 Assumptions and definitions
We propose a hybrid model that allows accommodating the effect of a variety of factors on
the risk-taking behavior of drivers and, in turn, the effect of said behavior on the severity
of accident injuries. In this context, the risk-taking behavior is defined as the propensity
to act in a way that deliberately disregards safety, while endangering other persons as well
as oneself. Following the findings of Lavieri et al. (2016), our framework assumes that the
risk-taking behavior of a driver not only affects the injury severity of the occupants of their
own vehicle, but also that of all other individuals caught in the accident.

Let A be a set of reported traffic accidents. We denote as V(a) the set of vehicles involved
in accident a ∈ A and as I(a, v) the set of individuals in each vehicle v ∈ V(a). For the sake
of clarity, we define that the first occupant of a vehicle is always the driver, i.e., the person
that controls its direction and speed. The triplet (a, v, 1) therefore points to the driver of
vehicle v ∈ V(a). Moreover, it is important to note that our model accommodates accidents
that involve a variety of vehicle types, as well as pedestrians; the terms “driver” and “vehicle”
are therefore to be understood in a broad sense, as they also refer to them.

Figure 1 presents our modeling framework. In a given accident a, the risk-taking behavior of
each involved driver, denoted by r∗av1, is modeled as a latent variable that depends on their
socioeconomic characteristics and on some context variables. These explanatory variables
include, among others, the age and gender of the driver, the presence of passengers in the
vehicle, the type of road, the weather conditions, and the entry into force of Via Sicura.
The manifestation of risk-taking behavior is measured by three behavioral indicators: (i)
one of the presumed causes of the accident being attributable to recklessness; (ii) driving,
riding or walking under the influence of alcohol, drugs or impairing medications; and (iii)
not wearing a seatbelt or a helmet. The behavior of each driver is modeled independently;
however, when an accident occurs, we assume that it is the conjunction of said behaviors
that contributes to the severity of the injuries sustained by all involved individuals. The
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aggregated risk r∗a therefore represents the combination of the latent risks taken among all
drivers, and is defined at the level of the accident. The other variables that are deemed to be
explanatory of injury severity relate to the individual, to the vehicle or to the circumstances
of the accident. They include, among others, the age and the gender of the individual, the
use of a seatbelt, the speed limit and the number of vehicles involved.

aggregated
risk

behavioral
indicators

driver risky
behavior

explanatory
variables

explanatory
variables

individual
injury severity

reported
injury level

LATENT
BEHAVIOR
COMPONENT

INJURY
SEVERITY

COMPONENT

Figure 1: Structure of the integrated ordered logit and latent variable model for accident
injury severity and risk-taking behavior. The observable variables are depicted as rectangles
and the latent ones as ellipses. Solid arrows stand for structural equations, whereas dashed
arrows represent the measurement equations between latent variables and their indicators.

3.2 Structural equations
The latent risk-taking behavior of each driver, denoted by r∗av1, is defined as a linear com-
bination of exogenous variables that are meant to explain said behavior:

r∗av1 = γz′av1 + ηav1, (1)

where zav1 is a vector that contains the explanatory variables and γ is a vector of pa-
rameters to be estimated from the data.1 In addition, ηav1 is an idiosyncratic error term
that captures unobserved components. It is assumed to be independently and identically
Gumbel-distributed across all drivers, as well as uncorrelated with observable factors:

ηav1
iid∼ Gumbel (0, µ) . (2)

The manifestation of risk-taking behavior is measured using a number of behavioral indi-
cators, which, irrespective of their nature in the data, rely on the same number of latent
continuous variables. Let I∗av1p be one such underlying continuous variable; its value de-
pends on the driver’s risk-taking behavior r∗av1, as well as on a vector of variables sav1p that
are deemed to be explanatory of the behavioral indicator:

I∗av1p = θps′av1p + λpr
∗
av1 + νav1p, (3)

where θp and λp are parameters to be estimated from the data and νav1p are idiosyncratic
terms that account for unobserved variables.2 The error terms are assumed to be inde-
pendently and identically distributed across all observations, as well as uncorrelated with

1For the sake of compactness in notation, the intercept term is included in the vector of parameters γ.
2For the sake of compactness in notation, the intercept term is included in the vector of parameters θp.
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observable factors. They follow a logistic distribution with scale parameter δp > 0:

νav1p
iid∼ Logistic (0, δp) . (4)

As already stated, individual injury severity is influenced by the latent risk-taking behavior
of all drivers involved in the accident. The challenge here is to formulate an appropriate
synthetic variable that aggregates all these latent behaviors into a single value that reflects
the overall level of risk in the accident. In the context of this study, we define the aggregated
risk r∗a as the maximum risk-taking behavior among all involved drivers:

r∗a = max
v∈V(a)

(r∗av1) (5)

Given that the risk-taking behaviors of all drivers follow the same Gumbel distribution, the
aggregated risk r∗a is also Gumbel-distributed:

r∗a
iid∼ Gumbel

µ
∑

v∈V(a)

exp

(
γz′av1
µ

)
, µ

 , (6)

where µ is the same scale parameter as in (2).

Finally, the latent injury severity associated with individual i ∈ I(a, v) is denoted by Uavi

and defined as:
Uavi = βx′

avi + αr∗a + εavi, (7)

where xavi is a vector containing the observable variables that are deemed to be explanatory
of individual levels of injury, β and α are vectors of parameters to be estimated from the
data,3 and εavi is an idiosyncratic error term that accounts for unobserved variables. It is
assumed to be independently and identically distributed across all observations, as well as
uncorrelated with observable factors:

εavi
iid∼ Logistic (0, σ) . (8)

4 Case study

4.1 Data description
The data under consideration are derived from police reports of traffic accidents that oc-
curred in Switzerland between 1992 and 2022.4 In total, the dataset contains information
about 2.03 million accidents, 3.40 million involved vehicles — including pedestrians— and
4.22 million occupants of said vehicles; however, due to missing values in important ex-
planatory variables, approximately one in ten observations cannot be exploited.5

Figure 2 shows the proportion of observations retained for model estimation. Different
samples are used for each component: the latent behavior component is estimated using only
the observations associated to drivers, whereas the injury severity component is estimated
using the observations of all individuals involved in “complete accidents”, i.e., accidents for

3For the sake of compactness in notation, the intercept term is included in the vector of parameters β.
4Verkehrsunfall Jahresdatensatz (DWH-VU), Federal Roads Office.
5We identify two reasons behind these missing values: (i) the number of collected variables increased

through the years, as the official report template was updated in 2011 and in 2018; and (ii) the level of detail
and completeness of the reports seems to be dependent on the severity of the accidents, which means that
the share of severe accidents is slightly higher in the selected samples than in the original dataset.
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which not a single value is missing. That represents 1.61 million accidents, or 79.4% of the
accidents in the original dataset. The observations relative to drivers involved in “incomplete
accidents” are still used to estimate the latent behavior component, so as to make the most
out of the available data and improve the overall quality of the model. Table 7 in the
Appendix presents an overview of the two samples used for estimation as well as of the
original dataset, for comparative purposes.

The variables that we consider to be explanatory of the risk-taking behavior and of injury
severity are described in Table 1 and Table 2, respectively. The original dataset distinguishes
between 54 distinct vehicle types. For the sake of simplicity, we group those into six cate-
gories that we define based on the maximum speed each vehicle type can reach and the level
of protection it offers to its occupants: (i) pedestrians; (ii) slow modes — i.e., skateboards,
scooters, bicycles and slow e-bikes; (iii) fast e-bikes and mopeds; (iv) motorcycles— including
quad bikes; (v) cars and vans; and (vi) heavy vehicles — i.e., trucks, coaches, lorry units and
tractors. In total, these six categories gather 92.4% of the observations, and missing values
account for another 5.0%. The remaining 2.6% are vehicles that do not clearly fit in any of
these categories and are therefore dropped from the data.
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Figure 2: Number of observations per year in the original dataset and amounts retained
from each year for the estimation of the latent behavior and injury severity components.

4.2 Measurement equations
Three binary indicators of risk-taking behavior are identified in the available data: (i) one of
the presumed causes of the accident being attributable to recklessness; (ii) driving, riding or
walking under the influence of alcohol, drugs or impairing medications; and (iii) not wearing
a seatbelt or a helmet. In our model, each of them is defined as

Iav1p =

{
0 if I∗av1p ≤ κp1,

1 otherwise,
(9)

where I∗av1p is the underlying continuous variable of indicator Iav1p, as defined in (3), and
κp1 is the associated threshold parameter, to be estimated from the data. For the sake of
compactness in notation, let Θp = (θ′

p, λp, δp, κp1)
′ be the vector of unknown parameters.

Conditional on r∗av1, the probability that the discrete indicator Iav1p takes value ℓ ∈ {0, 1}
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Table 1: Description of the explanatory variables of the risk-taking behavior.

Variable Type Description

Age cont. Age of the driver in years.
Gender bin. 1 if female and 0 otherwise.
Learner driver bin. 1 if the vehicle requires a license and the driver only holds a learner

or probationary one, and 0 otherwise.
Passenger bin. 1 if one or more passengers in the vehicle, 0 otherwise.
Child passenger bin. 1 if one or more passengers are less than 13 years old, 0 otherwise.
Adverse weather bin. 1 if it was raining, snowing or hailing at the time and place of the

accident, and 0 otherwise.
Late night bin. 1 if the accident occurred between 22PM and 5AM, 0 otherwise.
Location cat. Location of the accident—urban, rural or highway—encoded using

dummy variables.
Via Sicura bin. 1 for all accidents that occurred in 2013 or later, and 0 otherwise.
Collection year cont. Year of collection of the observation, from 0 for 1992 to 30 for 2022.

is computed as

Pr (Iav1p = ℓ | sav1p, r∗av1;Θp) =

F

(
κpℓ+1 − θps′av1p − λpr

∗
av1

δp

)
− F

(
κpℓ − θps′av1p − λpr

∗
av1

δp

)
,

(10)

where F is the cumulative distribution function of the logistic distribution and, by conven-
tion, κp0 ≡ −∞ and κp2 ≡ +∞.

For the sake of illustration, Figure 3 shows the distribution of values of the indicators
through the years. The indicator related to substance abuse shows a sudden increase in
negative values in 2011, which is explained by the introduction of a new official accident
report template. Prior to that, the results of breathalyzers and blood tests had to be reported
only if positive. The few missing values in the indicator related to seatbelt or helmet usage
correspond to pedestrians, for whom said indicator is not defined; their risk-taking behavior
is therefore measured using only the two other indicators. Figure 4 illustrates the distribution
of values of the indicators for each vehicle category, missing values excluded. It is worth
noting that the ratio between positive and negative values varies greatly across indicators,
but also from one vehicle category to another.

Finally, the severity of the injuries suffered by each individual is reported on the follow-
ing four-level scale: 0 —none, 1 —minor, 2— major, and 3 — fatal. In our model, these
outcomes are generated by their corresponding latent injury severity Uavi, as follows:

yavi =


0 if Uavi ≤ τ1,

1 if τ1 < Uavi ≤ τ2,

2 if τ2 < Uavi ≤ τ3,

3 if τ3 < Uavi,

(11)

where τ1, τ2 and τ3 are threshold parameters to be estimated from the data. Fatal injuries
are those that result in death within 30 days after the accident, whereas major injuries are
defined as those that require a hospitalization of more than one day. Before 2015, however,
major injuries also included injuries that “preclude all normal home activities for at least 24
hours”. This change is taken into account by defining two different parameters for threshold
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Table 2: Description of the explanatory variables of injury severity.

Variable Type Description

Age cont. Age of the individual in years.
Gender bin. 1 if female and 0 otherwise.
Vehicle category cat. We distinguish six: (i) pedestrians, (ii) slow modes, (iii) e-bikes &

mopeds, (iv) motorcycles, (v) cars & vans, and (vi) heavy vehicles.
Seatbelt bin. 1 if the individual is wearing a seatbelt and 0 otherwise.
While driving bin. 1 if the accident occurred while driving, and 0 if while parking.
Single vehicle bin. 1 if a single vehicle was involved in the accident, and 0 otherwise.
Speed limit cont. Speed limit at the site of the accident. In Switzerland, it ranges

from 20 km/h in some city center areas to 120 km/h on highways.
Aggregated risk cont. Defined as the maximum risk-taking behavior among all drivers

involved in the accident.
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Figure 3: Evolution of the values of the indicators over time.
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Figure 4: Distribution of the values of the indicators for each vehicle category, missing
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onward to account for the change of accident report template.
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τ2: the first is used for accidents that occurred between 1992 and 2014, and the second for
those between 2015 and 2022.

For the sake of compactness in notation, let B =
(
β′, α, σ, τ1, τ2, τ3

)′ be the vector of un-
known parameters. For all a ∈ A, v ∈ V(a) and i ∈ I(a, v), the probability —conditional
on r∗a — that the reported level of injury yavi is equal to k ∈ {0, 1, 2, 3} is defined as

Pr (yavi = k | xavi, r
∗
a;B) =

F

(
τk+1 − βx′

avi − αr∗a
σ

)
− F

(
τk − βx′

avi − αr∗a
σ

)
,

(12)

where τ0 ≡ −∞ and τK ≡ +∞.

5 Identification and estimation
The two components of the model are estimated sequentially, for the sake of reducing the
overall computational cost. The sequential approach also allows aggregating the individual
driving behaviors between the two steps, rather than within an otherwise single but complex
simultaneous-estimation process. The observations from 2012 and 2013 are set aside for out-
of-sample validation, as those are the years immediately preceding and following the entry
into force of the Via Sicura road safety program. We use the Biogeme package for Python
(Bierlaire, 2023) for both estimations. The estimation reports of both components are given
in Table 4.

5.1 Latent behavior component
The latent behavior component is estimated first. The contribution of each driver to the
likelihood function is given by:∫

R

3∏
p=1

Pr (Iav1p = ℓav1p | sav1p, r∗av1;Θp) g (ηav1 |µ) dηav1, (13)

where g is the probability density function of ηav1, conditional on µ, and ℓav1p is the observed
value of the p-th indicator for the driver of vehicle v ∈ V(a). Up to some additional normal-
ization constraints, the derived log likelihood function is tractable using Monte-Carlo inte-
gration methods and the asymptotic properties of the estimator therefore rely on standard
simulation-based inference results. The estimation results of the latent behavior component
are reported in Table 3.

Following the observation that the values of the indicators seem to depend on the type of
vehicle — see Figure 4 —a distinct set of measurement equations is defined for each vehicle
category. In addition to the latent behavior and the intercept term, we assume that the
value of the indicator related to the use of a seatbelt or helmet also depends on whether
the vehicle was legally required to be equipped with a seatbelt at the time of the accident.6
The measurement equation of the indicator related to recklessness also includes an additional
term, which accounts for poor weather conditions. We add this term because the cause “speed
not suited to weather conditions”, which we associate with recklessness, is systematically
identified whenever the weather is adverse at the time and place of the accident. Finally,
the measurement equation of the indicator related to substance abuse includes a binary
variable that accounts for the change of accident report template.

6In Switzerland, trucks, coaches, lorry units and quad bikes were not required to be fitted with seatbelts
until 2006, and the obligation to fit seatbelts on tractors was introduced in 2017.
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Table 3: Estimation results of the latent behavior component.

Parameter Value t-test

Recklessness-related causes
θ–intercept, pedestrians 2.90 44.8

θ–intercept, slow modes 0.264 4.01

θ–intercept, e-bikes&mopeds −0.337 −3.65

θ–intercept, motorcycles 0.498 3.12

θ–intercept, cars& vans −0.680 −2.98

θ–intercept, heavy vehicles −2.01 −11.1

θ–poor weather 1.53 86.4

λ–risk-taking behavior, pedestrians 0.381 18.3

λ–risk-taking behavior, slow modes 0.559 16.1

λ–risk-taking behavior, e-bikes&mopeds 0.588 13.9

λ–risk-taking behavior, motorcycles 0.829 59.4

λ–risk-taking behavior, cars& vans 1.12 94.9

λ–risk-taking behavior, heavy vehicles 0.866 37.3

Substance abuse
θ–intercept, pedestrians −0.591 −0.657

θ–intercept, slow modes 1.98 1.46

θ–intercept, e-bikes&mopeds −0.407 −0.423

θ–intercept, motorcycles −3.31 −8.41

θ–intercept, cars& vans −3.94 −4.98

θ–intercept, heavy vehicles −5.13 −16.2

θ–old template 28.6 19.0

λ–risk-taking behavior, pedestrians 4.37 8.02

λ–risk-taking behavior, slow modes 6.17 21.9

λ–risk-taking behavior, e-bikes&mopeds 4.50 20.9

λ–risk-taking behavior, motorcycles 3.27 7.12

λ–risk-taking behavior, cars& vans 4.04 20.8

λ–risk-taking behavior, heavy vehicles 1.18 13.3

No seatbelt or helmet
θ–intercept, pedestrians 0 —
θ–intercept, slow modes 1.52 16.6

θ–intercept, e-bikes&mopeds −1.22 −37.3

θ–intercept, motorcycles −2.84 −88.8

θ–intercept, cars& vans −2.74 −118

θ–intercept, heavy vehicles −1.99 −107

θ–no protection needed 4.03 219

λ–risk-taking behavior, pedestrians 0 —
λ–risk-taking behavior, slow modes 0.336 16.6

λ–risk-taking behavior, e-bikes&mopeds 0.165 16.1

λ–risk-taking behavior, motorcycles 0.143 15.9

λ–risk-taking behavior, cars& vans 0.113 45.2

λ–risk-taking behavior, heavy vehicles 0.0368 4.27

continued
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Table 3 —continued: Estimation results of the latent behavior component.

Parameter Value t-test

Risk-taking behavior
γ–age, 0–18 −0.108 −10.8

γ–age, 18–35 −0.0245 −32.2

γ–age, 35–65 −0.0105 −21.8

γ–age, 65–100 0.00296 2.31

γ–age, with passenger, 0–18 0.0275 27.8

γ–age, with passenger, 18–35 −0.0278 −16.8

γ–age, with passenger, 35–65 −0.00877 −7.58

γ–age, with passenger, 65–100 0.00134 0.448

γ–age, female driver, 0–18 −0.0488 −43.0

γ–age, female driver, 18–35 0.0195 13.0

γ–age, female driver, 35–65 0.00316 3.32

γ–age, female driver, 65–100 0.00619 2.41

γ–age, female driver, with passenger, 0–18 −0.0188 −9.56

γ–age, female driver, with passenger, 18–35 0.0219 6.70

γ–age, female driver, with passenger, 35–65 −0.00174 −0.701

γ–age, female driver, with passenger, 65–100 −0.00342 −0.443

γ–learner driver −0.239 −16.9

γ–child passenger −0.254 −13.3

γ–adverse weather −0.227 −14.3

γ–late night 2.09 88.5

γ–urban 0 —
γ–rural 1.16 76.6

γ–highway 1.21 76.2

γ–year 0.0175 14.1

γ–year, squared −0.000874 −16.2

γ–via sicura −0.240 −14.9

µ 1.50 79.7

Table 4: Estimation reports of the latent behavior and injury severity components.

Latent behavior Injury severity

Number of estimated parameters 63 22
Sample size 2’903’409 3’355’668
Initial log likelihood, normalized −0.693 −0.870

Final log likelihood, normalized −0.347 −0.480

Out-of-sample log likelihood, normalized −0.349 −0.489
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The effect of age on the risk-taking behavior is modeled as a piecewise-linear function with,
as breakpoints, the values 18, 35 and 65; it is also segmented based on the gender of the
driver and the presence of passengers in the vehicle. For ease of interpretation, Figure 5
illustrates the obtained results. Those indicate that substantial differences in behavior exist
between males and females under 40, whereas older drivers of both genders tend to have a
more similar behavior. Up to that age, males are shown to take significantly more risks, and
the presence of passengers further increases such behavior. After 35, the risk-taking behavior
is shown to slowly decrease for both genders, even though a slight difference between males
and females persists. Interestingly, 40 also coincides with the age at which the effect of
passengers reverses and starts reducing the risk-taking behavior of drivers. The high level
of risk-taking behavior associated with children is due to an extremely low rate of seatbelt
or helmet usage: only 21.2% of drivers under 13 are wearing either, against 89.3% in the
whole sample.

All other parameters in the structural equation of the risk-taking behavior are statistically
significant and have the expected signs. In particular, learner drivers, child passengers and
adverse weather are associated with a reduction in risk-taking behavior, whereas the late
night variable is shown to increase the risk-taking behavior of drivers. Drivers also seem to
take more risks on highways and rural roads than in urban areas. The year of collection is
used to capture the evolution of risk-taking behavior among drivers in Switzerland, including
the effect of all other efforts made by the Swiss government to promote safe behavior in the
past 30 years— awareness-raising campaigns, safety education programs, driver training
courses, and so on; this effect is modeled as a second-degree power series of the year of
collection, and both parameters seem to be significant. Finally, the variable accounting for
the dissuasive effect of Via Sicura is shown to reduce the risk-taking behavior of drivers; its
impact is similar in magnitude to the one associated with learner drivers.

The effect of Via Sicura is also visible in the top half of Figure 6, which exhibits the distribu-
tion of risk-taking behavior among drivers for each year of data, as obtained via Monte-Carlo
integration. The bottom half of the figure shows the distribution of the aggregated risk for
each year of data, that is, the maximum risk-taking behavior among the drivers involved in
each accident, as defined in (6). From 2013 onward, Figure 6 also shows the counterfactual
distribution of risk-taking behavior without the effect of Via Sicura, i.e., as if the measures
of the road safety program were never implemented.
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Figure 5: Age distribution and effect on risk-taking behavior for each segment of drivers.
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5.2 Injury severity component
In the second component of the model, the individual contribution to the likelihood function
is given as ∫

R
Pr (yavi = k | xavi, r

∗
a;B) g (r∗a |µ) dr∗a. (14)

Again, we resort to simulated maximum likelihood estimation based on Monte-Carlo inte-
gration techniques. The deterministic part of the aggregated risk r∗a is computed prior to
the estimation process by injecting into (6) the values of r∗av1 and ω obtained in the previous
step. Table 5 gathers the estimation results of the injury severity component. It is worth
pointing out that the difference between the two estimated values of the threshold τ2 — until
2014 and since 2015— is statistically significant.

Age is again modeled as a piecewise-linear function with the values 18, 35 and 65 as break-
points and segmented based on the gender of the individual. Figure 7 illustrates its effect for
male and female individuals, together with the age distribution for each gender. All other
parameters are statistically significant and have the expected signs: the parameters associ-
ated with the vehicle categories coincide with the level of protection each vehicle provides
to its occupants, wearing a seatbelt is associated with a decrease in injury severity and so
are accidents that occurred while parking, whereas single-vehicle accidents and higher speed
limits increase the chances of sustaining injuries.7 These two last variables are taken into
account only for accidents that occurred while driving; their effect is set to zero for accidents
that occurred while parking.

7The speed limit is included as a proxy of the actual driving speed, which unfortunately is not available.
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Table 5: Estimation results of the injury severity component.

Parameter Value t-test

Individual injury severity
α–aggregated risk 0.136 76

β–age, 0–18 0.0223 29.9

β–age, 18–35 0.000874 2.05

β–age, 35–65 0.00563 20.2

β–age, 65–100 0.019 26.9

β–age, female, 0–18 0.0395 94.9

β–age, female, 18–35 0.0000581 0.0868

β–age, female, 35–65 −0.00227 −5.20

β–age, female, 65–100 −0.00696 −6.47

β–pedestrians 0.635 49.9

β–slow modes 0.238 18.3

β–e-bikes&mopeds −0.0654 −4.23

β–motorcycles −0.0692 −5.03

β–cars& vans −2.12 −161

β–heavy vehicles −3.89 −203

β–seatbelt −1.34 −215

β–while parking −1.34 −82.9

β–while driving, single-vehicle accident 0.559 138

β–while driving, speed limit 0.00963 141

Reported injury level
τ1 0 —
τ2–until 2014 2.38 631
τ2–since 2015 2.65 405
τ3 5.37 513
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Figure 7: Age distribution and effect on injury severity for male and female individuals.
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The effect of wearing a helmet is not considered in our model because its effect could not
be correctly identified for any of the relevant vehicle categories. Our explanation for this
unexpected result is that a helmet reduces the chances of major and fatal injuries, but is
not as effective in preventing minor injuries. In fact, the available data shows a higher rate
of minor injuries for cyclists and motorcyclists that wear a helmet than for those who do
not. This effect could be captured by replacing the threshold parameters with functions of
relevant exogenous variables as in Eluru et al. (2008), but we leave this for future work.

Finally, using a simple iterative procedure, we calibrate the threshold parameters of the
injury severity component such that the model replicates the observed shares of the four
levels of severity. We then simulate the counterfactual shares between 2013 and 2022, that
is, without including the effect of Via Sicura in the latent behavior component. The results
in Table 6 indicate a difference of 63 fatal, 876 major and 2’303 minor injuries over the
ten-year period. While those can be attributed to the dissuasive effect of Via Sicura, they
should not be directly compared with the 33 fatal injuries per year mentioned in the official
evaluation because our approach only accounts for the effect of the road safety program on
the severity of injuries, and not on the occurrence of the accidents that cause them.

Table 6: Observed and counterfactual shares of the levels of severity between 2013 and 2022.

Level of injury Observed shares Counterfactual

None 702’739 78.4% 699’497 78.1%
Minor 156’362 17.5 % 158’665 17.7 %
Major 34’898 3.9 % 35’774 4.0%
Fatal 1’926 0.2% 1’989 0.2 %

6 Conclusion
This paper proposes a flexible framework for risk-taking behavior and accident injury severity
modeling, for the purpose of evaluating the effect of the Via Sicura road safety program on
accident outcomes. Recognizing the importance of driver behavior in determining accident
injury severity, the main novelty of our framework is the introduction of the aggregated risk,
defined as the maximum risk-taking behavior among all drivers involved in an accident. This
definition implies that our framework can accommodate accidents involving any number of
vehicles, which is central to the comprehensive assessment of public policies.

Our proposed model is shown to successfully capture the dissuasive effect that the repressive
measures have on the behavior of drivers and, in turn, the impact of this change in behavior
on the severity of accident outcomes. According to our model, by acting as a deterrent
against risk-taking behavior, the repressive measures of Via Sicura would have successfully
prevented 63 fatal injuries, 876 major injuries and 2’303 minor injuries over ten years, had
the same number and types of accidents occurred without the program. Since it is plausible
that more accidents would have happened without Via Sicura, these numbers should be
understood as lower bound estimates.

Intended future work focuses on replacing the ordered logit formulation of the injury severity
component by a generalized ordered logit (Eluru et al., 2008), which allows for a more real-
istic modeling of variables that are known to impact specific levels of injury differently, such
as the use of a helmet for cyclists and motorcyclists. Compared to the current approach, the
generalized ordered logit formulation defines the threshold values of the injury severity scale
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as functions of relevant exogenous variables; all thresholds may then vary across accidents,
vehicles and individuals, so as to better capture heterogeneity in the data. Another natu-
ral advancement of this work could consist in including other behaviors that drivers may
adopt, such as distracted or careless driving as in Lavieri et al. (2016), to further improve
the realism of our model and to account for additional unobserved heterogeneity among
drivers. Finally, further investigation could focus on alternative ways of aggregating the
risk-taking behavior of drivers. While the maximum was chosen for its simplicity, relevance
and interpretability, developing and comparing other candidates could deserve a paper in
its own rights.

References
Bierlaire, M. (2023). A short introduction to Biogeme, Technical report, TRANSP-OR

230620. Transport and Mobility Laboratory, ENAC, EPFL.

Bogue, S., Paleti, R. and Balan, L. (2017). A modified rank ordered logit model to analyze
injury severity of occupants in multivehicle crashes, Analytic methods in accident research
14.

Choudhary, P., Imprialou, M., Velaga, N. R. and Choudhary, A. (2018). Impacts of speed
variations on freeway crashes by severity and vehicle type, Accident Analysis & Prevention
121.

Clapp, J. D., Olsen, S. A., Danoff-Burg, S., Hagewood, J. H., Hickling, E. J., Hwang, V. S.
and Beck, J. G. (2011). Factors contributing to anxious driving behavior: The role of
stress history and accident severity, Journal of anxiety disorders 25(4): 592–598.

de Lapparent, M. (2005). Individual cyclists? probability distributions of severe/fatal
crashes in large french urban areas, Accident Analysis & Prevention 37(6): 1086–1092.

de Lapparent, M. (2006). Empirical bayesian analysis of accident severity for motorcyclists
in large french urban areas, Accident Analysis & Prevention 38(2): 260–268.

de Lapparent, M. (2008). Willingness to use safety belt and levels of injury in car accidents,
Accident Analysis & Prevention 40(3): 1023–1032.

Eluru, N., Bhat, C. R. and Hensher, D. A. (2008). A mixed generalized ordered response
model for examining pedestrian and bicyclist injury severity level in traffic crashes, Acci-
dent Analysis & Prevention 40(3): 1033–1054.

Federal Roads Office (2005). Via sicura, Programme d’action de la Confédération visant à
renforcer la sécurité routière.

Hu, L., Bao, X., Lin, M., Yu, C. and Wang, F. (2021). Research on risky driving behavior
evaluation model based on cidas real data, Proceedings of the Institution of Mechanical
Engineers, Part D: Journal of Automobile Engineering 235(8): 2176–2187.

Huang, H., Chin, H. C. and Haque, M. M. (2008). Severity of driver injury and vehicle dam-
age in traffic crashes at intersections: a bayesian hierarchical analysis, Accident Analysis
& Prevention 40(1): 45–54.

Kockelman, K. M. and Kweon, Y.-J. (2002). Driver injury severity: an application of ordered
probit models, Accident Analysis & Prevention 34(3): 313–321.

Lavieri, P. S., Bhat, C. R., Pendyala, R. M. and Garikapati, V. M. (2016). Introducing la-
tent psychological constructs in injury severity modeling: multivehicle and multioccupant
approach, Transportation research record 2601(1): 110–118.

17



Mannering, F. L. and Bhat, C. R. (2014). Analytic methods in accident research: Method-
ological frontier and future directions, Analytic methods in accident research 1: 1–22.

Nevarez, A., Abdel-Aty, M., Wang, X. and Santos, J. B. (2009). Large-scale injury severity
analysis for arterial roads: Modeling scheme and contributing factors, 88th Transportation
Research Board Annual Meeting.

Paleti, R., Eluru, N. and Bhat, C. R. (2010). Examining the influence of aggressive driv-
ing behavior on driver injury severity in traffic crashes, Accident Analysis & Prevention
42(6): 1839–1854.

Qiu, B. and Fan, W. (2021). Mixed logit models for examining pedestrian injury severities at
intersection and non-intersection locations, Journal of Transportation Safety & Security
pp. 1–25.

Scott-Parker, B. and Weston, L. (2017). Sensitivity to reward and risky driving, risky
decision making, and risky health behaviour: A literature review, Transportation research
part F: traffic psychology and behaviour 49: 93–109.

Shankar, V. and Mannering, F. (1996). An exploratory multinomial logit analysis of single-
vehicle motorcycle accident severity, Journal of safety research 27(3): 183–194.

Swiss Council for Accident Prevention (2002). Elaboration des fondements d’une politique
nationale de sécurité routière, Mandat de recherche ASTRA 2000/447 sur demande de
l’OFROU.

Swiss Federal Council (2017). Évaluation du programme via sicura, Rapport du Conseil
Fédéral en réponse au postulat 16.3267 de la Commission des Transports et des Télécom-
munications du Conseil des États du 14 avril 2016.

Tasca, L. (2000). A review of the literature on aggressive driving research, Ontario Advisory
Group on Safe Driving, Road User Safety Branch, Ontario Ministry of Transportation.

Walker, J. L. (2001). Extended discrete choice models: integrated framework, flexible error
structures, and latent variables, PhD thesis, Massachusetts Institute of Technology.

Weber, D. C. (1970). A stochastic model for automobile accident experience, Institute of
Statistics Mimeograph Series No. 651, North Carolina State University at Raleigh.

Weber, D. C. (1971). Accident rate potential: An application of multiple regression analysis
of a poisson process, Journal of the American Statistical Association 66(334): 285–288.

World Health Organization (2023). Global status report on road safety 2023, World Health
Organization, Department of Social Determinants of Health, Safety and Mobility Unit,
Geneva, Switzerland.

Xin, C., Guo, R., Wang, Z., Lu, Q. and Lin, P.-S. (2017). The effects of neighborhood char-
acteristics and the built environment on pedestrian injury severity: A random parameters
generalized ordered probability model with heterogeneity in means and variances, Analytic
methods in accident research 16: 117–132.

Appendix
See Table 7.
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Table 7: Descriptive statistics of the original dataset and the samples. The variables avail-
able in the dataset are organized into three hierarchical levels. At the highest level, the
variables describe the context of the accident, which is common to all involved individuals.
The intermediate level gathers the attributes of the vehicles and of their drivers; these are
therefore shared by all their occupants. Finally, the lowest level refers to the individual
characteristics of the occupants of each vehicle.

Original dataset
Sample for latent Sample for injury

behavior component severity component

Accidents: 2’031’162 100.0% 1’809’150 100.0% 1’612’272 100.0 %

Location:
urban 1’353’266 66.6% 1’149’654 63.5% 1’009’080 62.6%
rural 420’257 20.7% 405’877 22.4 % 368’753 22.9%
highway 257’639 12.7% 253’619 14.0 % 234’439 14.5%

Vehicles involved:
1 823’187 40.5% 612’725 33.9 % 565’599 35.1%
2 1’076’823 53.0% 1’065’371 58.9% 929’146 57.6%
3 106’334 5.2% 106’252 5.9% 95’555 5.9 %
4+ 24’818 1.2% 24’802 1.4% 21’972 1.4 %

Vehicles: 3’404’730 100.0% 3’065’704 100.0% 2’806’155 100.0%

Vehicle category:
pedestrians 84’638 2.5% 83’879 2.7% 72’340 2.6 %
soft modes 136’613 4.0% 133’876 4.4% 122’781 4.4%
e-bikes & mopeds 41’184 1.2% 40’161 1.3% 37’362 1.3 %
motorcycles 171’716 5.0% 169’571 5.5% 154’107 5.5%
cars & vans 2’577’401 75.7% 2’509’508 81.9% 2’301’289 82.0%
heavy vehicles 135’087 4.0% 128’709 4.2% 118’276 4.2%
other/unknown 258’252 7.6% 0 0.0 % 0 0.0 %

Occupants:
1 2’832’858 83.2% 2’502’439 81.6% 2’289’401 81.6%
2 414’251 12.2% 408’379 13.3 % 375’688 13.4%
3+ 157’621 4.6% 154’886 5.1% 141’066 5.0%

Individuals: 4’224’308 100.0 % 3’065’705 100.0% 3’540’412 100.0%

Gender:
male 2’644’447 62.6% 2’206’132 72.0% 2’359’508 66.6%
female 1’299’163 30.8% 859’573 28.0 % 1’180’904 33.4%
unknown 280’698 6.6% 0 0.0 % 0 0.0 %

Age:
0–18 392’819 9.3% 148’974 4.9% 349’620 9.9%
19–35 1’541’767 36.5% 1’240’197 40.5% 1’393’073 39.3%
36–65 1’642’686 38.9% 1’394’862 45.5% 1’476’088 41.7%
66+ 352’845 8.4% 281’672 9.2% 321’631 9.1%
unknown 294’191 7.0% 0 0.0 % 0 0.0 %

Level of injury:
none 3’422’664 81.0% 2’417’489 78.9% 2’817’904 79.6%
minor 628’621 14.9% 498’863 16.3 % 569’888 16.1%
major 159’853 3.8% 138’296 4.5% 142’120 4.0%
fatal 13’170 0.3% 11’057 0.4% 10’500 0.3 %

19


	Introduction
	Literature review
	Modeling framework
	Assumptions and definitions
	Structural equations

	Case study
	Data description
	Measurement equations

	Identification and estimation
	Latent behavior component
	Injury severity component

	Conclusion

