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Abstract
We propose a novel approach to pedestrian flow characterization. The defini-
tions of density, flow and velocity existing in the literature are extended through
a data-driven spatio-temporal discretization framework. The framework is based
on three-dimensional Voronoi diagrams. The new definitions are (i) independent
from an arbitrarily chosen discretization; (ii) appropriate for the multi-directional
composition of pedestrian traffic; (iii) able to reflect the heterogeneity of the
pedestrian population; and (iv) applicable to pedestrian trajectories described ei-
ther analytically or as a sample of points. Synthetic data is used to empirically
investigate the performance of the approach and to illustrate its advantages.

Keywords: pedestrian flow, time and space discretization, three-dimensional
Voronoi diagrams, individual trajectories, robust indicators

1 Introduction
Research on pedestrian traffic has received growing attention during the last decades
due to its importance in many aspects: planning of walking facilities under reg-
ular and safety-critical circumstances, operations in large events, description of
congestion, etc. To increase insights into pedestrian movements, different em-
pirical studies were conducted and reported in the literature (Hoogendoorn and
Daamen, 2004, Helbing et al., 2005). The empirical observations have inspired a
number of theories and models that are utilized to describe and predict pedestrian
movement (Duives et al., 2013, Hänseler et al., 2014, Hoogendoorn et al., 2014).

The fundamental variables used to observe and to model the traffic of pedestri-
ans are density (k), flow (q) and velocity (v). Density is expressed as the number
of pedestrians per unit of space at a given moment in time; flow is interpreted
as the number of pedestrians per unit of time and per unit of length; velocity is
expressed in meters per unit of time. Several definitions of these variables are
proposed in the literature (Duives et al., 2015, Zhang, 2012). However, little con-
cern is dedicated to the nature of spatial and temporal discretization underlying
the definitions. The basic issue is that there are many possible ways to discretize
continuous space and time for the purpose of defining traffic variables. Yet, stud-
ies normally report the analysis for one particular discretization scheme whose
choice is often arbitrary.

The aim of this study is the derivation of a discretization framework that is in-
dependent from arbitrarily chosen values, and that results in a realistic and robust
pedestrian flow characterization. We propose to adjust the discretization to the
data itself using a data-driven approach. The approach is based on spatio-temporal
Voronoi diagrams designed through the utilization of pedestrian trajectories.
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The structure of the paper is as follows. A review of related research from the
literature is provided in Section 2. Section 3 provides a formal introduction of the
basic elements involved in our analysis. Section 4 describes the proposed method-
ology for the derivation of the spatio-temporal discretization framework. Based
on this framework, we derive the definitions of the pedestrian traffic variables, that
is density, flow and velocity. Section 5 empirically illustrates the performance of
the approach by using synthetic data. Finally, Section 6 summarizes the outcomes
of the proposed methodology and determines future research directions.

2 Literature review
The issue of discretization is well recognized in geography (Openshaw, 1984,
Çöltekin et al., 2011) and dynamic systems (Beck and Roepstorff, 1987). The
research from the field of geography have demonstrated that the results of any
spatio-temporal analysis depend severely on the underlying discretization. The
problem appears in two dimensions, space and time (known as Modifiable Areal
Unit Problem and Modifiable Temporal Unit Problem). For instance, analysis of
data using grid-based spatial discretization differs from analysis performed using
hexagon cells. Similarly, temporal discretization may distort or exaggerate the
actual temporal pattern existing in data if it is based on an arbitrary choice. It is
therefore essential that the discretization rely on a meaningful basis relevant for
the purpose of the study. The definition of discretization scheme has to precede
any attempt to define characteristics based on it.

This section first focuses on vehicular traffic characterization, that is relevant
for pedestrian as well. However, for most applications in pedestrian flow theory
the definitions derived in the field of vehicular traffic can not be directly used.
In comparison to roadways where vehicular flow is regulated and separated by
directions, the lack of strict rules for pedestrians to follow allows them to occupy
any part of the walkable area and to move in a multi-directional fashion. We
then present the approaches specific to pedestrian traffic characterization and their
comparison.

2.1 Vehicular traffic
The most general and widely used definitions of vehicular traffic variables are
proposed by Edie (1963). The definitions are derived based on the trajectories of
vehicles i = 1, ...,N in the time-space region A. The shape of the region A is
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usually rectangular with duration dt and length dx. The definitions are given as

k(A) =

N∑
i=1

ti

dxdt
, (1)

q(A) =

N∑
i=1

xi

dxdt
, (2)

v(A) =

N∑
i=1

xi

N∑
i=1

ti

, (3)

where ti and xi are the time spent by vehicle i, respectively the distance traversed
by vehicle i in the region A. This approach is applicable to any time-space do-
main of interest and provides consistent results in observations and modeling. The
determination of the shape, the size and the placement of the time-space region A
is however left to the modeler.

Some authors propose a "vehicle-based" discretization (Jabari et al., 2014;
Treiber and Kesting, 2013). The definitions of the indicators with this discretiza-
tion are consistent with the classical definitions of Edie (1963), but with the space-
time intervals chosen to fit exactly one vehicle each. Let xi−1(t) and xi(t) denote
the positions of the leader, i − 1, and the follower, i, at time t. The spacing is
defined as si(t) = xi−1(t) − xi(t). The density at time t is defined as the inverse
of the spacing si(t) measured at that time

k(x, t) =
1

si(t)
, for x ∈ [xi(t), xi−1(t)). (4)

Let ti(x) denote the time when vehicle i crosses position x. The time headway is
defined as hi(x) = ti(x)− ti−1(x). The flow at position x is defined as the inverse
of the time headway hi(x) measured at that location

q(x, t) =
1

hi(x)
, for t ∈ (ti−1(x), ti(x)]. (5)

Speed is defined as the ratio between flow and density

v(x, t) =
si(t)

hi(x)
, for x ∈ [xi(t), xi−1(t)), t ∈ (ti−1(x), ti(x)], (6)

and it represents a mean speed for vehicle i. This microscopic approach allows to
preserve the heterogeneity of driver population.
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2.2 Pedestrian traffic
In this section we first present a general description of the approaches available
in the field of pedestrian traffic. Then, the theoretical and technical differences of
the approaches are discussed.

2.2.1 Description of methods

One of the first approaches to pedestrian flow characterization was proposed by
Fruin (1971). In this method a grid-based spatial discretization is considered and
density is defined as

k(x, y, t) =
NA(t)

|A|
, for (x, y) ∈ A, (7)

where A is a grid cell, |A| is the area of A, and NA(t) represents the number of
pedestrians present in the cell A at a specific time instant t. The instantaneous
velocity of pedestrian i at t is specified using the following formulation

~vi(t) =

(
xi(t2)
yi(t2)

)
−

(
xi(t1)
yi(t1)

)
t2 − t1

, (8)

where (xi(t), yi(t))T refers to the position of pedestrian i, and t1 and t2 define the
time instants before, respectively after time t. In general, no guidance is provided
for the selection of these time instants. The velocity within the cellA is then given
as the average of individual instantaneous velocities

~v(x, y, t) =

∑NA

i=1~vi(t)

NA

, for (x, y) ∈ A. (9)

The flow is determined using the fundamental flow equation

~q(x, y, t) = k(x, y, t)~v(x, y, t). (10)

In the rest of the paper, we refer to this method as the grid-based method (GB).
The range-based method (RB) is similar to the grid-based method (Duives

et al., 2015). The difference is that a circle defined by radius r at any discrete
location in space is used instead of rectangular cells.

In van Wageningen-Kessels et al. (2014) (similar to Saberi et al., 2014) the
definitions of Edie (1963) are extended by studying pedestrian traffic in a three-
dimensional time-space diagram A (of length dx, width dy and duration dt) with
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pedestrians i = 1, ...,N. The density is defined as the average number of pedes-
trians in the region [dx× dy] during time period dt

k(A) =

N∑
i=1

ti

dxdydt
, (11)

where ti is the time during which pedestrian i is present in the regionA. The flow
is defined in x and y directions as

~q(A) =

(
qx(A)
qy(A)

)
=


N∑
i=1

xi

dxdydt
N∑
i=1

yi

dxdydt

 , (12)

where xi and yi are the distances traveled in A in direction x, respectively y by
pedestrian i. The velocity in direction x (or y) is defined as the average distance
traveled in x direction (or in y direction) divided by the total time spent

~v(A) =

(
vx(A)
vy(A)

)
=



N∑
i=1

xi

N∑
i=1

ti

N∑
i=1

yi

N∑
i=1

ti

 . (13)

At the limit dt→ 0, the density converges to the number of pedestrians present
in [dx × dy] at a specific moment in time. At the limit dx→ 0 (dy→ 0) flow
converges to the number of pedestrians per unit of time and per unit of length. In
the rest of the paper, we refer to this method as the XY-T method.

Another approach is provided by Helbing et al. (2007). This method defines
the characteristics at any point (x, y) by weighting the relative influence of the
surrounding pedestrians using Gaussian distance-dependent weight function

f

((
xi(t)
yi(t)

)
−

(
x

y

))
=

1

πR2
exp

(
−

∥∥∥∥( xi(t)
yi(t)

)
−

(
x

y

)∥∥∥∥2
R2

)
, (14)

where R represents the distance up-to-which the influence of pedestrians is taken
into account, and (xi(t), yi(t))

T the location of pedestrian i. The density is de-
fined as

k(x, y, t) =
∑
i

f

((
xi(t)
yi(t)

)
−

(
x

y

))
. (15)
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The velocity is given by

~v(x, y, t) =

∑
i

~vi(t)f

((
xi(t)
yi(t)

)
−

(
x

y

))
∑
i

f

((
xi(t)
yi(t)

)
−

(
x

y

)) , (16)

where~vi(t) is the velocity of pedestrian i at time t, which is given by (8). The flow
is determined using the fundamental flow equation (10). In the rest of the paper,
we refer to this method as the exponentially weighted distance method (EW).

Steffen and Seyfried (2010) propose the method in which the spatial dis-
cretization is adjusted to the data through the use of Voronoi diagrams (Okabe
et al., 2000). The Voronoi space decomposition assigns a personal region Ai to
each pedestrian i, in such a way that each point in the personal region is closer to
i than to any other pedestrian, with respect of the Euclidean distance. The density
at position (x, y) at time t is defined as

k(x, y, t) =
1

|Ai|
, for (x, y) ∈ Ai, (17)

where |Ai| is the area of Ai. The velocity is defined based on position differences
of pedestrian i between time instances t1 and t2

~v(x, y, t) =

(
xi(t2)
yi(t2)

)
−

(
xi(t1)
yi(t1)

)
t2 − t1

, for (x, y) ∈ Ai, (18)

where (xi(t), yi(t))
T is the location of pedestrian i at time t. Time instances t1

and t2 are determined such that the effect of the swaying movement of pedestrians
is reduced, which requires an extensive pre-processing of each pedestrian trajec-
tory. The flow within an interval is defined using fractional counts obtained from
Voronoi cells: half a person has passed a segment if half of the Voronoi cell has
passed it. For more details we refer to Steffen and Seyfried (2010). In the rest of
the paper, we refer to this method as the Voronoi-based method (VB).

There also exist headway-based approaches for the definition of density vari-
able, such as Harmonically Weighted Mean Distance and Minimum Distance,
both with or without a vision field taken into account. According to Duives et al.
(2015), these approaches are not capable of providing correct and consistent esti-
mation and are therefore excluded from the further analysis in our study.
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2.2.2 Comparison of methods

A summary of general characteristics of the approaches is provided in Table 1.
We first compare the approaches in terms of the scale that is considered, that is in
terms of whether the characterization is defined by using the information about a
single pedestrian (microscopic) or multiple pedestrians (macroscopic). Then, the
analysis is made with respect to the exact way the spatial and temporal aggregation
is performed at a given scale. Finally, the approaches are contrasted in terms of
the type of data required to perform the characterization.

Method Scale
Spatial aggregation Temporal aggregation

Data type
Unit Assumptions Unit Assumptions

XY-T Macroscopic Area
Shape
Size

Location
Interval Duration Trajectories

Grid-based (GB) Macroscopic Cell
Size

Location Interval Duration
Trajectories

Sync. sample

Range-based (RB) Macroscopic Circle
Radius

Location Interval Duration
Trajectories

Sync. sample

Exponentially-weighted (EW) Macroscopic Range
Influence function
Range of influence Interval Duration

Trajectories
Sync. sample

Voronoi-based (VB) Microscopic Voronoi cell Boundary conditions Interval Duration
Trajectories

Sync. sample

Table 1: Characteristics of the approaches

Most of the methods (XY-T, GB, RB, EW) rely on macroscopic approach.
This approach does not always comply with the nature of the underlying sys-
tem. Pedestrians differ in many ways (Weidmann, 1993) and studying pedestrian
movement at the macroscopic level may lead to the loss of heterogeneity. Also,
by using macroscopic definitions, velocity and flow vectors may cancel out if the
pedestrians do not all move in the same direction. On the other hand, microscopic
characterization (employed in the VB method) is able to reflect these particular-
ities of pedestrian traffic. It is further supported by detailed movement data (at
the individual level) that is more and more available due to the advances in track-
ing technologies (Bauer et al., 2009). The microscopic approach is characterized
by higher computational burden, which becomes less problematic in the era of
high-performance computers.

All the approaches have in common the arbitrary chosen temporal intervals for
the specification of velocity and flow indicators. Most of them (XY-T, GB, RB,
EW) additionally depend on an arbitrary spatial aggregation. These may generate
noise in the data and the results may be highly sensitive to minor changes. The
choice of the shape, size and locations of the spatial units in the methods XY-T,
GB and RB influences the results significantly. Also, the use of fixed aggregation
over time might cause large fluctuations in the indicator values when pedestrians
cross the boundaries of the aggregation units. An additional level of arbitrariness
is introduced when a pedestrian is exactly at the border between two units, and an
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arbitrary decision must be made about what units she belongs to. Indicators ob-
tained using the EW approach strongly depend on the radius R and, in general, on
the choice of the influence function f, given by (14). The VB method of Steffen
and Seyfried (2010) is the only one that addresses the issue of arbitrary aggrega-
tion in space through a data-driven approach. The spatial units in this approach
are not fixed over time. Aggregation follows the trend of the data by comput-
ing Voronoi diagrams for every time step. The issue is that Voronoi diagram is
potentially not enclosed. There is no clear understanding about where to put the
Voronoi boundaries in directions where no other pedestrians are present. Steffen
and Seyfried (2010) use a restriction of the individual cells in size (2m2) to deal
with this issue, which is active only for a few cells.

An analytical description of the trajectories is required for the XY-T method.
Consequently, interpolation has to be used when sampled data is available, which
is another source of errors. The methods GB, RB, EW and VB can be applied on
trajectories described either analytically or as a sample of points. Note that these
approaches require a tracking technology that produces synchronized samples.
Often, the cameras used to track pedestrians in a distributed network of cameras
operate with different sampling frequency or produce observations at irregular in-
tervals. In this case not all trajectories have observations at the same time instants,
which might lead to the underestimation of the indicators. It is therefore necessary
to perform the interpolation of trajectories when using non-synchronized samples,
before applying the methods.

The methodology proposed in this article is similar to the approach used in
Jabari et al. (2014). It relies on the microscopic definitions of Edie (1963) adopted
for pedestrian traffic.

3 Preliminaries
We consider a space-time representation and denote the area of interest by Ω ⊂
R3. An orthonormal basis of this space is considered. The distance along each of
the two spatial axes is expressed in meters, and the unit for time is seconds. The
triplet p = (px, py, pt) = (x, y, t) ∈ Ω represents a physical position (x, y) in
space at a specific time t. It is assumed thatΩ is convex, that is obstacle-free, and
bounded.

The trajectory of pedestrian i is a curve in space and time. It is a set of points

Γi : {pi(t)|pi(t) = (xi(t), yi(t), t)}, (19)

indexed by time t that spans the horizon of the analysis, and xi(t) and yi(t) are
the coordinates of the position of pedestrian i at time t.
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In practice, the analytical description of a trajectory is seldom available. In-
stead, the pedestrian trajectory data is collected through an appropriate tracking
technology (Alahi et al., 2014; Daamen and Hoogendoorn, 2003). In this case
time is discretized and the trajectory is described as a finite collection of triplets
(a sample of points)

Γi : {pis|pis = (xis, yis, ts)}, (20)

where s = [1, 2, ..., Ti] and ts = [t1, t2, ..., tTi ] correspond to the available sample.
The speed along the continuous trajectory of pedestrian i is given by

vi(t) = (x′i(t), y
′
i(t), 1). (21)

Interpolation methods or finite differences (forward, backward or central) approx-
imation can be used with sampled data.

4 Methodology
This section is organized in three parts. The first part presents the derivation of
the spatio-temporal discretization framework using a data-driven approach. In
the second part, we define pedestrian traffic variables, that is density, flow and
velocity. The variables are defined by revising the existing microscopic definitions
according to the proposed discretization (as motivated in Section 2). In the third
part, we present concrete suggestions for the operationalization of the general and
abstract concepts related to the discretization framework.

4.1 Data-driven discretization
We propose the discretization in space and time that is defined based on three-
dimensional (3D) Voronoi diagrams associated with pedestrian trajectories. We
call the set of trajectories the generator set Γ = {Γ1, ..., Γn}, consistently with the
literature. We assume that elements in Γ do not intersect each other. This as-
sumption is reasonable, as two pedestrians cannot be at the exact same place at
the exact same time. The main idea for defining the partition ofΩ is that (i) every
point p ∈ Ω belongs to a unique discretization unit, (ii) each discretization unit is
assigned to one generator Γi ∈ Γ according to a certain assignment rule and (iii)
the resulting discretization units associated with the trajectories are collectively
exhaustive and mutually exclusive. Therefore, the partitioning is characterized by
the assignment of each point p ∈ Ω to one generator from Γ . The discretization
units are then defined as the set of points p assigned to the same generator.

Given a non-empty space Ω and a generator set Γ , the assignment rule δΓ of
a point p ∈ Ω to an element of Γ is in the literature (Okabe et al., 2000) often
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specified in terms of distance relations D (not necessary distance metric). The
point p is assigned to the "closest" generator in term of a given distance:

δΓ(p, Γi) =

{
1, D(p, Γi) ≤ D(p, Γj),∀j 6= i
0, otherwise. (22)

Note that this rule is ambiguous for points p that are equidistant to two trajectories.
In this case, an additional arbitrary rule must be used. For instance, if D(p, Γi) =
D(p, Γj), then it can be decided that p is assigned to Γi if i ≤ j.

If the generators are continuous trajectories (19), the distance may be defined
as

D(p, Γi) = min
t
{d(p, pi(t))|pi(t) ∈ Γi, Γi ∈ Γ, p ∈ Ω}, (23)

where d(p, q) is the distance between two points p and q in Ω. Concrete ex-
amples of this distance function are discussed in Section 4.3. Similarly, if the
generators are sampled (20), the distance may be defined as

D(p, Γi) = min
s
{d(p, pis)|pis ∈ Γi, Γi ∈ Γ, p ∈ Ω}. (24)

Under the assignment rule (22), we consider the set of points Vi assigned to Γi

Vi = {p|δΓ(p, Γi) = 1, p ∈ Ω, Γi ∈ Γ }, (25)

which represents a personal spatio-temporal region associated with pedestrian i.
For each i, Vi is a convex subset of Ω called a Voronoi cell. Collectively, they
represent a Voronoi diagram. The assumption thatΩ is obstacle-free and bounded
(Section 3) allows for the creation of non-degenerate Voronoi diagrams

V = {V1, ..., Vn}, (26)

generated by Γ .
In a three-dimensional space Ω the plane through the point p0 = (x0, y0, t0)

and with non-zero normal vector ~n = (a, b, c) has equation

P~n,p0 : ax+ by+ ct+ d = 0, (27)

where d = −ax0 − by0 − ct0. We define the set of points A(Vi,P~n,p0) corre-
sponding to the intersection of the cell Vi and the plane P~n,p0

A(Vi,P~n,p0) = {p|p ∈ {Vi ∩ P~n,p0}}. (28)

For ~n = (0, 0, 1) we have a plane parallel to the x-y plane and its intersection
with Vi is given as

A(Vi,P(0,0,1),p0) = {p|p ∈ Vi and pt = t0}. (29)
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It represents a set of dimension 2 or a physical area on the floor (illustrated in
Figure 1(a)), at time t0. The area of this cell is denoted by |A(Vi,P(0,0,1),p0)|, with
the unit inm2. Similarly, for ~n = (a, b, 0) we have

A(Vi,P(a,b,0),p0) = {p|p ∈ Vi and apx + bpy = ax0 + by0}. (30)

It is the set of dimension 2 or a segment on the floor occupied by pedestrian i in
the direction perpendicular to ~n = (a, b, 0) during the time interval spanning Vi.
The area of the cell is denoted by |A(Vi,P(a,b,0),p0)|, with the unit in ms. Note
that if ~n = (1, 0, 0) and ~n = (0, 1, 0), the corresponding planes are parallel to the
x-t, respectively the y-t plane (illustrated in Figure 1(b)).

(a) Set in Vi for a specific time t (b) Set in Vi for a specific location y

Figure 1: 3D Voronoi-based discretization

4.2 Definitions of pedestrian traffic variables
Assume that the Voronoi cell Vi is associated with position (x, y, t) ∈ Ω. The
density at (x, y, t) is defined as the inverse of the area of the setA(Vi,P(0,0,1),(x,y,t))
assigned to pedestrian i at time t

k(x, y, t) =
1

|A(Vi,P(0,0,1),(x,y,t))|
, (31)

where A(Vi,P(0,0,1),(x,y,t)) is given by (29) and |A(Vi,P(0,0,1),(x,y,t))| is the area of
this set. The location (x, y) determines pedestrian i and the corresponding set
A(Vi,P(0,0,1),(x,y,t)). The unit of k(x, y, t) is a number of pedestrians per square
meter. This definition is consistent with (11), adapted to this 3D Voronoi context.
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The flow in the direction determined by the vector ~e = (a, b) is defined as the
inverse of the area of the set A(Vi,P(a,b,0),(x,y,t)) assigned to pedestrian i

~qe(x, y, t) =
1

|A(Vi,P(a,b,0),(x,y,t))|
, (32)

where A(Vi,P(a,b,0),(x,y,t)) is given by (30) and |A(Vi,P(a,b,0),(x,y,t))| is the area
of this set. The point (x, y, t) determines pedestrian i and the corresponding set
A(Vi,P(a,b,0),(x,y,t)). The set (Vi,P(a,b,0),(x,y,t)) belongs to the spatio-temporal do-
main. Therefore, the unit of ~qe(x, y, t) is a number of pedestrians per meter per
second. The flow in x and y directions is obtained considering the inverse of the
areas |A(Vi,P(1,0,0),(x,y,t))| and |A(Vi,P(0,1,0),(x,y,t))|, consistently with (12).

Adopting the usual definition of the velocity (the ratio between the flow and
density), from (31) and (32) we have

~ve(x, y, t) =
~qe(x, y, t)

k(x, y, t)
=

|A(Vi,P(0,0,1),(x,y,t))|

|A(Vi,P(a,b,0),(x,y,t))|
. (33)

It represents the mean speed of pedestrian i (Jabari et al., 2014) in the direction
determined by the vector ~e = (a, b), expressed in meters per second.

Note that the framework allows for the specification and measurement of the
indicators ~qe(x, y, t) and~ve(x, y, t) in any direction ~e of interest. Our approach is
microscopic and therefore suitable for multi-directionl nature of pedestrian flows.
As discussed in Section 2, the macroscopic approach is often used in the literature,
which may not always result in the desired outcome. Consider the case where half
of pedestrians walk in one direction and the rest in the opposite direction, and
both with the same speed. Their velocity and flow vectors would cancel out at the
aggregate level, but the issue does not appear at the microscopic level. Also, the
proposed definitions are able to preserve the heterogeneity of pedestrians, due to
their microscopic nature.

We refer to the proposed approach as the 3D Voronoi characterization (3DVoro).

4.3 Spatio-temporal distances
The proposed framework is fairly general, and can accommodate various methods
to generate the Voronoi diagrams, based on different definitions of the distance
between two points. To construct 3D Voronoi diagrams (Section 4.1), we need to
define the exact form of the distance relation d used in (23) and (24). Applying
the Euclidean distance in R3 looks like a natural choice. However, it is important
to keep in mind that it would mix units in square meters with units in seconds.
We propose here several ways to deal with it. First, we propose to restrict the
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Euclidean distance in the spatial dimension, and consider each point in time as in-
dependent. Second, we propose distances in R3 that convert seconds into meters
using speed. Third, we account for the pedestrian dynamics to define the distance,
anticipating his future position. Finally, we define a distance through the identifi-
cation of points that are equidistant. Their respective performance is empirically
evaluated in Section 5.

We denote by p = (x, y, t) a point fromΩ. An observation from the trajectory
of pedestrian i is denoted by pi = (xi, yi, ti). It refers to either pi(t) or pis,
depending on the context.

4.3.1 Spatial Euclidean distance

The first distance that we propose is defined with respect to the standard Euclidean
distance in the spatial dimension, that is

dE(p, pi) =

{ √
(x− xi)2 + (y− yi)2, t = ti∞, otherwise.

(34)

Intuitively, each point in time is independent. This is motivated by the availability
of snapshots of the floor area at given points in time. This implies that all pedestri-
ans in the area must be observed at the exact same time. In practice, it means that
the use of this distance is applicable only on continuous trajectories. When sam-
pled trajectories are available (see discussion in Section 3), interpolation should
be used to generate the continuous ones.

We refer to the characterization obtained using this distance as the Euclidean
3D Voronoi characterization (E-3DVoro).

4.3.2 Time-Transform distances

We define the set of three distances that apply a conversion parameter, expressed
in meters per second, to transform the temporal difference between the points into
the spatial one. They are denoted as the Time-Transform distances (dTT1, dTT2 , dTT3).
The distances differ in terms of the choice of the conversion parameter and in the
way of coupling the spatial and temporal component. They are defined as

dTT1(p, pi) =
√

(x− xi)2 + (y− yi)2 + v2(t− ti)2, (35)

where v is a parameter representing the typical speed of pedestrians (a value of v
= 1.34 m/s is used in our experiments, Weidmann (1993)),

dTT2(p, pi) =
√
(x− xi)2 + (y− yi)2 + v̂i(ti)2(t− ti)2, and (36)

dTT3(p, pi) =
√

(x− xi)2 + (y− yi)2 + v̂i(ti)|t− ti|, (37)
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where v̂i(ti) is the speed at time t on trajectory Γi. The choice of the conversion
parameter v̂i(ti) in (36) and (37) allows to treat moving pedestrians in a different
way than standing pedestrians.

The distances (35) and (36) combine the spatial and temporal components
based on the Euclidean norm, using two different values for the speed. In (37),
the components are considered as independent and kept separately. The distance
dTT3 is defined as a weighted sum of two norms. When t = ti, all distances are
equivalent to (34).

We refer to the characterization obtained using these three distances as the
Time-Transform 3D Voronoi characterization (TT1-3DVoro, TT2-3DVoro and TT3-
3DVoro).

4.3.3 Predictive distance

The Predictive distance anticipates the forward movement of pedestrians. The
anticipated positions xai and yai are extrapolated from the current velocities of
pedestrians for a time determined by the anticipation time t− ti

xai = x
a
i (t) = xi + (t− ti)v

x
i (ti), (38)

yai = y
a
i (t) = yi + (t− ti)v

y
i (ti), (39)

where vxi (ti) and vyi (ti) are the speed of pedestrian i at ti in x, respectively y,
direction.

The distance is specified as

dP(p, pi) =

{ √
(xai − x)

2 + (yai − y)
2, t− ti ≥ 0∞, otherwise.

(40)

Note that it is not a metric distance, as it is not symmetric. The anticipation time
extends from zero to a positive value (t − ti). Points p that are backward in time
with respect to the current positions of pedestrian are considered infinitely distant.
When t = ti, the distance reduces to the standard R2 Euclidean distance. The
consideration of individual speeds allows for the distinction between pedestrians
that perform movement from those that stand.

We refer to the characterization obtained using this distance as the Predictive
3D Voronoi characterization (P-3DVoro).

4.3.4 Mahalanobis distance

The Mahalanobis distance is specified as

dM(p, pi) =
√
(p− pi)TMi(p− pi), (41)
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where Mi is a change of variable matrix. It is a symmetric, positive-definite ma-
trix, which defines how the distances are measured in different spatio-temporal
directions from the perspective of pedestrian i. To implement this distance we
need to determine the matrix Mi. We do so by identifying 6 points in Ω such
that they are equidistant to pi for the Mahalanobis distance. We take into account
the information about the speed and direction of pedestrians, in the sense that the
points that are in the movement direction of a pedestrian are "closer" than the
points from other directions.

Formally, we consider three directions of interest. First, we define the normal-
ized direction of movement in the space-time dimensions

d1(ti) =
vi(ti)

||vi(ti)||
, ||d1(ti)|| = 1, (42)

where vi(ti) is the speed along the trajectory of pedestrian i given by (21). We
next define a normalized spatial direction orthogonal to d1(ti), that is

d2(ti) =

 d1x(ti)
d2y(ti)
0

 , (43)

such that d1(ti)Td2(ti) = 0 and ||d2(ti)|| = 1. The third direction is for time

d3(ti) =

 0

0

∆t

 , (44)

where ∆t is typically determined by the sampling frequency and ||d3(ti)|| = ∆t.
We determine the matrix Mi, and the distance dM, such that the following

points in the defined directions are all at distance α from the point pi. The key
feature is that, in the direction of movement, the distances do not refer to the
position at time t, but the positions at time t + ∆t and t − ∆t. The points S1
and S2 in the d1 direction are at α and −α from the positions at time t + ∆t,
respectively t− ∆t

S1(ti, α) = pi + ∆tvi(ti) + αd
1(ti), (45)

S2(ti, α) = pi − ∆tvi(ti) − αd
1(ti). (46)

In the direction d2 we consider the point S3 that is at α from the point pi

S3(ti, α) = pi + αd
2(ti), (47)
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and the point S4 that is at −α from the point pi

S4(ti, α) = pi − αd
2(ti). (48)

Similarly, in time direction d3 we consider the point S5 that is at α from the point
pi

S5(ti, α) = pi + αd
3(ti), (49)

and the point S6 that is at −α from the point pi

S6(ti, α) = pi − αd
3(ti). (50)

This is illustrated in Figure 2.

Figure 2: Mahalanobis distance - illustration

In standard Euclidean space we have that

||S1(ti, α) − pi|| = ||S2(ti, α) − pi|| = ∆t||vi(ti)||+ α. (51)

It shows that, in the direction d1, the forward and backward distances are stretched
by the quantity ∆t||vi(ti)||. This is designed to anticipate the movement of pedes-
trians. The additional term vanishes when ∆t → 0. The approach also allows
to deal with moving pedestrians and standing pedestrians in a different way. The
distance in the d2 direction is consistent with Euclidean distance

||S3(ti, α) − pi|| = ||S4(ti, α) − pi|| = ||αd2(ti)|| = α. (52)

The distance in time direction d3 is proportional to the time discretization

||S5(ti, α) − pi|| = ||S6(ti, α) − pi|| = ||αd3(ti)|| = α∆t. (53)

In particular, it shrinks to zero when ∆t→ 0.
In our experiments, a value of α = 1 is used.
We refer to the characterization obtained using this distance as the Maha-

lanobis 3D Voronoi characterization (M-3DVoro).
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5 Empirical analysis
The performance of our approach is evaluated using synthetic data. Pedestrian tra-
jectories are synthesized using the NOMAD simulation tool (Campanella, 2010)
for uni-directional flow composition. The flow is simulated in a 4meters by 4me-
ters area, as illustrated in Figure 3, during 10 seconds. Pedestrians originate from
the white rectangle on the left, and finish their trips at the destination represented
by the gray rectangle. The direction of the flow is denoted by the arrow.

Figure 3: Uni-directional flow simulation: the bounding-box of the simulation
area

The analysis is done for two different scenarios. In the first scenario, we con-
sider low congestion and homogeneous pedestrian population (SLC−HomoPop). Low
congestion regime is simulated assuming a uniform demand of 1.2 pedestrians per
second over the period of simulation. The homogeneity of the population is re-
flected through (approximately) homogenous walking speed of pedestrians. We
use the average speed value of 1.34 m/s, according to the study of Weidmann
(1993). In the second scenario, we consider high congestion and heterogeneous
pedestrian population (SHC−HeteroPop). The demand of 3.6 pedestrians per second
is considered to produce higher congestion. To represent the heterogeneity in the
population, we consider three sub-populations (slow, average and fast) with re-
spective speeds of 0.5 m/s, 1.3 m/s and 2.1 m/s. Each sub-population has roughly
the same size.

Our objective is to analyze the robustness of the approach with respect to the
simulation noise and with respect to the sampling frequency. 3DVoro (for all
the distances) is compared with the approaches proposed in the literature on both
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scenarios SLC−HomoPop and SHC−HeteroPop. Duives et al. (2015) have performed
empirical comparisons of the existing approaches and concluded that the XY-T
and VB methods (Section 2.2) perform the best. For this reason our approach will
be compared only with these two methods. In the application of the XY-T method,
the parameters reported in Duives et al. (2015) are used: a time interval of 1
second, and a grid cell size of 1× 1 meter. Note that, the VB method corresponds
to the E-3DVoro when used for the discrete time instants to discretize the spatial
dimension only. Therefore, the VB method will not be considered separately.

5.1 Pedestrian flow characterization based on trajectories
In this section we analyze the performance of the approach when pedestrian tra-
jectory data is available in the form of an analytical description. We synthesize
100 sets of pedestrian trajectories for each scenario and evaluate the variance of
the indicators across these replications. The described settings of the simulator
remain unchanged for a given scenario. The indicators (k, v, q) are calculated
for each set of the trajectories via 3DVoro (for all the distances) and the XY-T
method. The methods are compared based on the standard deviation of the indi-
cators at specific points due to simulation noise.

Let M represent the method (3DVoro or XY-T), r a realization of NOMAD
simulation (r = 1, ..., 100) and p a point from Ω. We denote by θMr (p) =
(kMr (p), v

M
r (p), q

M
r (p)) a vector of indicators at point p obtained by applying the

method M to the rth set of trajectories. For each method we calculate the standard
deviation of the indicators at p as

σMR (p) =

√√√√ 1

R

R∑
r=1

(θMr (p) − µ
M
R (p))

2, (54)

where µMR (p) =
1
R

∑R
r=1 θ

M
r (p) and R = 100. This procedure is repeated for 1000

randomly selected points p (these points are the same across simulation). The
results are reported using boxplot representation in Figure 4 for SLC−HomoPop, and
in Figure 5 for SHC−HeteroPop.

The standard deviations of the indicators are larger for SHC−HeteroPop for all the
methods, compared to SLC−HomoPop. This can be explained by the larger changes
in the data due to higher complexity of the system in SHC−HeteroPop. However, a
similar trend is noticeable in the results for both scenarios.

The results suggest that the changes of trajectories, even though for the same
simulated settings, dramatically affect the measured indicators of the XY-T method.
Larger values of the standard deviation occur in this case due to the fact that en-
tering or exiting of the discretization unit by a person affects the indicators con-
siderably.
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Compared to the XY-T method, the 3DVoro provides lower standard devia-
tions. The results for the density indicator (Figure 4 (a) and Figure 5 (a)), and
for the flow indicator (Figure 4 (b) and Figure 5 (b)), are similar across differ-
ent 3DVoro distances for both scenarios. In the case of speed, E-3DVoro exhibits
larger standard deviations as compared to other 3DVoro methods for SLC−HomoPop
(Figure 4 (c)). This suggests that 3DVoro with distances that account for the
speed and/or movement direction of pedestrians lead to lower variance in the re-
sults when congestion is low. When congestion is higher (Figure 5 (c)), higher
number of pedestrian trajectories leads to similar behavior of different distances,
and consequently to similar results.

5.2 Pedestrian flow characterization based on sampled data
In order to evaluate the effectiveness of the approach when sampled data is avail-
able, we consider the samples of points from the synthetic trajectories. The sam-
ples are obtained using different sampling frequencies: 3 s−1, 2 s−1, 1 s−1 and 0.5
s−1. The feature of interest is the robustness of the approach with respect to the
sampling frequency. That is, the ability of the approach to produce stable results
even in the lack of continuous observations.

We can deal with sampled data in two ways. First, we generate continuous
trajectories using linear interpolation. Note that, simple linear interpolation gener-
ates non differentiable trajectories. The speed along trajectories is approximated,
using finite differences. The indicators are then obtained via 3DVoro applied to the
interpolated trajectories. In the second case we apply 3DVoro directly to the sam-
pled data. The indicators calculated on the true synthetic trajectories are used as
a benchmark. The indicators obtained using samples and interpolated trajectories
are compared at 1000 randomly selected points to the corresponding benchmark
values. These points are the same across all the methods.

We list in Table 2 and Table 3 the statistics (mean, mode, median and 90%-
quantile) corresponding to resulting differences in the case of density indicator,
for SLC−HomoPop, respectively SHC−HeteroPop. The statistics show similar trends for
velocity and flow indicators, as illustrated in Appendix A (Table 4 - Table 7). To
demonstrate the performance, we show the results corresponding to the extreme
values of the considered sampling frequencies (3 s−1 and 0.5 s−1). In the tables, IT
refers to the value of a given statistic obtained based on interpolated trajectories;
SoP refers to the value of a given statistic obtained based on sample of points.
Lighter gray color of the cells in the tables is used to indicate better value between
the two (IT and SoP). Darker gray cell color indicates the overall best value of the
considered statistic. Note that, E-3DVoro and the XY-T method can be applied
only with the trajectories described analytically. Their performance is therefore
evaluated only when the points from samples are interpolated.
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In general, the 3DVoro method outperforms the XY-T method. The lowest
differences between the indicators calculated based on sample of points or in-
terpolated trajectories and the benchmark vales are achieved using the 3DVoro
method (Table 2 and Table 3).

The interpolation appears to be a better choice for 3DVoro when the sam-
pling frequency is high, in both scenarios. This is expected, given that more data
points used for interpolation yield lower interpolation error. In this case, the Time-
Transform distances lead to the best performance of the 3DVoro approach, and in
particular TT1-3DVoro.

When the sampling frequency is low, 3DVoro applied directly to the sample
is associated with the best effectiveness. In SLC−HomoPop, the distances that are
designed to anticipate the movement of pedestrians (P-3DVoro and M-3DVoro)
are the most satisfactory. In SHC−HeteroPop, the preferred characterization is based
on the Time-Transform distances (particularly TT1-3DVoro).

In summary, the analysis of the indicators suggests that (i) when more data
is available, either because of higher sampling frequency or higher congestion
(higher number of people), the Time-Transform 3D Voronoi characterization (TT1-
3DVoro) is the most robust with respect to the sampling frequency; (ii) when less
data is available, due to lower sampling frequency and lighter traffic conditions
(lower number of people), the anticipating distances (P-3DVoro and M-3DVoro)
exhibit the best robustness.

Mean Mode Median 90% quantile
Method

IT SoP IT SoP IT SoP IT SoP
XY-T 1.47E-02 / 1.25E-02 / 1.25E-02 / 6.25E-02 /

E-3DVoro 1.17E-02 / 0 / 4.48E-04 / 3.96E-02 /
TT1-3DVoro 2.70E-03 6.70E-03 0 0 3.00E-04 2.30E-03 7.30E-03 1.02E-02
TT2-3DVoro 5.80E-03 3.50E-02 0 2.80E-03 6.00E-04 2.08E-02 1.50E-02 6.69E-02
TT3-3DVoro 5.40E-03 4.34E-02 0 8.00E-03 6.00E-04 2.83E-02 1.32E-02 9.22E-02
P-3DVoro 8.20E-03 5.36E-02 0 6.10E-03 2.40E-03 3.03E-02 1.30E-02 1.14E-01
M-3DVoro 4.50E-03 5.65E-02 0 6.80E-03 1.10E-03 4.55E-02 1.28E-02 1.04E-01

(a) Sampling frequency: 3 s−1
Mean Mode Median 90% quantile

Method
IT SoP IT SoP IT SoP IT SoP

XY-T 1.90E-01 / 1.00E-01 / 1.50E-01 / 3.38E-01 /
E-3DVoro 1.64E-01 / 1.12E-02 / 1.46E-01 / 3.02E-01 /
TT1-3DVoro 2.54E-01 1.27E-01 1.35E-02 9.00E-03 1.16E-01 8.97E-02 3.41E-01 2.25E-01
TT2-3DVoro 1.64E-01 1.22E-01 1.44E-02 1.06E-02 1.21E-01 7.30E-02 3.52E-01 2.33E-01
TT3-3DVoro 1.89E-01 1.24E-01 1.84E-02 1.09E-02 1.24E-01 7.88E-02 3.40E-01 2.31E-01
P-3DVoro 3.19E-01 1.21E-01 3.26E-02 6.20E-03 1.43E-01 7.43E-02 3.36E-01 2.10E-01
M-3DVoro 1.97E-01 1.24E-01 3.48E-02 9.90E-03 1.41E-01 7.72E-02 3.21E-01 2.31E-01

(b) Sampling frequency: 0.5 s−1

Table 2: Robustness to the sampling frequency of density indicator - SLC−HomoPop
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Mean Mode Median 90% quantile
Method

IT SoP IT SoP IT SoP IT SoP
XY-T 2.05E-02 / 0 / 1.25E-02 / 5.00E-02 /

E-3DVoro 1.43E-02 / 0 / 2.67E-02 / 2.64E-02 /
TT1-3DVoro 8.00E-03 4.55E-02 0 0 8.00E-04 1.75E-02 2.36E-02 8.52E-02
TT2-3DVoro 1.49E-02 1.07E-01 0 0 3.20E-03 5.72E-02 3.33E-02 2.21E-01
TT3-3DVoro 1.24E-02 1.60E-01 0 0 3.50E-03 9.62E-02 2.98E-02 3.41E-01
P-3DVoro 2.10E-02 1.66E-01 0 0 4.20E-03 1.16E-01 5.27E-02 3.64E-01
M-3DVoro 1.31E-02 2.40E-01 0 0 2.50E-03 1.75E-01 2.91E-02 5.58E-01

(a) Sampling frequency: 3 s−1
Mean Mode Median 90% quantile

Method
IT SoP IT SoP IT SoP IT SoP

XY-T 5.29E-01 / 1.63E-01 / 4.75E-01 / 1.01E00 /
E-3DVoro 4.02E-01 / 0 / 2.49E-01 / 1.03E+00 /
TT1-3DVoro 4.06E-01 2.90E-01 3.10E-01 2.48E-02 2.64E-01 1.65E-01 9.21E-01 7.12E-01
TT2-3DVoro 3.92E-01 4.58E-01 2.85E-01 2.34E-01 2.48E-01 2.34E-01 9.30E-01 1.11E+00
TT2-3DVoro 4.41E-01 5.07E-01 2.89E-01 5.89E-02 2.37E-01 3.06E-01 9.81E-01 1.17E+00
P-3DVoro 4.31E-01 3.71E-01 1.40E-03 0 2.58E-01 1.80E-01 9.43E-01 7.29E-01
M-3DVoro 4.34E-01 5.01E-01 3.16E-01 1.36E-01 2.75E-01 3.52E-01 9.96E-01 9.80E-01

(b) Sampling frequency: 0.5 s−1

Table 3: Robustness to the sampling frequency of density indicator - SHC−HeteroPop
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(a) Standard deviation of density indicator

(b) Standard deviation of flow indicator

Figure 4: Robustness to the simulation noise - SLC−HomoPop
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(c) Standard deviation of velocity indicator

Figure 4: Robustness to the simulation noise - SLC−HomoPop (cont.)
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(a) Standard deviation of density indicator

(b) Standard deviation of flow indicator

Figure 5: Robustness to the simulation noise - SHC−HeteroPop

24



(c) Standard deviation of velocity indicator

Figure 5: Robustness to the simulation noise - SHC−HeteroPop (cont.)

25



6 Conclusion
In this paper a novel methodology for pedestrian traffic characterization is pro-
posed. The definitions of pedestrian traffic variables that we have put forward are
based on data-driven partitioning in space and time, avoiding the need to define
an arbitrary discretization. The disretization framework is designed via three-
dimensional Voronoi diagrams directly generated from pedestrian trajectory data.
It can be designed based on trajectories available either in the form of an ana-
lytical description or as a finite collection of points. The methodological frame-
work is fairly general, and the exact characterization of the Voronoi diagrams
can be adapted to specific situations. We have proposed different definitions of
distances for the construction of the diagrams, and assessed them in quantitative
terms. Also, the proposed definitions of the indicators are microscopic. They
are therefore able to reflect the heterogeneity of pedestrians, and suitable for the
multi-directional composition of pedestrian flows.

The performance of the proposed approach is evaluated using synthetic data
generated for two different uni-directional scenarios. It has been shown, for these
data sets, that our approach outperforms the considered approaches from the lit-
erature, in terms of the variance of the results and the robustness with respect
to the sampling frequency. For continuous trajectories, 3DVoro with distances
that account for the speed and/or movement direction of pedestrians lead to lower
variance in the results when congestion is low. When congestion is higher, higher
number of data leads to similar behavior of different distances, and consequently
to similar results. For sampled data, when the sampling frequency is high, 3DVoro
based on interpolated trajectories shows better results. When the sampling fre-
quency is low, 3DVoro based on sample of points exhibit better performance. The
analysis in the case of sampled data suggests that the Time-Transform 3D Voronoi
characterization is the most robust with respect to the sampling frequency when
more data is available. When less data is available, the anticipating distances lead
to the best robustness with respect to the sampling.

More research is needed to determine the performance of the approach in other
behavioral situations and to understand its potential limitations. For instance, we
have started to evaluate the approach for bi-directional and multi-directional sce-
narios, in light of different speed and congestion regimes. Additionally, we will
examine the effectiveness of the approach using real data (described in Nikolić
et al. (2016)). A sensitivity analysis for the conversion parameter v in TT1-3DVoro,
and the α parameter in M-3DVoro is another direction of the investigation.

The set of distances proposed in this paper to characterize the Voronoi dia-
grams can be extended. In particular, an interesting research topic would be to
relate the definition of the distance with some behavioral assumptions about the
pedestrian movements. For example, it has been recognized that pedestrians are
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affected much stronger by stimuli that appear within their vision field (Johansson
et al., 2007). To account for the anisotropy of pedestrian movements, weighted
versions of the proposed distances could be further studied. The weights would
be modeled based on the movement direction of pedestrians and their vision field.

Our future research will also be directed towards the characterization in the
presence of obstacles. One possibility would be to extend a generator set from
pedestrian trajectories to trajectories and areas, where areas represent obstacles.
This would result in three-dimensional discretization where each pedestrian and
each obstacle are associated with their own, non-overlaping, spatio-temporal units.
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A Appendix

Mean Mode Median 90% quantile
Method

IT SoP IT SoP IT SoP IT SoP
XY-T 4.30E-03 / 0 / 3.40E-03 / 1.16E-02 /

E-3DVoro 1.55E-01 / 0 / 3.56E-02 / 4.99E-01 /
TT1-3DVoro 9.60E-03 2.31E-02 0 0 2.20E-03 9.38E-03 2.79E-02 4.85E-02
TT2-3DVoro 2.04E-02 7.66E-02 0 4.10E-03 5.80E-03 4.48E-02 6.48E-02 1.68E-01
TT3-3DVoro 1.81E-02 9.15E-02 0 8.00E-04 5.70E-03 4.51E-02 5.42E-02 2.15E-01
P-3DVoro 2.98E-02 1.38E-01 0 5.90E-03 1.41E-02 7.90E-02 5.75E-02 2.92E-01
M-3DVoro 1.88E-02 1.46E-01 0 2.00E-04 5.90E-03 1.04E-01 5.95E-02 3.22E-01

(a) Sampling frequency: 3 s−1
Mean Mode Median 90% quantile

Method
IT SoP IT SoP IT SoP IT SoP

XY-T 5.80E-01 / 1.02E+00 / 3.26E-01 / 1.42E+00 /
E-3DVoro 1.77E+00 / 4.36E-02 / 7.11E-01 / 1.27E+00 /
TT1-3DVoro 5.42E-01 5.40E-01 2.28E-02 2.10E-03 3.43E-01 3.02E-01 1.04E+00 9.66E-01
TT2-3DVoro 5.11E-01 5.56E-01 1.39E-01 8.20E-03 3.15E-01 3.17E-01 1.07E+00 1.04E+00
TT3-3DVoro 6.08E-01 5.52E-01 3.72E-02 7.50E-03 3.29E-01 3.18E-01 1.05E+00 1.05E+00
P-3DVoro 5.60E-01 5.41E-01 8.75E-02 1.30E-03 3.32E-01 3.04E-01 9.76E-01 9.82E-01
M-3DVoro 5.03E-01 5.43E-01 3.93E-02 6.91E-02 3.76E-01 3.15E-01 1.08E+00 9.52E-01

(b) Sampling frequency: 0.5 s−1

Table 4: Robustness to the sampling frequency of velocity indicator - SLC−HomoPop

It is interesting to notice that the XY-T method results in the most satisfactory
estimation of speed only in SLC−HomoPop for high sampling frequency (Table 4
(a)). This can be explained by the simulated homogenous speed conditions that
the fixed-grid discretization is able to reflect. When the sampling frequency is
lower (Table 4 (b)), or when traffic conditions are more complex (Table 5), the
performance of this method deteriorates, in regard to the speed estimation.
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Mean Mode Median 90% quantile
Method

IT SoP IT SoP IT SoP IT SoP
XY-T 1.92E-02 / 9.60E-03 / 6.20E-03 / 3.42E-02 /

E-3DVoro 3.17E-02 / 0 / 6.30E-03 / 3.86E-02 /
TT1-3DVoro 1.57E-02 6.18E-02 0 0 6.10E-03 1.87E-02 3.23E-02 1.30E-01
TT2-3DVoro 1.83E-02 1.38E-01 0 1.73E-02 7.90E-03 4.27E-02 3.82E-02 3.88E-01
TT3-3DVoro 1.85E-02 1.88E-01 0 1.00E-01 8.00E-03 6.46E-02 4.08E-02 4.87E-01
P-3DVoro 2.93E-02 2.05E-01 0 7.96E-02 9.00E-03 9.82E-02 6.49E-02 5.29E-01
M-3DVoro 2.14E-02 3.16E-01 0 5.10E-03 8.00E-03 1.47E-01 4.37E-02 8.21E-01

(a) Sampling frequency: 3 s−1
Mean Mode Median 90% quantile

Method
IT SoP IT SoP IT SoP IT SoP

XY-T 5.73E-01 / 1.15E+00 / 3.51E-01 / 1.58E+00 /
E-3DVoro 1.01E+00 / 8.57E-01 / 3.85E-01 / 1.67E+00 /
TT1-3DVoro 5.82E-01 5.80E-01 8.69E-01 5.85E-02 4.51E-01 3.13E-01 1.40E+00 1.28E+00
TT2-3DVoro 5.76E-01 5.67E-01 9.40E-01 1.02E-01 3.75E-01 2.64E-01 1.54E+00 1.16E+00
TT3-3DVoro 5.79E-01 5.94E-01 8.50E-01 5.73E-02 3.70E-01 2.77E-01 1.46E+00 1.29E+00
P-3DVoro 5.66E-01 5.62E-01 8.92E-01 4.61E-02 3.83E-01 2.95E-01 1.38E+00 1.26E+00
M-3DVoro 6.27E-01 7.11E-01 9.13E-01 1.43E-02 5.05E-01 2.86E-01 1.55E+00 1.49E+00

(b) Sampling frequency: 0.5 s−1

Table 5: Robustness to the sampling frequency of velocity indicator -
SHC−HeteroPop

Mean Mode Median 90% quantile
Method

IT SoP IT SoP IT SoP IT SoP
XY-T 1.93E-02 / 0 / 1.77E-02 / 7.73E-02 /

E-3DVoro 1.65E-02 / 0 / 5.60E-03 / 3.75E-02 /
TT1-3DVoro 3.00E-04 7.60E-03 0 0 0 2.60E-03 8.00E-04 1.74E-02
TT2-3DVoro 1.40E-03 4.16E-02 0 0 0 3.17E-02 3.60E-03 8.99E-02
TT3-3DVoro 1.30E-03 4.65E-02 0 4.32E-02 0 3.48E-02 3.90E-03 1.14E-01
P-3DVoro 2.70E-03 4.69E-02 0 1.41E-02 8.00E-04 2.27E-02 5.50E-03 1.29E-01
M-3DVoro 1.20E-03 5.09E-02 0 4.75E-02 0 3.54E-02 2.50E-03 1.23E-01

(a) Sampling frequency: 3 s−1
Mean Mode Median 90% quantile

Method
IT SoP IT SoP IT SoP IT SoP

XY-T 2.55E-01 / 1.45E-01 / 2.45E-01 / 5.06E-01 /
E-3DVoro 4.17E-01 / 6.50E-02 / 1.27E-01 / 3.83E-01 /

3DVoro-δTT1 1.74E-01 1.50E-01 1.79E-01 8.00E-04 1.13E-01 8.77E-02 3.21E-01 2.98E-01
TT1-3DVoro 2.07E-01 1.53E-01 1.92E-01 1.00E-04 1.39E-01 8.52E-02 3.71E-01 3.29E-01
TT2-3DVoro 2.33E-01 1.52E-01 2.05E-01 3.00E-04 1.48E-01 8.46E-02 3.63E-01 3.27E-01
TT2-3DVoro 2.17E-01 1.43E-01 1.53E-01 1.40E-03 1.34E-01 8.49E-02 3.01E-01 2.98E-01
M-3DVoro 1.75E-01 1.48E-01 1.83E-01 1.00E-04 1.36E-01 9.11E-02 3.43E-01 3.22E-01

(b) Sampling frequency: 0.5 s−1

Table 6: Robustness to the sampling frequency of flow indicator - SLC−HomoPop

29



Mean Mode Median 90% quantile
Method

IT SoP IT SoP IT SoP IT SoP
XY-T 2.75E-02 / 2.30E-03 / 1.75E-02 / 7.21E-02 /

E-3DVoro 1.09E-02 / 0 / 8.70E-04 / 2.83E-02 /
TT1-3DVoro 7.80E-03 6.06E-02 0 0 7.00E-04 1.21E-02 2.22E-02 1.58E-01
TT2-3DVoro 1.05E-02 1.45E-01 0 0 1.10E-03 6.08E-02 2.78E-02 3.11E-01
TT3-3DVoro 1.06E-02 2.03E-01 0 0 1.00E-03 8.27E-02 2.19E-02 4.64E-01
P-3DVoro 1.62E-02 1.95E-01 0 4.86E-02 1.80E-03 8.54E-02 3.70E-02 4.90E-01
M-3DVoro 1.29E-02 3.06E-01 0 0 1.60E-03 1.48E-01 2.92E-02 8.95E-01

(a) Sampling frequency: 3 s−1
Mean Mode Median 90% quantile

Method
IT SoP IT SoP IT SoP IT SoP

XY-T 5.18E-01 / 3.50E-01 / 4.48E-01 / 1.09E+00 /
E-3DVoro 6.54E-01 / 3.69E-01 / 2.03E-01 / 1.54E+00 /
TT1-3DVoro 4.99E-01 4.02E-01 1.06E-01 6.49E-02 3.24E-01 1.81E-01 1.35E+00 9.43E-01
TT2-3DVoro 5.66E-01 4.16E-01 1.47E-01 5.55E-02 2.73E-01 1.73E-01 1.57E+00 1.21E+00
TT3-3DVoro 5.91E-01 4.45E-01 1.53E-01 1.57E-01 2.94E-01 1.71E-01 1.68E+00 1.31E+00
P-3DVoro 4.81E-01 4.28E-01 5.53E-02 3.98E-02 2.22E-01 1.89E-01 1.34E+00 1.12E+00
M-3DVoro 6.41E-01 4.47E-01 9.07E-02 4.55E-02 3.97E-01 1.73E-01 1.66E+00 1.24E+00

(b) Sampling frequency: 0.5 s−1

Table 7: Robustness to the sampling frequency of flow indicator - SHC−HeteroPop
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