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Abstract

In this research we study the berth allocation problem (BAP) in real time as disruptions occur.
In practice, the actual arrival times and handling times of the vessels deviate from their expected
or estimated values, which can disrupt the original berthing plan and potentially make it infea-
sible. We consider a given baseline berthing schedule, and solve the BAP on a rolling planning
horizon with the objective to minimize the total realized costs of the updated berthing schedule
as the actual arrival and handling time data is revealed in real time. The uncertainty in the data
is modeled by making appropriate assumptions about the probability distributions of the uncer-
tain parameters based on past data. We present an optimization based recovery algorithm based
on set partitioning method and a smart greedy algorithm to reassign the vessels in the events of
disruption. Our research problem derives from the real world issues faced by the SAQR port, Ras
Al Khaimah, UAE, where the berthing plans are regularly disrupted owing to a high degree of
uncertainty in information. A simulation study is carried out to assess the solution performance
and efficiency of the proposed algorithms, in which the baseline schedule is chosen as the solution
of the deterministic berth allocation problem without accounting for any uncertainty. Results in-
dicate that the proposed algorithms can significantly reduce the total realized costs of the berthing
schedule as compared to the ongoing practice of reassigning vessels at the port.
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1 Introduction
The Berth Allocation Problem (BAP) is one of the most critical and widely studied problems in
seaport operations planning. Port operations are affected by a high degree of vessel travel time and
handling time uncertainty arising from weather conditions, mechanical problems, port congestion,
demand uncertainty, and other factors. Such uncertainty can make berth allocation planning difficult,
and planned schedules are often disrupted. To minimize the impact of such disruptions, plans must
be updated dynamically. Most optimization-based approaches for creating berth allocation plans do
not explicitly account for uncertainty. Furthermore, the objectives used in such approaches do not
explicitly consider objectives useful during re-planning.

Two approaches are used for managing uncertain disruptions in transportation scheduling. In the
first approach, systematic robustness is built into the planned, or baseline, schedule. Stochastic opti-
mization models (see Birge and Louveaux (1997), Kall and Mayer (2005) and Wallace and Ziemba
(1997)) address problems of this type by minimizing expected operational costs given a probabilistic
representation of possible outcomes, while robust optimization models (see Soyster (1973), Bertsimas
and Sim (2003), Ben-Tal and Nemirovski (1998), Ben-Tal and Nemirovski (1999), Ben-Tal and Ne-
mirovski (2000) and Bertsimas and Sim (2004)) alternatively focus on worst-case performance over
some subset of possible outcomes. The second approach to managing disruptions is to build reactive
models for modifying a schedule in real-time in response to new information; it is common to refer
to these optimization problems as recovery problems. Recovery optimization problems usually use a
deterministic information model. To measure the effectiveness of dynamic reactive models, a com-
petitive ratio between the system cost resulting from repeated application of a reactive optimization
model and the optimal cost found by a posteriori optimization may be computed (Albers (2003)).

In this paper, we consider the problem of real-time berth rescheduling. The underlying model is
the dynamic, hybrid berth allocation model for bulk ports developed by Umang et al. (2013). We
consider uncertainty in both the arrival times and the handling times of the vessels. The objective is
to minimize the total realized costs of the modified berthing schedule, which is the sum of the total
service cost of the vessels, the rescheduling costs created by altering the berthing times and positions
of vessels from a baseline schedule, and the delay to arriving vessels, discussed in more detail later in
the paper.

2 Literature Review
Comprehensive literature surveys covering operations research approaches to berth allocation prob-
lems in container terminals can be found in Bierwirth and Meisel (2010), Steenken et al. (2004) and
Stahlbock and Voss (2008). The deterministic berth allocation problem (BAP) in bulk ports with
dynamic vessel arrivals and hybrid berth layout is studied by Umang et al. (2013).

Few studies propose robust planning methods for berth allocation, although are some recent ex-
amples. Zhen et al. (2011) use a meta-heuristic approach to solve a two-stage stochastic BAP given a
fixed set of scenarios, where the objective is to minimize the total cost of a baseline schedule and the
expected cost of recourse. The recourse cost in this study is the weighted time and space deviation
of the realistic schedule from the baseline schedule. Han et al. (2010) use a simulation-based genetic
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algorithm to solve an integrated berth and quay crane scheduling problem with uncertainty in vessel
arrival and operation times. For given probability density functions, the objective is to minimize the
sum of expected value and standard deviation of the service time and the weighted tardiness of the
vessels.

Other papers propose surrogate measures of berth schedule robustness, and incorporate these mea-
sures into an optimization objective. For example, Moorthy and Teo (2006) use a sequence pair ap-
proach to design a robust berth template for transshipment hubs in container terminals, in which the
conflicting objectives are to minimize the total expected delays and deviation from the most preferred
berthing locations. Zhen and Chang (2012) define robustness as the weighted sum of the free slack
times in the berthing schedule, where weights are determined according to the vessel priorities. A
bi-objective model is proposed that minimizes cost and maximizes robustness. Xu et al. (2012) solve
a continuous berth allocation problem with uncertainty in vessel arrival and handling times, in which
the objective is to balance level of service measured by total vessel departure delay with a robust-
ness measure defined by length of time buffers inserted between vessels occupying the same berthing
location to absorb uncertain delays.

Little research has addressed real-time management of berth allocation. In practice, simple rules
of thumb guide rescheduling of vessels. Since actual vessel arrival times, and to a lesser extent vessel
handling times, may differ substantially from those assumed when developing a baseline schedule,
it should be clear that rescheduling will often be required and it is important to do so effectively.
A simple but naive approach to rescheduling is to not shift planned vessel berthing positions when
rescheduling, and to simply serve vessels at the earliest feasible time given a first-in first-out (FIFO)
ordering specified by the planned berthing times. A different approach is to apply an optimization
model in a roll-out procedure for vessel rescheduling, but doing so requires some attention to detail.
Zeng et al. (2012) and Du et al. (2010) are a couple of examples of related works. Zeng et al. (2012)
address the problem of disruption recovery in the integrated berth and quay crane assignment problem
in container terminals. They develop optimization models for re-allocation of berth assignment and
rescheduling of quay cranes, but solve the disruption recovery problem using local rescheduling and
tabu search methods. Du et al. (2010) use a feedback procedure to develop a robust berth alloca-
tion plan and a reactive strategy that takes into account the priorities assigned to the vessels and the
congestion at the port.

In this research, we develop a methodology to model the uncertainty in the yet-to-be-revealed
arrival times and handling times of the vessels, based on probability distributions derived from past
data. We propose a recovery algorithm based on re-optimization of the berthing schedule in the events
of disruption and a heuristic based smart greedy algorithm for berth rescheduling in real time. The
objective is to minimize the total realized cost of the updated schedule. Our research problem is
motivated by challenges faced along these lines at the SAQR port, Ras al-Khaimah, United Arab
Emirates, where planned operations are frequently disrupted due to a high degree of uncertainty in
the vessel arrival and handling times.
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3 Problem Statement

3.1 Baseline Schedule
We study the berth allocation problem in real time for a given baseline schedule. The vessel arrival
process is dynamic and stochastic. We assume a hybrid berthing layout and a fixed planning horizon
partitioned into discrete time buckets, where each vessel may occupy multiple discrete berth sections,
but a given section may be occupied by at most one vessel at a given time, as shown in Figure 1.

Figure 1: Hybrid berthing layout, showing a feasible assignment of vessels to berth sections at a
single point in time

Umang et al. (2013) demonstrates that the dynamic hybrid berth allocation problem with known
arrival and handling times can be effectively modeled and solved as a generalized set-partitioning
problem (GSPP) for relatively large problem size and time horizon of few days. In this approach, the
set of all feasible single-vessel berthing assignments is generated a priori and is denoted by the set P.
Note that a berthing assignment for a single vessel specifies the berth sections that will be occupied
by the vessel, its berthing time, and its completion time (equal to the berthing time plus the handling
time). The assignment matrix contains a column for each of the |P| assignments, and is composed
of upper submatrix A and lower submatrix B. Each column p in submatrix A has a single non-zero
value, where row i contains the value one if the berthing assignment is for vessel i ∈ N. Submatrix B
contains a single row for each (berth section, time bucket). Non-zero values in submatrix B are equal
to one if the vessel berthing assignment specified by column p requires that the vessel occupies the
(section, time) represented by the row. To illustrate this idea, consider an example with two vessels
1 and 2 as shown in Figure 2. Suppose the quay has 3 discrete berth sections, and that the planning
horizon has 3 discrete time periods. Vessel 1 requires specialized handling equipment only available
in sections 1 and 2, and vessel 2 arrives at the start of time 2. The resulting assignment matrix is
shown in Table 1. The first column represents the berthing assignment of vessel 1 to sections 1 and 2
from time 1-2, and so on.

Figure 2: Simple example of set partitioning to solve the BAP with |N| = 2, |M| = 3 and |H| = 3

We assume the following input data to be available for the GSPP model:
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Vessel 1 1 1 0 0
Vessel 2 0 0 1 1

Section 1, Time 1 1 0 0 0
Section 1, Time 2 1 1 1 0
Section 1, Time 3 0 1 1 0
Section 2, Time 1 1 0 0 0
Section 2, Time 2 1 1 1 1
Section 2, Time 3 0 1 1 1
Section 3, Time 1 0 0 0 0
Section 3, Time 2 0 0 0 1
Section 3, Time 3 0 0 0 1

Table 1: Assignment matrix for a simple example of GSPP

H = set of discrete time intervals in the planning horizon
P = set of feasible assignments
s = 1, ..., |H| discrete time intervals in the planning horizon
p = 1, ..., |P| feasible assignments
dp = delay associated with assignment p
hp = handling time associated with assignment p

The assignment matrix coefficients are defined as follows.

Aip =


1 if vessel i is the assigned vessel in the feasible assignment represented

by assignment p;
0 otherwise.

bksp =

{
1 if section k is occupied at time s in assignment p;
0 otherwise.

There is only a single decision variable in the GSPP model for selection of feasible assignments
in the optimal solution which is defined as follows.

λp =

{
1 if assignment p is part of the optimal solution;
0 otherwise.

The GSPP model is formulated as shown below:
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min
∑
p

(dpλp + hpλp) (1)

s.t.
∑
p

(Aipλp) = 1 ∀iεN (2)∑
p

(bksp λp) ≤ 1 ∀kεM,∀sεH (3)

λp ε {0, 1} ∀pεP (4)

In the deterministic model, the objective (1) is to minimize the total service cost of the vessels
berthing at the port, which includes the total berthing delays and the total handling cost of the vessels.
Constraints (2) ensure that each vessel must have exactly one feasible assignment in the optimal
solution. Constraints (3) ensure that a given section at a given time can be occupied by at most one
vessel.

3.2 Real Time Recovery
In practice, the actual arrival and handling times of vessels may deviate from their estimated values,
which can disrupt the baseline schedule and possibly render it infeasible. To create a model for berth
schedule recovery, we first describe a dynamic information model based on actual seaport operations.
We assume that the port receives dynamic updates on the estimated arrival time of each inbound
vessel. Suppose that these estimated arrival time updates occur sporadically for each vessel, and that
each update occurs before the actual arrival of the vessel at time ai. We assume that ai is known with
certainty only at time ai. In the case of handling time, we assume that a single estimate of handling
time is known in advance and that actual handling time hi of vessel i is only known when handling is
completed.

To design an optimization problem for schedule recovery, suppose that re-planning is initiated at
time t for a given baseline schedule. At this time, we can partition the vessel set N into five subsets
as follows:

N = Nt
1 ∪N

t
2 ∪N

t
3 ∪N

t
4 ∪N

t
5

where,

• Nt
1

is the subset of vessels which have been berthed, completely served, and have departed the
port;

• Nt
2

is the subset of vessels which are currently berthed, at known berthing locations that cannot
be altered;

• Nt
3

is the subset of vessels which arrived to the port, but have not yet been berthed;
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Vessel Expected Arrival Time Baseline Berthing Time Expected Handling Time
1 0 0 3
2 0 1 2
3 0 1 2

Table 2: Baseline schedule for illustrative example with |N|=3, |M|=6 and |H|=4

• Nt
4

is the subset of vessels which have not arrived yet, but who have an estimated arrival time
ât
i
> t; and

• Nt
5

is the subset of vessels which have not arrived yet, but who have an estimated arrival time
ât
i
≤ t.

Note that the set of unassigned vessels at time instant t is Nt
u = N

t
3
∪Nt

4
∪Nt

5
.

Figure 3: Baseline berthing positions for illustrative example with |N|=3, |M|=6 and |H|=4

Consider the example containing three vessels 1, 2 and 3 as shown in Figure (3). The berthing
positions of the vessels in the original baseline schedule are as shown in the figure. We consider 6
quay sections and 4 discrete time intervals in the planning horizon. The arrival and handling time
information related to all the vessels is given in Table 2

Now consider the disruption scenario detailed in Table 3. Each large row in the table describes
the events that have occurred by time t. Note that the arrival time of vessel 1 is updated twice, and
it actually arrives at time 2. Although the expected handling time for vessel 1 is 3, actual handling
time is 2 and the vessel departs at time 4. The arrival time of vessel 2 is updated once, and the actual
handling time is equal to the expected value of 2. Note that at time t=1, vessel 2 belongs to the subset
Nt
5
, since there is no available information about the future expected arrival time of the vessel. For

vessel 3, the actual arrival and handling times are the same as the expected values and there are no
arrival information updates.

Once a berthing schedule is determined, the terminal manager may begin allocating resources
such as cargo storage facilities, labour, and handling equipment according to the requirements of the
berthing vessels. When the baseline schedule is disrupted, the manager must reallocate these resources
and incur incur additional costs. Thus, an important objective in berthing schedule recovery is to
minimize the deviation of the realized berthing plan from the baseline. Another important measure
is the fairness of any required rescheduling. Here, we attempt to ensure fairness by prioritizing the
minimization of berthing delay for vessels that arrive on time. Finally, it is also important to maximize
overall port productivity which we measure using the total actual flow time of all berthing vessels in
the usual way.
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Time Vessel Arrival Time Updated? Vessel Arrived Vessel Assigned Vessel Completed Subset
1 Yes→ 1 No No No Nt

4

t=0 2 Yes→ 1 No No No Nt
4

3 - Yes No No Nt
3

1 Yes→ 2 No No No Nt
4

t=1 2 No No No No Nt
5

3 - Yes Yes No Nt
2

1 - Yes Yes No Nt
2

t=2 2 - Yes Yes No Nt
2

3 - Yes Yes No Nt
2

1 - Yes Yes No Nt
2

t=3 2 - Yes Yes No Nt
2

3 - Yes Yes Yes Nt
1

1 - Yes Yes Yes Nt
1

t=4 2 - Yes Yes Yes Nt
1

3 - Yes Yes Yes Nt
1

Table 3: Disruption Scenario for a simple example with |N|=3, |M|=6 and |H|=4

We propose therefore the following optimization model for real time recovery of a baseline berth
schedule. The model is to be solved given a baseline schedule at time epoch t, and considers only a
single scenario for all uncertain parameters (to be described in more detail in Section 4.1).
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The input parameters for the model are:

|H| = duration of planning horizon
L = total length of quay
M = set of berth sections
Nt
a = subset of active vessels at time t that have not yet departed the port

Nt
u = subset of vessels at time t that have not been assigned to a berth position

Nt
o = subset of unassigned vessels at time t that arrived on-time or are expected

to arrive on-time
Ai = planned arrival time of vessel i
µi = service priority of vessel i
at
i
= (updated) arrival time of vessel i at time t

bik = 1 if baseline berthing location k ∈ M used for vessel i (starting berth sec-
tion), 0 otherwise

mi = baseline berthing time of vessel i
ei = baseline departure time of vessel i
gk = linear coordinate of berthing location k
Li = length of vessel i
ht
ik
= (updated) handling time at time t for vessel i berthed at starting berth section

k

Mi ⊆ M, subset of starting berth sections for which vessel can be feasibly berthed
due to draft and length restrictions

c1 = penalty cost of shifting a vessel by a unit distance along the quay
c2 = penalty cost of unit delay time beyond baseline departure time for a vessel
c3 = penalty cost of unit delay time beyond baseline service time for a vessel

arriving on-time

The decision variables are:

m ′
i
≥ 0 updated berthing time of vessel i

e ′
i
≥ 0 updated departure time of the vessel i

w ′
i
≥ 0 difference between the updated service time and the estimated service time as per the base-

line schedule of the vessel i
b ′
ik

binary, equals 1 if vessel i updated berthing location is k, 0 otherwise
yij binary, equals 1 if vessel i berthed to the left of vessel j along quay, 0 otherwise
zij binary, equals 1 if vessel i departs no later than the berthing time of vessel j, 0 otherwise

The optimization model can be formulated as follows:
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minZt = Z1t + Z2t + Z3t (5)

Z1t =
∑
i∈Nt

u

(e ′i − a
t
i) (6)

Z2t =
∑
i∈Nt

u

c1
∣∣∣∣∣∣∣∑
k∈M

gkb
′
ik −
∑
k∈M

gkbik

∣∣∣∣∣∣∣ + c2µi |e ′i − ei|
 (7)

Z3t =
∑
i∈Nt

o

c3w
′
i (8)

subject to the constraints

m ′i − a
t
i ≥ 0 ∀ i ∈ Nt

u (9)

e ′i −m
′
i −
∑
k∈M

htikb
′
ik = 0 ∀ i ∈ Nt

a (10)

w ′i ≥ (e ′i − a
t
i) − (ei −Ai) ∀ i ∈ Nt

o (11)∑
k∈M

(gkb
′
jk) + B(1− yij) ≥

∑
k∈M

(gkb
′
ik) + Li ∀ i ∈ Nt

a, j ∈ N
t
u, i , j (12)

m ′j + B(1− zij) ≥ m
′
i +
∑
k∈M

htikb
′
ik ∀ i ∈ Nt

a, j ∈ N
t
u, i , j (13)

yij + yji + zij + zji ≥ 1 ∀ i ∈ Nt
a, j ∈ N

t
u, i , j (14)∑

k∈Mi

b ′ik = 1 ∀ i ∈ Nt
u (15)

b ′ik ∈ {0, 1} ∀ i ∈ Nt
a,∀k ∈M (16)

yij ∈ {0, 1} ∀ i ∈ Nt
a, j ∈ N

t
u (17)

zij ∈ {0, 1} ∀ i ∈ Nt
a, j ∈ N

t
u (18)

The equations (5)-(8) minimize the total realized cost Zt at time instant t, which is the sum of the
total service cost of the vessels given by Z1t, the total cost of rescheduling the vessels given by Z2t and
the delays beyond the estimated service times of vessels arriving on-time given byZ3t. Note that while
the parameters µi are dependent on the relative priorities assigned by the port authority to the vessels
berthing at the port, the choice of the parameters c1, c2 and c3 needs to be adapted in accordance
with the actual real cost incurred by the port due to each of the cost components under different
disruption scenarios. In the absence of such data, the parameter values were chosen on the basis of
intuition and trials in our study. Constraints (9) are the dynamic arrival constraints. Constraints (10)
state that vessels depart as soon as their processing is finished. Note that in constraints (10), m ′

i

and b ′
ik

are preset and unchangeable for vessels that have already been assigned to a berth position.
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Constraints (11) are used to define the variables w ′
i

as the difference in the updated service time and
the estimated service time of the vessel i as per the baseline schedule. Constraints (12)-(14) are the
non-overlapping restrictions for any two vessels berthing at the port. Constraints (15) ensure that
each vessel has exactly one starting berth section, and occupies sections for which the vessel can be
feasibly berthed due to length and draft restrictions. Note that the vessel arrival times and handling
times in the objective function term (6) and the constraints (9), (10), (11) and (13) do not represent
the actual values, but our expectation of the arrival and handling time values at time instant t, which
may or may not have been revealed up to that time instant. The modeling of uncertainty in the arrival
times and handling times of the vessels is discussed in the next section.

4 Recovery Methodology

4.1 Modeling Uncertainty
We propose that recovery decisions to be determined via optimization over a rolling planning horizon.
At any given time t, certain vessel arrival and handling times are known with certainty, while other
information is not known.

4.1.1 Uncertainty in arrival times

We use a simple approach for modeling uncertain arrival times. Based on sample data from the
port, we assume that vessel arrival times are uniformly distributed around the expected arrival time.
Specifically, for vessel i ∈ N, the actual arrival time ai lies in the interval [Ai − V,Ai + V] where Ai
is the expected arrival time. When planning, we assume that the most recent update at

i
is appropriate

for use during planning. Then, we model arrival times at time t as follows:

• If vessel i ∈ Nt
2
∪Nt

3
, implying that the vessel has actually arrived, then at

i
is known and equal

to ai;

• If vessel i ∈ Nt
4
, then at

i
is assumed equal to the last update of its arrival time. Thus if the

updated arrival time of the vessel at time t1 ≤ t was at1
i

and no other arrival time update occurs
between t1 and t, then the planned arrival time at

i
is assumed equal to at1

i
; and

• If vessel i ∈ Nt
5
, then the most recent vessel arrival time update was inaccurate and we therefore

assume that the vessel may arrive any time on the interval [t,Ai + V]. We use a planning time
at
i

where

Prob(ai ≤ ati) = ρa

where ρa is an input probability and ai is assumed to be uniformly distributed on [t,Ai + V ],
and thus
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ati = t+ ρa(Ai + V − t)

Note that 1−ρa can be interpreted as a likelihood of the infeasibility of the schedule determined
at time instant t due to late arrival of vessels in Nt

5
.

4.1.2 Uncertainty in handling times

Based on sample data from the port, the handling times of vessels are modeled using truncated expo-
nential distributions. In practice, actual handling times are usually close to estimated values, but in
cases of equipment breakdown or other mechanical problems the times may be significantly longer.
For any vessel i ∈ N berthed at the starting section k ∈ M, the handling time is assumed to be
distributed according to a truncated exponential distribution on the interval [Hik, γHik] where Hik is
the minimum handling time and γ ≥ 1 is a factor used to define an upper bound. We then use the
following two cases to determine a planned handling time ht

ik
at time t:

• If vessel i ∈ Nt
2
, then its actual handling time is not yet known but its berth position k is known.

Let git be the elapsed processing time of vessel i at time t. Then, the total handling time hik
is assumed to be distributed according to a truncated exponential distribution on the interval
[max(git, Hik), γHik], and ht

ik
is determined such that

Prob(hik ≤ htik) = ρh

where ρh is an input probability. Again, 1 − ρh is the likelihood that the vessel handling time,
realized at time t, exceeds ht

ik
and thus potentially invalidates the replanned schedule.

• If vessel i ∈ Nt
3
∪ Nt

4
∪ Nt

5
, then neither the actual handling time of the vessel nor the actual

berthing position of the vessel are yet known. In this case, hik is assumed to be distributed ac-
cording to a truncated exponential distribution on the interval [Hik, γHik], and ht

ik
is determined

using the same expression

Prob(hik ≤ htik) = ρh

Note that in these cases, the expected handling time of vessel i at time t berthed at position k is
given by

htik = −(1/τ)ln(e−τL
t
ik − ρh(e

−τLt
ik − e−τU

t
ik))

where Lt
ik

and Ut
ik

are the left and right extremes of the discrete truncated exponential distribution of
the handling time of the vessel at time t, and τ is the parameter of the distribution.
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4.2 Solution Algorithms
4.2.1 Traditional Greedy Algorithm

In this section, we briefly discuss the current practice for reassigning vessels given a baseline sched-
ule at the port. We call the corresponding algorithm the traditional greedy algorithm for schedule
recovery. In this approach, we move forward in time from present and assign each incoming vessel to
the berthing location where the cost of reassigning the vessel is minimized. The cost of reassignment
includes all the three cost components associated with the particular vessel to be reassigned. A vessel
is assigned to a berthing location as soon as space is available, but not before the planned berthing
time in the original baseline schedule. The implementation is presented in detail in Algorithm 1.

Algorithm 1 Algorithm for implementation of traditional greedy based recovery algorithm to solve
the BAP in real time
Require: Baseline schedule for set N of vessels, setM of sections

while time ≤ |H| do
for Berthing Schedule: b do

if b.hasArrived AND !b.isAssigned then
for k = 1→M do

if isStartSectionAvailable(b.vessel,k) AND cost(b.vessel,k) < minimumCost then
foundSection = true;
minimumCost = cost(b.vessel,k)
assigned_start_section = k

end if
end for
if foundSection AND time ≥ b.estimatedBerthingTime then

Assign(b.vessel, assigned_start_section)
end if

end if
end for
time++

end while

4.2.2 Optimization Based Recovery Algorithm

The proposed optimization methodology for schedule recovery in real time seeks to re-plan berthing
assignments for all vessels not currently berthed at each decision epoch given new information. Re-
planning is only required when:

• the arrival time of any vessel is updated, and it deviates from its previous value

• the actual handling time of any vessel is revealed and is not equal to its estimated value
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In a given optimization run, the new berthing assignment is determined by the re-optimization
of all the unassigned vessels in the schedule at that time instant with the objective function (19).
The uncertainty in the yet-to-be-revealed arrival times and handling times of the vessels is modeled
as described in section (4.1). When solving the problem at time instant t for the rolling planning
horizon [t, t + H], the berthing assignment of all the vessels whose processing has already started
is considered frozen and unchangeable. To prevent space overlapping with vessels which are being
currently processed, the occupied sections are blocked for the worst handling time for each of the
berthed vessels until their actual handling time is revealed.

The algorithm to reschedule the vessels is implemented by reformulating the optimization model
(5)-(18) as a set-partitioning problem by generating all the feasible assignments of the unassigned
vessels in the schedule every time there is a disruption. In the optimization run at time instant t, the
objective function is:

minZt = Z1t + Z2t + Z3t (19)

Z1t =
∑
pεPtu

(dtpλp + h
t
p(k

′)λp) (20)

Z2t =
∑
pεPtu

(c1|bp(k
′) − bp(k)|λp + c2µp|e

′
p − ep|λp) (21)

Z3t =
∑
pεPto

(c3w
′
pλp) (22)

subject to the constraints

∑
p

(Aipλp) = 1 ∀iεNt
u (23)∑

p

(bksp λp) ≤ 1 ∀kεM,∀sε[t, t+H] (24)

λp ε {0, 1} ∀pεPtu (25)

Note that the above model is an extension of the set partitioning model (1)-(4) to solve the de-
terministic berth allocation problem, including two additional cost terms in the objective function.
These two terms, represented by the equations (7)-(8) in the initial optimization model, are related to
the minimization of the weighted space and time deviation of the realized schedule from the baseline
schedule, and the delays to vessels arriving on-time respectively.

In the above formulation, the following input data is assumed to be available:
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H = set of discrete time intervals in the planning horizon
Ptu = set of feasible assignments of the unassigned vessels at time instant t
Pto = ⊂ Ptu, set of feasible assignments of the unassigned vessels at time instant t

that have or are expected to arrive on-time
dtp = berthing delay for the vessel estimated at time instant t represented by the

assignment p
htp(k

′) = handling time of the vessel estimated at time instant t represented by the
assignment p berthed at the starting section k ′ ∈M

bp(k) = estimated berthing location as per the baseline schedule of the vessel repre-
sented by the assignment p

ep = estimated departure time as per the baseline schedule of the vessel repre-
sented by the assignment p

bp(k
′) = updated berthing location of the vessel represented by assignment p

e ′p = updated departure time of the vessel represented by assignment p
w ′p = updated time difference between the actual service time and the estimated

service time as per the baseline schedule of the vessel represented by as-
signment p

µp = service priority assigned to the vessel represented by the assignment p
c1 = cost of shifting the vessel by unit distance along the quay
c2 = cost of one unit time of delay beyond the departure time of the vessel as per

the baseline schedule
c3 = cost of one unit time of additional berthing delay to a vessel arriving on-time

with respect to the baseline schedule

Aip =

{
1 if assignment p is a feasible assignment for vessel i;
0 otherwise.

bksp =

{
1 if section k is occupied at time s in assignment p;
0 otherwise.

There is only a single type of decision variable used in the model for the selection of the feasible
assignments in the optimal solution which is defined as follows:

λp =

{
1 if assignment p is part of the optimal solution;
0 otherwise.

Constraints (23) ensure that each unassigned vessel has exactly one feasible assignment in the
optimal solution. Constraints (24) ensure that a given section at a given time can be occupied by at
most one vessel. The implementation of the optimization based recovery algorithm is described by
Algorithm 2. Note that the berthing assignment of a given vessel may be updated several times during
the schedule recovery process, but once the handling of the vessel has actually started, it’s berthing
assignment does not change again thereafter.
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Algorithm 2 Algorithm for implementation of optimization based recovery algorithm to solve BAP
in real time
Require: Baseline schedule of set N of vessels, setM of sections

Initialize set Nu of unassigned vessels← N

Initialize time = 0
while |Nu| > 0 AND time ≤ |H| do

boolean shouldOptimize← false
if scheduleDisrupted then

shouldOptimize = true
end if
if shouldOptimize then

Re-optimize ∀ i ∈ Nu

end if
for berthing Schedule: b do

if !b.isAssigned AND b.hasArrived AND counter ≥ b.estimatedStartTime then
Assign (b.vessel, b.estimatedStartSection)
Nu← Nu − {i}

end if
end for
time++

end while

4.2.3 Smart Greedy Algorithm

In the smart greedy algorithm, the decision to reschedule a particular vessel is based on the cost
of the reassignment of the vessel on the whole schedule by modeling the unknown arrival times and
handling times of the vessels as described in section (4.1). In this approach, every time there is an
incoming vessel arriving at the port we scan the entire quay and assign it to the set of sections where
the total cost of assignment of all the unassigned vessels at that time instant given by equations (5)-(8)
is minimized. As in the traditional greedy method, the assignment of any incoming vessel is done
as soon as berthing space is available for the vessel, but not before the planned berthing time as per
the original baseline schedule. In determining the total cost to assign a given vessel at a given set of
section(s),

• the arrival times and handling times of all the other unassigned vessels are modeled as described
in section (4.1)

• all the other unassigned vessels are assigned to their estimated berthing sections as per the
baseline schedule

• the handling of any unassigned vessel cannot start before the estimated berthing time of the
vessel as per the original baseline schedule
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Algorithm 3 Algorithm for implementation of smart greedy recovery algorithm to solve the BAP in
real time
Require: Baseline schedule for set N of vessels, setM of sections

while time ≤ |H| do
for Berthing Schedule: b do

if b.hasArrived AND !b.isAssigned then
for k = 1→M do

if isStartSectionAvailable(b.vessel,k) AND smartGreedyCost(b.vessel,k) < minimum-
Cost then

foundSection = true;
minimumCost = smartGreedyCost(b.vessel,k)
assigned_start_section = k

end if
end for
if foundSection AND time ≥ b.estimatedBerthingTime then

Assign(b.vessel, assigned_start_section)
end if

end if
end for
time++

end while

The smart greedy recovery algorithm is described in Algorithm 3. It should be noted that unlike
the optimization based recovery method that is based on re-optimization in the event of a disruption
and updating the schedule, the smart greedy method is based on reassigning a single vessel at a given
time and adhering to the original baseline schedule as far as possible.

4.2.4 A posteriori Optimization

If the problem of recovering a planned berthing schedule in real time for a given time horizon is re-
solved after all the actual arrival and handling time information has been revealed, then the problem
of real time recovery reduces to solving the deterministic berth allocation problem with the following
objective function cost:

minZ = Z1 + Z2 + Z3 (26)

Z1 =
∑
pεP

(dpλp + hp(k
′)λp) (27)

Z2 =
∑
pεP

(c1|bp(k
′) − bp(k)|λp + c2µp|e

′
p − ep|λp) (28)

Z3 =
∑
pεP

(c3w
′
pλp) (29)
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subject to the constraints

∑
p

(Aipλp) = 1 ∀iεN (30)∑
p

(bksp λp) ≤ 1 ∀kεM,∀sε[t, t+H] (31)

λp ε {0, 1} ∀pεP (32)

Note that in the above formulation, the index t has been dropped from the variables used in the
earlier formulation (19)-(25). A posteriori optimization is useful to test and validate the solution
performance of the proposed recovery algorithms, since the solution to the above formulation is a
lower bound to the problem of berth rescheduling in real time. Thus it is a used as a benchmark for
the comparison of the solution performance of the algorithms.

5 Results and Analysis
In this section, we compare the solution performance of the recovery algorithms discussed in the
previous section. The algorithms were implemented in JAVA programming language and all tests
were run on an Intel Core i7 (2.80 GHz) processor and used a 32-bit version of CPLEX 12.2.

5.1 Generation of Instances
In the computational study, the baseline schedule is estimated by solving the deterministic berth al-
location problem to optimality, based on instances inspired from real data obtained from SAQR port,
Ras Al Khaimah, UAE. The data sample received from the port provided information about the phys-
ical attributes of the vessels such as the length and the draft of the vessels, expected and actual times
of arrival, berthing times, processing and departure times of vessels, expected and actual berthing
positions and the cargo tonnage of the vessels. The data was provided for over 20 vessels for a time
horizon of roughly 10 days from 28th March to 6th April, 2011. Based on the data sample and our
notes and observations during our visit to the port, we could get an estimate of the range of values for
most input parameters in our model.

The relative solution performance of the recovery algorithms is assessed by carrying out a simula-
tion study in which the baseline schedule is subjected to 100 disruption scenarios and the total realized
cost of the modified schedule is computed using each recovery method for each simulation run. In
our study, the baseline schedule is a combination of cycles of mild or high congestion at the port, as
determined by the number of vessels berthing in each cycle. The two baseline schedules considered in
the computational study are shown in Figures (4)-(5). The length of each cycle |H| is equal to 5 days
or 120 hours. In a period of mild congestion, the number of scheduled vessel arrivals is 10, while in a
period of high congestion it is 25. As done in practice, the problem of updating the baseline schedule
in real time is solved on a rolling planning horizon, where at any given time instant t, the planning
window from t to t+H is 120 hours. It is further assumed that the port is empty before time t=0,
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Vessel ETA Arrival Updates ATA
Vessel 0 19 22(2) 21(4) 24(5) 22(6) 24(7) 23(8) 23(9) 23(22) 23
Vessel 1 3 6
Vessel 2 4 7(3) 6(4) 6(5) 7
Vessel 3 14 16(2) 10(3) 12(4) 11
Vessel 4 18 23(9) 22
Vessel 5 12 13(7) 12
Vessel 6 0 5(2) 4
Vessel 7 0 -4
Vessel 8 0 3
Vessel 9 11 7

Table 4: A sample arrival disruption scenario for |N|=10 vessels. ETA and ATA stand for the expected
and actual arrival times respectively. In the arrival updates, the numbers indicate the updated arrival
times and the numbers in the parantheses indicate the time instants at which the updates are received.

and the actual arrival times of the incoming vessels are updated at or after this time. A sample arrival
disruption scenario is shown in Table 4.

Figure 4: Baseline schedule representing the mildly congested scenario

Figure 5: Baseline schedule representing the highly congested scenario

Based on the degree of stochasticity with respect to the deviation in the actual arrival and handling
times from the estimated values, two types of disruption scenarios are considered in the simulation
study:

• Low Stochasticity

Arrival Time Scenarios: V=5

Handling Time Scenarios: γ = 1.1, τ = 0.5
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• High Stochasticity

Arrival Time Scenarios: V=10

Handling Time Scenarios: γ = 1.2, τ = 0.5

The other parameters of the recovery algorithms are selected on the basis of intuition or by trials
and are listed as follows:

• On-time arrival: U = 4.

• Uncertainty parameters: ρa = ρh = 0.95.

We conduct two sets of computational experiments based on the inclusion or exclusion of the cost
component related to the deviation of the realized schedule from the original baseline schedule. The
weight constants in the objective function terms (7)-(8) are selected as follows:

• In the first set of experiments, the second cost component Z2t is neglected, implying that the
parameters c1 and c2 in equation 7 are assumed equal to 0. The parameter c3 in equation 8 is
assumed equal to 1.

• In the second set of experiments, all the three cost omponents are considered. The parameters
c1 and c3 are assumed equal to 1, while the parameter c2 is assumed equal to 0.002, implying
that the cost of shifting a vessel by 500 meters along the quay is considered equivalent to one
hour of additional delay.

5.2 Comparison of Algorithms
5.2.1 Excluding Cost of Deviation from the Original Schedule

In Figures 6-9, results obtained from the simulation study are shown using box plots for the first
set of experiments in which the cost of deviation from the original baseline schedule is neglected in
the objective function. It can be seen that the optimization based recovery algorithm and the heuristic
based smart greedy recovery method clearly outperform the traditional greedy recovery method for all
the four scenarios. Thus if implemented, the proposed algorithms can lead to substanial cost savings
to the port.

The optimization based recovery algorithm was found to be better in terms of solution perfor-
mance than the smart greedy recovery method in most of the tested scenarios. In fact for the mildly
congested case, the optimization based method was found to be superior to the other two methods in
all the 100 simulation runs. On the other hand, in the high congested case, the performance of the
optimization based method was found to be the best in 69% and 51% of the simulation runs for the
low and high stochasticity scenarios respectively. However note that while the optimization based
recovery algorithm outperforms the smart greedy method in terms of solution performance, it is also
computationally more expensive as it may take up to a few minutes to run a single re-optimization as
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compared to the smart greedy method where the output is returned almost instantaneously. Moreover
since the growth in the number of variables and constraints is very fast in the set-partitioning method,
the solver can run out of memory for large instance size as defined by the number of vessels, number
of sections along the quay and the length of the planning horizon in the problem instance.

Other key performance indicators to assess the solution performance of the proposed algorithms
are shown in the Tables 5-6. The percentage difference in the mean total cost indicates the percentage
difference in the mean total objective function cost averaged over the 100 simulations between the
recovery algorithm and the solution obtained from the a posteriori optimization method. It can be
seen that the solution gap increases with both the level of congestion and the degree of stochasticity.
The number of unserved vessels at time t=H indicates the count of vessels that are scheduled to arrive
between t=0 and t=H and have not left the port at time t=H. Similarly the number of unserved vessels
at time t=2H indicates the count of vessels that are scheduled to arrive between t=0 and t=2H and
have not left the port at time t=2H. It can be seen that the optimization based algorithm is superior in
terms of both the number of unserved vessels and the average waiting time per vessel. It is interesting
to note the significant rise in the average waiting time per vessel expressed in hours with increase in
the level of congestion at the port. This result is consistent with our observations during our visit to
the port, where the waiting times of few vessels invariably escalate to the order of few days in periods
of high congestion and/or stochasticity. The cost of deviation is the objective function cost term in the
equation 7 with c1 and c2 equal to 1 and 0.002 respectively, which is inversely related to the measure
of adherence of the realized schedule to the original baseline schedule. Interestingly, in terms of the
adherence to the original schedule, the smart greedy method is superior to the other two recovery
methods in all the four scenarios. Thus if a key objective of the port is disruption management i.e.
minimization of the deviation from the originally planned schedule to minimize the reallocation of
resources, the smart greedy method may be the preferred approach to react to disruptions.
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Figure 6: Comparison of the solution performance of the algorithms based on 100 simulation runs
for the vessels scheduled to arrive between t=H and t=2H for the scenario with mild congestion and
low stochasticity

Figure 7: Comparison of the solution performance of the algorithms based on 100 simulation runs
for the vessels scheduled to arrive between t=H and t=2H for the scenario with mild congestion and
high stochasticity

21



Figure 8: Comparison of the solution performance of the algorithms based on 100 simulation runs
for the vessels scheduled to arrive between t=H and t=2H for the scenario with high congestion and
low stochasticity

Figure 9: Comparison of the solution performance of the algorithms based on 100 simulation runs
for the vessels scheduled to arrive between t=H and t=2H for the scenario with high congestion and
high stochasticity
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Low Stochasticity High Stochasticity
Optimization Smart Greedy Greedy Optimization Smart Greedy Greedy

% difference in mean total cost 2.77% 14.81% 16.82% 3.75% 21.61% 25.23%
Number of unserved vessels at t = H 0 0 0 0 0 0

Number of unserved vessels at t = 2H 0 0 0 0 0 0
Average waiting time per vessel 0.12 1.43 1.67 0.32 2.72 3.03
Average total cost of deviation 33.96 24.77 41.99 60.404 42.78 57.42

Table 5: Performance indicators for the mildly congested scenario from t=H to t=2H averaged over
100 simulations runs

Low Stochasticity High Stochasticity
Optimization Smart Greedy Greedy Optimization Smart Greedy Greedy

% difference in mean total cost 33.97% 51.40% 64.45% 55.80% 61.07% 67.29%
Number of unserved vessels at t = H 1.46 1.58 1.83 1.91 2.49 2.28

Number of unserved vessels at t = 2H 1.75 2.22 2.49 2.93 3.03 3.09
Average waiting time per vessel 17.10 19.67 21.45 23.02 23.40 24.62
Average total cost of deviation 281.66 236.3 303.52 549.64 357.83 405.48

Table 6: Performance indicators for the highly congested scenario from t=H to t=2H averaged over
100 simulations runs

5.2.2 Including Cost of Deviation from the Original Schedule

In Figures 10-13, the results are shown when the cost term related to the deviation of the schedule
is explicitly considered in the objective function. It can be observed that the proposed optimization
based and smart greedy recovery methods significantly outperform the traditional greedy method of
reassigning vessels at the port. It can be seen that in general, the solution performance of all the
recovery methods deteriorates with increase in the level of congestion and the degree of stochastic
variability. The optimization based recovery method outperforms the other recovery methods in all
scenarios except the one with high congestion and high stochasticity. Thus it may be inferred that the
optimization based recovery method is most sensitive to increase in the level of congestion and degree
of stochasticity.

For the mildly congested scenarios, the optimization based recovery method was found to outper-
form the other two recovery methods in 96% and 91% of the simulation runs for the low and high
stochasticity scenarios respectively. In the highly congested case on the other hand, the optimization
based method returns the best solution in 57% and 28% of the simulation runs for the low and high
stochasticity scenarios respectively. As can be seen from the Tables 7-8, it also does better in terms
of the average waiting time and the number of unserved vessels in all except one scenario. In terms
of adhering to the original schedule, the superiority of the smart greedy method is established, which
performs the best in all but one scenario.

23



Figure 10: Comparison of the solution performance of the algorithms based on 100 simulation runs
for the vessels scheduled to arrive between t=H and t=2H for the scenario with mild congestion and
low stochasticity

Figure 11: Comparison of the solution performance of the algorithms based on 100 simulation runs
for the vessels scheduled to arrive between t=H and t=2H for the scenario with mild congestion and
high stochasticity
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Figure 12: Comparison of the solution performance of the algorithms based on 100 simulation runs
for the vessels scheduled to arrive between t=H and t=2H for the scenario with high congestion and
low stochasticity

Figure 13: Comparison of the compare the solution performance of the algorithms based on 100
simulation runs for the vessels scheduled to arrive between t=H and t=2H for the scenario with high
congestion and high stochasticity
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Low Stochasticity High Stochasticity
Optimization Smart Greedy Greedy Optimization Smart Greedy Greedy

% difference in mean total cost 1.78% 9.53% 13.75% 4.11% 13.27% 17.70%
Number of unserved vessels at t = H 0 0 0 0 0 0

Number of unserved vessels at t = 2H 0 0 0 0 0 0
Average waiting time per vessel 0.283 1.426 1.5 0.636 2.681 2.863
Average total cost of deviation 28.87 24.38 34.97 50.79 42.3 49.3

Table 7: Performance indicators for the mildly congested scenario from t=H to t=2H averaged over
100 simulations runs

Low Stochasticity High Stochasticity
Optimization Smart Greedy Greedy Optimization Smart Greedy Greedy

% difference in mean total cost 48.06% 63.68% 86.85% 78.41% 68.88% 77.57%
Number of unserved vessels at t = H 1.6 1.58 1.93 2.26 2.49 2.10

Number of unserved vessels at t = 2H 1.89 2.21 2.55 3.09 2.97 3.08
Average waiting time per vessel 17.85 19.65 21.82 23.60 23.34 24.38
Average total cost of deviation 209.1 234.74 313.11 459.25 355.53 392.88

Table 8: Performance indicators for the highly congested scenario from t=H to t=2H averaged over
100 simulations runs

6 Conclusions and Future Work
In this work, we study and solve the problem of recovering a baseline berthing schedule of vessels
at a port in real time as disruptions occur. To the best of our knowledge, very few scholars have
attempted to study the problem of real time recovery in port operations, which is typically based on
local rescheduling heuristics or simple rules of thumb.

In our study, the underlying model is the dynamic hybrid berth allocation model developed in
the context of bulk ports. The uncertainty in the unknown arrival times and handling times of the
vessels is modeled based on probability distributions derived from past data. We present an optimiza-
tion based recovery algorithm based on set partitioning and a heuristic based smart greedy recovery
method to reschedule the vessels on a rolling time horizon for a given baseline schedule. The solution
performance of the algorithms is tested and validated by conducting a simulation study in which the
baseline schedule is the solution of the deterministic berth allocation problem. The results suggest
that the proposed methodology for modeling the uncertainty, and the recovery algorithms can signif-
icantly reduce the total realized costs of berthing the vessels in comparison to the ongoing practice
of re-assigning vessels at the port. The results further indicate that the optimization based method
outperforms the other recovery methods in terms of the objective function cost and in terms of some
key indicators such as the number of unserved vessels and the average waiting time. However, in
terms of the adherence to the originally planned schedule, the smart greedy method is the superior
method.

In the future, more work needs to be done to come up with appropriate pricing strategies that
can enable the port to earn revenue from the late arriving vessels. Another natural extension of the
work done so far is to develop a robust formulation for the berth allocation problem with a certain
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degree of anticipation of delays and variability in information. The recovery algorithms developed
in this research can be applied on both the deterministic and robust formulations and the solution
performance can be compared to assess the added benefit of robustness.
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