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Abstract

Determining appropriate utility specifications for discrete choice models is time-consuming
and prone to errors. As the number of possible functions exponentially grows with the vari-
ables under consideration, analysts need to spend increasing amounts of time on searching
for good specifications through trial-and-error and expert knowledge. This paper proposes a
data-driven algorithm that aims at assisting modelers in their search. Our approach trans-
lates the task into a multi-objective combinatorial optimization problem and makes use of a
variant of the variable neighborhood search algorithm to generate solutions. We apply the
algorithm to a real mode choice dataset as a proof of concept. The results demonstrate its
ability to generate high-quality specifications in reasonable amounts of time.

Keywords: discrete choice models, utility specification, multi-objective optimization, com-
binatorial optimization, metaheuristics.



1 Introduction

In the last 40 years, discrete choice models (DCMs) have been used to tackle a wide vari-
ety of demand modeling problems. This is due to their high interpretability, which allows
researchers to verify their compliance with well-established behavioral theories (McFadden,
1974) and to provide support for policy and planning decisions founded on utility theory
from microeconomics. However, the development of DCMs through manual specification is
laborious. The predominant approach for this task is to a priori include a certain number
of variables that are regarded as essential in the model, before testing incremental changes
in order to improve its goodness of fit while ensuring its behavioral realism (Koppelman and
Bhat, 2006). Because the set of candidate specifications grows beyond manageable even with
a moderate number of variables under consideration, theory-driven approaches of this kind
can be time-consuming and prone to errors. Modelers tend to rely on common sense or in-
tuition, which may lead to incorrectly specified models. The implications of misspecification
include lower predictive power, biased parameter estimates and erroneous interpretations
(Bentz and Merunka, 2000; Torres et al., 2011; Van Der Pol et al., 2014).

This issue, together with the advent of big data and the need to analyze ever-larger datasets,
has induced an increasing focus on machine learning (ML) and other data-driven methods
as a way of relieving the analyst of the burden of model specification. Unlike DCMs that
require the form of their utility functions to be known a priori, ML allows for more flexible
model structures to be directly learned from the data. In the past years, numerous studies
have therefore investigated the usefulness of ML classifiers as an alternative to logit, mixed
logit and nested logit models; these studies indicate that DCMs are generally outperformed
in terms of prediction accuracy (Hagenauer and Helbich, 2017; Wang and Ross, 2018).
However, most ML classifiers suffer from a severe limitation: they lack interpretability. The
mathematical structure of DCMs enables the modeler to verify the behavioral realism of the
relationships between explanatory variables and choice outcomes. Such a feature is crucial
to support policy and planning decisions. Also, it allows the derivation of useful indicators
that cannot be obtained from ML models, such as willingness to pay or consumer surplus.
Whilst there is existing research focusing on extracting utility interpretations and economic
indicators from certain ML classifiers (Zhao et al., 2018), obtaining a closed-form expression
that maps inputs to outputs is still not possible.

In this paper, we postulate that appropriate use of data during the development of a DCM
can mitigate the need for its utility specification to be known a priori, even without com-
promising the sought-after interpretability through the use of ML classifiers. To this end,
the present study introduces a data-driven method for the specification of random utility
models. Our approach involves a metaheuristic procedure that mimics the way an experi-
enced modeler would develop a specification, while ensuring that the set of candidates is
explored thoroughly, impartially, and efficiently. We define a set of operators that modify an
existing model into another one that is not too different and make use of a multi-objective
variable neighborhood search algorithm to organize the model development phase. Our al-
gorithm is designed to provide relevant insights and assist analysts in the task of utility
specification.

The remainder of this paper is organized as follows: Section 2 is a non-exhaustive overview
of the recent attempts at “enhancing” discrete choice models with data-driven methods,
Section 3 describes our proposed algorithm and Section 4 presents the results obtained
through its application on a mode choice dataset. The last section summarizes the findings
of the present study and identifies the future steps of this research.



2 Literature Review

2.1 Machine Learning Methods for Choice Prediction

The advancements in computational power and the availability of ever-larger datasets in the
recent years have led to numerous breakthroughs in machine learning (ML) research. As
a result, ML techniques have been applied to a wide horizon of research fields, including
discrete choice analysis. Support vector machines (Hagenauer and Helbich, 2017; Paredes
et al., 2017), neural networks (De Carvalho et al., 1998; Zhao et al., 2018; Alwosheel et al.,
2019; Wong and Farooq, 2019), decision trees (Tang et al., 2015; Brathwaite et al., 2017)
and ensemble learning (Hillel et al., 2018; Wang and Ross, 2018; Lhéritier et al., 2019) have
been investigated as potential alternatives for DCMs in a variety of choice problems. Many
of those empirical studies conclude that ML classifiers show superior predictive power, but
there have been limited attempts to link these new methods with economic theory and human
decision making. In discrete choice analysis, the behavioral interpretation of the estimated
model is as important as prediction accuracy, because it provides relevant insights for policy
and planning decisions. ML classifiers usually lack the coefficient readability of linear models
and obtaining a closed-form expression that maps inputs to outputs is often impossible.
Interpretable machine learning tools do exist (Zhao et al., 2018), but are rarely applied. As a
matter of fact, out of all studies mentioned in this paragraph, only four go beyond computing
variable importance. Brathwaite et al. (2017) provide a microeconomic framework for the
interpretation of decision trees and combine those with DCMs to model semi-compensatory
decision making; Zhao et al. (2018) use partial dependence plots, marginal effects and arc
elasticities to extract behavioral findings; Alwosheel et al. (2019) use prototypical examples
to examine the relationships learned by neural networks; and Wong and Farooq (2019)
extract behavioral insights and econometric properties from the matrix parameters of a
residual neural network.

Spurred by these observations, another stream of research has attempted combining DCMs
and ML classifiers into a single framework, so as to mitigate their respective limitations.
Sifringer et al. (2018), Pereira (2019) and Han et al. (2020) share the same idea of “enhancing”
a standard logit model by means of a neural network (NN). The goal is to increase its
overall predictive performance while keeping some key parameters interpretable. To this end,
Sifringer et al. (2018) propose a neural embedded logit model. Its utility functions are divided
into a manually specified, interpretable part and a nonlinear “representation” part that is
learned by a NN. In other words, the alternative-specific constants (ASCs) are modeled as
flexible functions of all variables that do not enter the manually specified part of the utility.
Han et al. (2020) extend the work of Sifringer et al. (2018) by allowing all parameters —
rather than the ASCs alone—to be learned as functions of the individuals’ socioeconomic
characteristics. In a similar line of thought, Pereira (2019) introduces a method for encoding
categorical variables, based on natural language processing techniques; as a preliminary step
to specifying a logit model, a NN is used to learn embeddings of those variables, allowing for
richer nuances than the typical transformations. Through different uses of NNs, the three
studies succeed in improving the predictive power of the standard logit while maintaining
part of the utility specification interpretable. However, the three approaches suffer from a
common drawback: the explanatory variables still need to be manually selected, with no
better method than context knowledge and trial-and-error. While these enhanced models
are proven more flexible and powerful than traditional DCMs, they require the same effort
from the modeler, if not more.



2.2 Informing DCMs with Data-Driven Methods

The idea of combining DCMs with ML classifiers dates back to Bentz and Merunka (2000)
and Hruschka et al. (2002). The main difference of these pioneering studies with the method-
ologies developed by Sifringer et al. (2018), Pereira (2019) and Han et al. (2020) lies in their
sequential nature: an exploratory NN is used as a specification tool to inform a standard logit
model, which then provides interpretable results and significance statistics. The preliminary
step allows the identification of the key variables and the detection of nonlinear effects; the
modeler can therefore rely on these insights to develop a suitable utility specification.

Thus, in comparison to the hybrid models mentioned in the previous section, “feeding” a
logit model with the findings of an exploratory data-driven method offers the additional
advantage of assisting the analyst in the otherwise difficult task of model specification. This
two-step approach proves itself worthy in several other studies: Hillel et al. (2019) use a
gradient boosting decision trees ensemble to inform the utility specification of a DCM; Ro-
drigues et al. (2019) leverage the concept of automatic relevance determination to identify
the most important features for explaining a dataset; and Paz et al. (2019) use a simulated
annealing metaheuristic algorithm to select the optimal —according to the Bayesian infor-
mation criterion (Schwarz, 1978) —set of variables and parameter distributions of a mixed
logit model.

2.3 Utility Specification as a Combinatorial Problem

Translating the task of model specification into an optimization problem, as suggested by Paz
et al. (2019), allows researchers to benefit from the vast combinatorial optimization literature
and its variety of widely recognized metaheuristics. These methods are specifically designed
to find “good” solutions for problems that cannot be solved through exhaustive testing; they
hence seem particularly suited for the utility specification problem that Paz et al. (2019)
address. An additional benefit of using metaheuristics in this context lies in their iterative
nature. This allows any “post-estimation” measure of model quality to be seamlessly used
as the objective function. We therefore believe that this direction of research is particularly
promising. In this paper, we focus on the metaheuristic approach, in a similar way as Paz
et al. (2019). The main contributions of this paper are the following:

e A multi-objective optimization algorithm that generates sets of promising models.
Most studies mentioned in the current section propose a single model that is deemed
as “best”. While a single best model may exist in experiments that use synthetic data—
i.e., the one model that created them — there is no such thing as an overall best model
that explains all aspects of real data (Burnham and Anderson, 2002; Claeskens and
Hjort, 2003; Burnham and Anderson, 2004; Claeskens and Hjort, 2008). Rather, we
believe that the definition of a “suitable” model is context dependent and that different
models should be developed according to the objective that is to be achieved. A number
of studies try to justify the use of a single metric to identify the best model among
a set of candidates; in our view, multi-objective optimization makes such approaches
unnecessary. By defining appropriate objectives, sets of models can be generated that
meet the plural needs of any predictive modeling problem.

e An embedded mechanism that verifies the behavioral soundness of the generated mod-
els. Inconsistency with economic theory is generally understood as the consequence
of misspecification and therefore discredits any insight obtained from the estimated
model. This mechanism is of crucial importance, as it confirms the actual relations
between explanatory variables and choice outcomes are not inappropriately reflected.



3 Problem Formulation

The algorithm presented in this paper makes use of a metaheuristic procedure to mimic
the way an experienced modeler would develop a discrete choice model (DCM). It proceeds
by sequentially introducing small modifications to a set of “promising” utility specifications,
with two goals: (i) improving the goodness of fit, which is measured as the maximized log
likelihood (LL) yielded on the data of interest; while (ii) keeping the models as parsimonious
as possible, i.e., minimizing the number of estimated parameters. By definition, these two
objectives are conflicting, in the sense that there exists no solution that simultaneously
optimizes both; a nontrivial multi-objective optimization problem is hence defined.

Following Bierlaire (1998) we allow for nonlinear transformations of explanatory variables by
means of power transforms, as well as segmentation of parameters using categorical variables.
Hence, given (a) a vector &;, = [Zin1 - - - Tink,] of potential explanatory variables associated
with each alternative i, (b) a vector of A = [A1 - - - A ] possible values for the parameters of the
power transforms and (¢) a vector ¢, = [cn1 - - - ¢pp] of P categorical socioeconomic variables,
solving the above-mentioned optimization problem consists in finding combinations of these
features that offer good trade-offs between goodness of fit and parsimony.

In the next section, we show that any model specification that combines elements from x;,,
A and ¢, may be unequivocally characterized by means of three sets of controllers, namely
v; = [vi1- - ViK,], 8 = [t tik,] and S; = [8;1- - 8;k,]. These controllers must be un-
derstood as the decision variables of the optimization problem under consideration. They
respectively handle variable inclusion, nonlinear transformations and parameter segmenta-
tion, as illustrated in (1)—(3).

3.1 Utility Specification

In this framework, the most general formulation of the observed utility associated by indi-
vidual n with alternative ¢ from her choice set C,, may be written as

K;
(M)
Vin = Z Bik(Cn, Sik) Ty * Vik, (1)
k=1
where @;, = [ZTin1- - Tink,;] is a user-defined vector of K; potential attributes, i.e., ex-

planatory variables associated with alternative ¢ and v; = [v;1 - - - v;k;,] is a vector of binary
controllers: the effect of variable x;, is considered in the model only if the corresponding
controller v; is equal to 1. By construction, if v;; is equal to 0 instead, then z;,; in not
included in the corresponding utility function. Whilst the inclusion controllers v;, could be
defined as individual-specific and therefore depend on n for additional flexibility; we choose
to keep them generic with respect to individuals for the sake of simplicity.

Turning to the second group of controllers of our approach, the notation z* denotes a
nonlinear transformation of x, defined as

2 -1 :
IOV S (2)
log(z) if A=0.

As stated previously, A;,, may only take values from the user-defined vector A = [Ay -+ - A].
The controllers ¢;;, are therefore constrained to the values {1,...,L}. As an example, sup-
pose A = [1, %,O]. These values correspond to the identity, square-root and logarithmic
transforms, respectively. Hence, if ¢; = 1 no transform is applied to variable x;,;. If
tir = 2 the square root is used and if ¢;; = 3 the logarithm is considered instead.



Finally, we define B;x(c,, sik) as

P p
Bik(n,sin) = Bir + > > Bikpada(Cnp)Sikp, (3)

p=1d=2

where ¢, is a user-defined vector of P categorical socioeconomic variables that may be
considered for segmentation and s;; = [sik1 -+ Sikp| Is a vector of binary controllers de-
noting the ones selected to interact with variable z;,;. We denote by D, the number of
possible discrete values of ¢, whereas d4(cyp) is an indicator that equals 1 if the value of
cnp belongs to category d and 0 otherwise. In other words, B;y(cp, Six) assigns additional
taste parameters to each individual n depending on the population segments she belongs
to. Parameter §;; may therefore be seen as the coefficient associated with the reference so-
cioeconomic category for variable ;.. Alternative-specific constants (ASCs) are included
in this formulation by adding variables that are constant throughout all observations of the
dataset under consideration and setting all corresponding \:,, to the same arbitrary value.
ASCs can therefore be segmented by socioeconomic variables just like any other parameter
in the utility functions.

Hence, given the user-defined vectors «;,, A and ¢,, any model specification M that con-
tains nonlinear transformations and first-order interactions with categorical variables may
be unequivocally characterized by the three controllers v; = [v;1 -+ vk, ], t; = [ti1 - tik,]
and S,L' = [Sil cee siK,-]:

M = | J{wi, t:, Si}. (4)

ieC

As an illustrative example, consider a choice scenario with two alternatives, denoted A and
B, and the following input vectors:

X An = [TAn1, TAn2, TAn3),
= [TBn1, TBn2),

A [1,0],

[

Cp = [Cn1, ch}

()

The vectors x4, and xp, gather five potential explanatory variables and A includes the
identity and logarithmic transformations. The two categorical variables c¢,; and c¢,2 may
take two and three distinct discrete values respectively, i.e., D1 = 2 and Dy = 3. The ASCs
of both alternatives are omitted for the sake of simplicity. Additionally, consider a model
characterized as

M ={va,ts,Sa} U{vp,tp, S}, (6)
with
1 2 0 0
1 2 0 0
Vpg = 0 ,tA: 0 ,SA: 0 0 ,’UB|:1:|,tB|:2:|,SB|:1 O:| (7)
1 1 1 1

The corresponding utility functions, with all superfluous terms removed, may be written as
follows:

= fa1log(zan1) + [Bas + Basi202(cn1) + Baz2202(cn2) + Baz23ds(cn2)]T ans,

Vin = Bp1log(@pn1) + [BB2 + Br21202(cn1)] log(2Br2). ®)



3.2 Formal Definition of the Problem

We may now formulate the multi-objective optimization problem our algorithm is designed
to solve as

max E(viati7si7mina)‘acn)7
vi,ti,S;

K; P
i 22 v+ 3 sikp(Dp = 1))
CRAE Rl 2 p:1

i€C k=1

subject to:  t;x <14wvyl VieCke{l,...,K;}, )

Sikp < Vik VieCke{l,....K;},pe{l,...,P},
vk, € {0,1} VieCke{l,...,K;},
twe{l,...,L} VieCke{l,...,K;},

sikp € {0,1} VieC,ke{l,...,K;},pe{l,...,P},
M e M,

where £(-) is the maximum LL yielded by model M on the considered data and the expression
of the second objective function equals the number of estimated parameters. The first two
constraints in (9) prevent transformations and segmentation of non-chosen variables, while
the last one ensures behavioral realism. Because inconsistency with economic theory is
generally understood as evidence of misspecification and invalidates all insights extracted
from the estimated model, behavioral soundness must always be verified. In practice, the
user is given the option to indicate a collection of constraints that she deems as sufficient,
if satisfied, to prove model validity; M is the set of candidate models that satisfy these
constraints. For example, taste parameters related to the cost of an alternative are usually
expected to be negative, so as to decrease the utility of the alternative if its price increases.
If the user includes such a constraint in the validity verification process, any model with a
positive-valued cost parameter will be regarded as invalid, regardless of its performance in
terms of goodness of fit and parsimony.

The problem described in (9) is a bi-objective, nonlinear combinatorial optimization prob-
lem. It cannot be solved by exact methods. Additionally, given x;,, A and ¢,, the number
of different utility specifications that can be generated may be computed as

(2P)IC1=1 5 (14 L x 2F)Ziec Ko, (10)

This number grows exponentially with the size of x;, and ¢,. Let us consider again the
illustrative example described in the previous section: with ), . K; = 5 explanatory vari-
ables, L = 2 possible power transforms and P = 2 variables for segmentation, the number of
possible specifications nearly reaches 250 000. With a single additional explanatory variable,
that number is over 2 millions. Hence, exhaustive search is computationally intractable in
any but trivial instances. We therefore investigate a metaheuristic approach.

4 Proposed Algorithm

We propose a multi-objective adaption of the variable neighborhood search (VNS) meta-
heuristic from Mladenovic and Hansen (1997) to solve the optimization problem formulated
in (9). Metaheursitics typically have three ingredients: (i) exploration; (ii) intensification;
and (iii) diversification. The exploration of the solution space relies on operators and neigh-
borhood structures. Inspired by what a modeler would do, they must be flexible enough to



potentially allow any feasible solution to be reached. These operators are described in Sec-
tion 4.1. Intensification typically consists in a local search. The neighborhoods are exploited
until a solution that is better than all its neighbors is found. In a multi-objective context
however, the concept of “being better” must be qualified. This is discussed in Section 4.2.
Finally, diversification is the mechanism that allows escaping from local optima. To this end,
the main idea behind the original VNS is to systematically alternate several neighborhood
structures; our multi-objective VNS (MO-VNS) algorithm makes use of a similar technique;
we describe it in Section 4.3.

4.1 Exploration: Operators and Neighborhood Structures

We begin by defining the operators used to generate the neighbors of a given solution. These
operators correspond to elementary modifications that are typically tested by analysts during
manual utility specification.

Suppose that an arbitrary model M is characterized by the three controllers v;, t; and S,
as in (4). The three operators considered by our algorithm are the following:

e Operator V-MOD either includes variable x;,, in M or excludes it. This is equivalent
to switching the value of the corresponding controller v;:

V—MOD(M,i,k) Cvik — 1 — v (11)

e Operator T-MOD substitutes the nonlinear transformation applied to variable x;,,; by
modifying its power parameter A, :

T-MOD(M, i, k) : ti ¢ tip & 1. (12)

e Operator S-MOD adds or removes an interaction between variable x;,, and a socioe-
conomic variable c,,. This corresponds to switching the value of s;1p:

S-MOD(M, i, k,p) : Sikp < 1 — Sikp- (13)

All candidates generated from an arbitrary model M by these operators are grouped into
three distinct neighborhoods of M. In other words, each of the neighborhoods Ny (M),
Nt (M) and Ns(M) gathers all possible applications of one operator on M:

Ny (M) = {V-MOD(M, i, k) Vi, k},
Nr(M) = {T-MOD(M, i, k) Vi, k | vir =1, 1 < t;5 < L}, (14)
Ns(M) = {S-MOD(M, i, k,p) Vi, k,p | vy = 1}.

We refer to Ny, Nt and Ng as neighborhood structures. These may include models that do

not verify the last constraint of (9); as a matter of fact, consistency with behavioral theory
can only be verified after the model is estimated. This is discussed in the next section.

4.2 Intensification: Multi-Objective Local Search

Solving a multi-objective optimization problem is usually understood as obtaining a rep-
resentative set of non-dominated solutions, called the Pareto front. Suppose two feasible
solutions My, My € M. M is said to dominate My if two conditions are fulfilled: (i) M; is
no worse than M in any objective f.,Vz € Z; and (ii) M is strictly better than M in at
least one. Notationally, this is written as

f(My) < f.(M2),Vz € Z,

dze Z: fz(Ml) < fz(Mg) (15)

M1-<M2<:>{



By extension, a solution is Pareto-optimal if it is not dominated by any other feasible
solution —i.e., if none of the objectives can be improved without degrading another. The
Pareto front F* of the optimization problem in (9) may then be defined as

Fr={M'e M|IMeM: M= M. (16)

One should note that the true Pareto front 7* cannot be computed in any but trivial problem
instances, as it requires all feasible solutions to be tested. As a consequence, the purpose of
our MO-VNS algorithm is to generate good approximations of F* in reasonable amounts of
time.

In practice, local search (Algorithm 1, Lines 5-11) is used to iteratively improve an initial
approximation of the Pareto front of the optimization problem under consideration. We
denote such an approximation of 7* by F. The MO-VNS starts by generating D, a set of
candidate solutions that contains all neighbors of all models in F. A single neighborhood
structure A}, is used to generate those; Section 4.3 explains how N}, is selected among
{NMv,Nt,Ns}. Then, a new candidate M’ € D is randomly selected (Algorithm 1, Line 5).
After it is estimated through maximum likelihood estimation (MLE) and its behavioral
validity is ascertained, M’ is either added to F or rejected, depending on its objective
values. Specifically, M’ enters the front only if it is not dominated by any model M € F,
i.e., if no model M in F outperforms M’ in one of the objective values while being at least
as good in the other. If such condition is observed, the Pareto front is updated by removing
all models dominated by M’ and a new set D of candidates is generated (Algorithm 1,
Lines 8-9). The local search algorithm stops after all candidate models in D have been
tested without any of them improving the Pareto front.

Algorithm 1: MO-VNS for Assisted MNL
inputs: initial Pareto front F,
neighborhood structures N1, ..., Ny
1 h+1;
2 improved < False;
3 D« UMe]—‘Nh(M);
4 while h < H do
5 M' + pop(D);
6 | MLE(M');
7 | f MeMand {MeF|M ~M}=0Q then
8 F+— FU{MIN{MeF|M <M},
9 D = Unrer Nu(M);
10 improved < True;
11 end
12 if D= then
13 if improved then
14 improved < False;
15 h <+ 1;
16 else
17 | h h+1;
18 end
19 D« Uprer Nn(M);
20 end
21 end




4.3 Diversification: Neighborhood Changes

As mentioned above, the main idea behind the VNS algorithm is to consider systematic
changes of neighborhood structure during a local search subroutine so as to avoid getting
stuck in local optima. Specifically, Mladenovic and Hansen (1997) suggest moving to a
new structure each time a local optimum is found. Our MO-VNS makes use of a similar
mechanism (Algorithm 1, Lines 12-20) to “diversify” the neighborhood structure A, that
is used to generate D. Each time the multi-objective local search stops—i.e., each time
the Pareto front F cannot be improved by any of its neighbors in D—a new local search
subroutine is started in a new neighborhood structure. The choice of the new structure
depends on whether A}, has effectively improved the Pareto front: if F was updated at least
once while searching in A}, the algorithm moves back to the first structure A7; otherwise,
structure Aj,.1 is considered instead. The MO-VNS algorithm stops when none of the
structures can improve the Pareto front any further.

4.4 Post-Processing Validation

By construction, our algorithm solves the multi-objective utility specification problem by
approximating the Pareto front of all feasible model specifications. Because the two objective
functions of the problem — the maximized log likelihood (LL) and the number of estimated
parameters — are conflicting, the non-dominated solutions obtained by the MO-VNS cannot
be ranked. The choice of a single best model is left to the user; it should be motivated by
the purpose that the selected model will serve. Nonetheless, we believe that some of the
predominantly used metrics in model selection deserve to be examined as guidelines.

We first consider out-of-sample validation for assessing how accurately the models in the
Pareto front generalize to new data. Testing the model on unseen data is the only way to
effectively reduce the possibility of erroneous correlation between inputs and choice outcomes
that may have been captured during the training. The method consists in excluding part
of the data from the model identification process. All models tested by the MO-VNS are
therefore estimated only on part of the full dataset. Then, after the algorithm stops, the
accuracy of the trained models is measured on the hold-out data; the LLs yielded “in-sample”
and “out-of-sample” are compared to detect underfitting or overfitting issues.

In addition to out-of-sample validation, we also identify the optimal models in terms of
the Akaike and Bayesian information criteria (Akaike, 1974; Schwarz, 1978). These criteria
work by “balancing” the LL yielded by a model on a given dataset with a penalty that
is proportional to the number of estimated parameters; in other words, they quantify the
trade-off between the two objectives of the problem defined in (9). The Akaike information
criterion (AIC) and the Bayesian information criterion (BIC) are defined as

AIC = —2£ + 2K,

17
BIC = —2L + Klog(N), (7

where, for brevity, £ is the in-sample maximized LL, K is the number of estimated param-
eters and N is the sample size. The penalty considered by the BIC is more severe than
the one of the AIC as soon as N > 8; we therefore expect BIC-optimal models to be more
parsimonious — and worse in terms of LL— than AIC-optimal ones.

4.5 Implementation Notes

For the sake of clarity, some details related to the implementation of the MO-VNS are
omitted from the previous sections. In particular, a number of measures are undertaken to
reduce the computational time of its runs. We discuss these measures here.

10



All MLEs are performed using the Biogeme package for Python (Bierlaire, 2018; Bierlaire,
2020) and its implementation of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm.
Substantial amounts of time are gained by limiting the estimation outputs provided by
Biogeme to what is strictly necessary: as the variance-covariance matrix of the parameter
estimates is expensive and of no use in our context, we simply avoid computing it.

Additionally, because the estimation of a model through MLE may take up to several min-
utes depending on its number of parameters, a list of estimation results for all tested models
is updated throughout the whole run of the algorithm. Those are retrieved whenever ap-
propriate, so as to avoid estimating the same model twice.

Finally, whenever possible, the estimation outputs of previously tested models are used in
order to reduce the number of iterations that the BFGS algorithm requires to converge. As
every model arises from the application of a single operator on a previously estimated model,
the parameter estimates of the former are good approximations of the values that should
be reached by the latter; they are therefore used as initial values whenever appropriate. In
practice, no parameter that has already been estimated in a previous model is ever estimated
from scratch again, greatly reducing the overall computational cost of our algorithm.

5 Case Study: Swissmetro

5.1 Dataset

The Swissmetro dataset (Bierlaire et al., 2001) consists of survey data collected in Switzer-
land in 1998, initially used to analyze the potential impact of the Swissmetro, the Swiss
precursor of Hyperloop. The 1192 respondents were asked to state their favorite trans-
portation mode among three alternatives—train, Swissmetro and car—in nine different
hypothetical situations. 10395 observations remain after removing incomplete data; 20%
of these are set aside for out-of-sample validation. Table 1 gives a brief description of the
subset of variables used in the context of this study; a more detailed and complete descrip-
tion of the dataset and its collection procedure may be found in Antonini et al. (2007). The
Swissmetro dataset is publicly available online.

The 8 continuous variables of Table 1 are considered as potential explanatory variables. It
is common practice to use logarithmic transforms of variables related to time or cost (Ben-
Akiva and Lerman, 1985). We therefore define A = {1, %, 0}, where A = % corresponds to
a square-root transformation, which we see as a middle ground between the identity and
logarithmic transforms. Additionally, the 5 categorical variables of Table 1 are considered
for segmentation. GA, MALE and FIRST are binary, whereas LUGGAGE and WHO each
have three categories. According to (10), there are over 8 x 10'® possible specifications in
this setting. Finally, due to the nature of the potential explanatory variables, all B;(c,, Six)
are imposed to be negative for the sake of consistency with behavioral interpretation.

5.2 Results

We apply the MO-VNS on the Swissmetro dataset with the configuration described in the
previous section. The initial Pareto front contains a single specification that only includes
the alternative-specific constants (ASCs). The ASC of the train alternative is normalized
to zero. 11522 models are tested in little more than 20 hours. Figure 1 illustrates their
performance in terms of final log likelihood (LL) and number of parameters. We use the
logit model presented in Bierlaire et al. (2001) as a benchmark for comparison; its estimation
results are reported in Table 3 in the Appendix.
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Table 1: Swissmetro dataset. Definition of the considered variables and statistics.

Variable Min. Max. Mean Std.
TTTrAIN 31 1049 166.63 77.35
Train travel time [min|. Based on the car distance.

COTRAIN 4 5040 514.34 1088.93
Train cost [CHF|. If the traveler owns a GA, equal to its price.

HETRrAIN 30 120 70.10 37.43
Train headway [min)].

TTsm 8 796 87.47 53.55
Swissmetro travel time [min]. A speed of 500 km/h is considered.

COsm 6 6720 670.34 1441.59
Swissmetro cost |[CHF|. Proportional to the rail fare.

HEgsMm 10 30 20.02 8.16
Swissmetro headway [min]|.

TTcar 0 1560 123.80 88.71
Car travel time [min].

COcar 0 520 78.74 55.26
Car cost |[CHF|. A fized average cost per kilometer is considered.

FIRST 0 1 0.47 0.50
1 if first-class traveler, 0 otherwise.

GA 0 1 0.14 0.35
Travel card ownership. 1 if the traveler owns one, 0 otherwise.

LUGGAGE 0 3 0.68 0.60
0 if none, 1 if one piece, 3 if several pieces.

MALE 0 1 0.75 0.43
Traveler’s gender. 0 if female, 1 if male.

WHO 1 3 1.49 0.71

Who pays for the trip. 1 if self, 2 if employer, 3 if half-half.

As depicted in Figure 1, the models in the Pareto front approximately follow the shape of
a hyperbola branch. They have between 2 and 51 estimated parameters and range from
—7358.2 to —5819.9 in terms of final LL. The leftmost non-dominated model corresponds
to the ASCs-only model in the initial Pareto front. It should be noted that the front
does not contain any model with 28 parameters; the reason behind this discrepancy is that
all candidates with 28 parameters that outperform the BIC-optimal solution in terms of
goodness of fit are behaviorally invalid. The validity verification mechanism proves itself
useful again when the number of estimated parameters is larger than 30. Several models
outperform the Pareto front in terms of LL, but they are all rejected due to their invalidity.
The same mechanism also limits the number of estimated parameters to 51, despite the
theoretical maximum being 80 given the considered configuration. As reported in Table 2,
the BIC-optimal and AIC-optimal solutions yield a LL of —5873.3 and —5 823.0, respectively.
The AIC-optimal model includes 18 more parameters than the BIC-optimal one for an
improvement of 50.3 in the log-likelihood. The estimation results of these two models are
shown in Table 5 and Table 6 in the Appendix, respectively.

Finally, Figure 2 serves the purpose of comparing the in-sample and out-of-sample LLs
yielded by all models in the Pareto front. These values are normalized with respect to the
number of observations in the training and validation data, so as to compare them despite
the difference in size between the two sets. We observe that the ratio between in-sample and
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Figure 2: MO-VNS results. In-sample and out-of-sample log likelihood comparison.
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out-of-sample LLs is approximately constant for models that include up to 15 parameters.
Then, as the number of parameters grows, the accuracy on the validation data decreases
until it reaches a plateau, while the fit on the training data keeps increasing. The plateau
suggests that models with 35 parameters or more —including the AIC-optimal model — may
be overfitting. On the contrary, the limited explanatory power of all utility specifications
with less than 10 parameters is a clear sign of underfitting. The largest out-of-sample LL is
obtained by the 19-parameter model; we denote it as the OOS-optimal model. Its estimation
results are given in Table 4 in the Appendix. As shown in Table 2, the OOS-optimal model
is even more parsimonious than the BIC-optimal one; its in-sample LL is slightly worse as
a result.

Table 2: Performance of the benchmark, OOS-, BIC- and AIC-optimal models.

Benchmark OOS-optimal BIC-optimal AIC-optimal

Est. parameters 9 19 27 45
In-sample LL —6565.0 —5941.1 —5873.2 —5823.0
Out-of-sample LL —1633.5 —1515.6 —1524.0 —1573.0
AIC 13148.0 11920.3 11800.5 11735.9
BIC 13211.3 12053.8 11990.2 12052.0

6 Conclusion

In this paper, we propose a new methodology for assisted specification of discrete choice
models. We define a multi-objective combinatorial optimization problem with two conflicting
objectives and make use of a variable neighborhood metaheuristic to generate solutions in
a way that mimics human modelers. The validity of the proposed algorithm is empirically
demonstrated using a publicly available mode choice dataset. Out-of-sample validation
shows that our algorithm generates sets of high-quality specifications in reasonable amounts
of time. We believe our approach can assist analysts in the task of model development and
provide relevant insights. Model interpretability and behavioral realism are ensured in all
generated models by means of a mechanism that systematically verifies economic soundness
throughout the search and rejects all specifications that are behaviorally inconsistent.

Intended future work includes the development of a system that allows “fixing” part of the
utility specification while letting the algorithm “enrich” it freely. It is known from empirical
studies that some key variables of well-studied choice problems should be considered in a
particular manner; compliance with the existing literature and improvements in terms of
computational effort could therefore be obtained by introducing appropriate restrictions to
the search space. Another relevant direction of search consists in extending the framework
to advanced model structures. Our methodology is already applicable to nested and cross-
nested logits, as it deals with the specification of utility functions. An extension would
consist in providing algorithmic assistance to the definition of nests in nested logit models,
or to the specification of error components in mixed logits. In such cases, computational
cost and overall runtime could be reduced by using heuristics based on partial estimation,
where the maximum likelihood algorithm is prematurely interrupted if the model under
consideration is not promising. Finally, additional algorithmic improvements that could be
brought to the MO-VNS include (a) developing new operators and neighborhood structures,
(b) replacing the local search subroutine with simulated annealing and (c) using distinct
starting points so as to improve diversification.
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Appendix

Table 3: Benchmark model. Estimation results. Variable SEATS is binary and describes
configuration of seats in the Swissmetro.

Parameter Value Rob. std err  Rob. t-test
ASCcar 0.0620 0.0585 1.06
ASCTRAIN —1.16 0.127 —-9.14
8 AGE 0.190 0.0352 5.39
B _CO —0.00123 0.0000777 —15.8
B _GA 7.49 0.444 16.9
8 HE —0.00718 0.000921 —7.80
8 LUGGAGE —0.123 0.0484 —2.55
B SEATS 0.162 0.0868 1.87
8 TIME —0.0113 0.000755 —15.0
Initial log likelihood —8603.2
Final log likelihood —6565.0

Table 4: OOS-optimal model. Estimation results. The numbers in parentheses refer to the
nonlinear transform of the variable associated with each reported parameter.

Parameter Value Rob. Std err  Rob. t-test
B_TTrran(® —2.87 0.114 —25.2
B _TTrramn@ca—1 1.90 0.0753 25.2
B_COrran® —1.48 0.0769 -19.2
B_HErpan(2) —0.0618 0.00822 —7.53
ASCgu () —2.81 0.229 ~12.3
ASCsm(Tga—1 3.81 0.172 22.9
B_COgy© —1.50 0.0700 —21.5
B_COsm @ paLE—1 0.0832 0.0130 6.38
B_TTsmu©® —1.79 0.0758 —23.6
B_TTsm D wrHo—2 0.242 0.0199 12.1
B_TTsm O wro-3 0.193 0.0359 5.37
ASCcar(™) —8.99 0.329 273
ASCcar ) MALE-1 1.32 0.186 7.10
B TTcar(2) —0.0885 0.0191 —4.63
B TTcar 2 maLe—1  —0.0903 0.0171 _5.27
B_COcar™ —0.00962 0.00124 —7.79
B_COcarMprsT—1  —0.00425 0.000655 —6.48
B_COcarMwHO=2 0.00640 0.000968 6.61
B_COcar Mwro=3 0.00680 0.00166 4.10
Initial log likelihood —8603.2
Final log likelihood —5941.1
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Table 5: BIC-optimal model. Estimation results. The numbers in parentheses refer to the
nonlinear transform of the variable associated with each reported parameter.

Parameter Value Rob. Std err  Rob. t-test
B_TTrran® —2.71 0.137 -19.8
B TTrrain@rRsT-1 —0.860 0.134 —6.44
B TTrramn@ca—1 2.61 0.200 13.1
B_COTraN® —1.36 0.0843 ~16.1
B_COTrAIND FIRST=1 0.297 0.0446 6.66
B_COrran@ga—1 —3.46 0.374 —9.25
B HErran(2) —0.0816 0.0101 —8.06
B HErraN 2 LUGGAGE-1 0.0245 0.00661 3.70
B HErramn2)Luccace.s  —0.0190 0.0152 —1.25
ASCgm (D) —-3.01 0.263 —11.4
B_TTsm© —1.50 0.0993 151
B TTsm @ rrsT—1 —0.639 0.136 —4.69
B TTsm@wro-2 0.256 0.0212 12.1
B_TTsm@wro=3 0.179 0.0367 4.86
B_COsp(© —1.44 0.0712 —20.1
B COsm@ga—s —1.93 0.353 —5.46
B_COsmOyaLE—1 0.0866 0.0137 6.31
ASCcar(™) —8.46 0.360 —235
ASCcar ) FIRST=1 —1.23 0.282 —4.35
ASCcar(Taa-1 —11.7 1.51 —7.76
ASCcar ™) MALE=1 1.31 0.187 7.02
B_TTcar? —0.0898 0.0193 —4.66
B_TTcar'? MaLe—1 —0.0894 0.0173 —5.18
B_COcar™ —0.00728 0.0015 —4.85
B_COcarMrirsT—1 —0.00832 0.00159 —5.24
B_COcarMwho-2 0.00689 0.00101 6.84
B_COcarMwhHo=-3 0.00645 0.00165 3.90
Initial log likelihood —8603.2
Final log likelihood —5873.2
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Table 6: AIC-optimal model. Estimation results. The numbers in parentheses refer to the
nonlinear transform of the variable associated with each reported parameter.

Parameter Value Rob. std err  Rob. t-test
B_TTrran® —2.85 0.141 —20.3
B_TTrraN D FRST=1 —0.923 0.145 —6.38
B_TTrramNn@ga—1 2.61 0.199 13.1
B_COrran® —1.96 0.138 —14.2
B_COrrAIN O FIRST=1 0.266 0.0455 5.85
B_COrraNn@Ga—1 —1.46 0.131 —11.2
B_COrraiNn©rLuccacr-1 0.499 0.105 4.75
B_COrraN®PrLuccagE=3 —0.0825 0.260 —0.317
B_COTRAIND MALE=1 0.180 0.0999 1.80
B_COTrAIND WHO=2 0.0980 0.0386 2.54
B_COrraIN©wHO-3 0.178 0.0619 2.88
B_HErramn(2) —0.0627 0.0172 —3.64
B HEtramn2)Luccace_1  0.00428 0.0189 0.227
B HErramn2)Luccace—3 —0.0682 0.0415 —1.64
ASCsm (™) —2.10 0.35 ~6.01
ASCsy () MALE=1 —1.06 0.326 —3.27
ASCsym T whO=2 0.315 0.324 0.970
ASCsnv T wro—3 —2.33 0.423 —5.50
B_TTsm©® —~1.76 0.154 ~115
B_TTsm@rrrsT=1 —0.727 0.15 —4.83
B_TTsm@ruccace—1 —0.204 0.0749 —2.72
B TTsm P Lucaace—3 —0.337 0.211 —1.60
B TTsm@marE—1 0.404 0.141 2.87
B_TTsm@wro=2 0.113 0.14 0.811
B_TTsm D whHo=3 0.915 0.186 4.92
B_COsm(® —2.17 0.125 —17.4
B_COsm O rucaace=1 0.586 0.0928 6.32
B_COSM(O)LUGGAGE:S 0.0427 0.24 0.177
B_COsm @ paLE—1 0.322 0.0952 3.38
B_TTsm@wro-2 0.0660 0.06 1.10
B_TTsm D whHo=3 0.423 0.102 4.17
B HEgy(2) —0.0319 0.0132 —2.42
ASCcar(™) —9.81 0.442 —22.2
ASCoar ) FIRST=1 —0.932 0.281 —3.31
ASCcar(Tca-1 —3.24 0.236 ~13.8
ASCcar T LuccacE-1 0.881 0.259 3.40
ASCcoar T LuccAcE=3 —0.896 0.766 -1.17
ASCear T MmaLE—1 1.49 0.283 5.26
B TTcar'?) —0.0746 0.0225 —3.31
B TTcar 2 prsT—1 —0.0824 0.0152 —5.43
B TTcar 2 maLE_1 —0.0680 0.0195 —3.48
B_COcar® —0.0141 0.00141 —9.95
B_COcarMaa—1 —0.0150 0.00698 —2.15
B_COcarMwHo=2 0.00940 0.00169 5.56
B_COcarMwro=3 0.0132 0.00276 4.77
Initial log likelihood —8603.2
Final log likelihood —5823.0
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