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Abstract

We solve a rich logistical problem inspired from practice, in which a heterogeneous �xed
�eet of vehicles is used for collecting recyclable waste from large containers over a �nite
planning horizon. Each container is equipped with a sensor, which communicates its level
at the start of the day. Given a history of observations, a forecasting model is used to
estimate the point demand forecasts as well as a forecasting error representing the level
of uncertainty. The problem falls under the framework of the stochastic inventory routing
problem. We introduce dynamic probabilistic information in the solution process, which
impacts the cost through the probability of container over�ows on future days and the
probability of route failures. We cast the problem as a mixed integer non-linear program
and, to solve it, we implement an adaptive large neighborhood search algorithm, which
integrates a specialized forecasting model, tested and validated on real data. Computa-
tional testing demonstrates that our algorithm performs very well on inventory routing
and vehicle routing benchmarks from the literature. We are able to evaluate the bene�t
of including uncertainty in the objective function on rich IRP instances derived from real
data coming from the canton of Geneva, Switzerland. Our approach performs signi�cantly
better compared to alternative policies in its ability to limit the occurrence of container
over�ows for the same routing cost. We also analyze the solution properties of a rolling
horizon approach and derive empirical lower and upper bounds.

Keywords: stochastic inventory routing problem; demand forecasting; adaptive large
neighborhood search; uncertainty; waste collection
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1 Introduction

Waste collection is one of the most important logistical activities performed by any municipal-
ity, and also one of the most expensive. According to various estimates, collection costs account
for more than 70% of waste management costs (Johansson, 2006; Tavares et al., 2009; Greco
et al., 2015). Recycling, on the other hand, can alleviate problems related to land�ll capacity
and pollution, and many countries have already set ambitious target levels for recycling. As
part of its Circular Economy Strategy, the European Union (EU), for example, has adopted
legislative proposals to set a common EU target for recycling 65% of municipal and 75% of
packaging waste by 2030, limiting at the same time the use of land�lls (European Commission,
2016). Given the high cost of waste management and the signi�cant proportion of collection
costs, even small improvements in the latter can lead to substantial �nancial savings for waste
collectors, municipalities, and ultimately the taxpayer.

In this context, we solve a rich recyclable waste collection problem, which can be described
as follows. A heterogeneous �xed �eet of vehicles with di�erent speeds, capacities, �xed and
variable costs, is used for collecting recyclable waste over a �nite planning horizon, say a week
to 10 days. Since both waste containers and collection vehicles are �ow-speci�c, the problem
can be decomposed and solved separately for each waste �ow. As shown in Figure 1, each
tour starts and ends at the depot, and is a sequence of collections followed by disposals at the
available dumps. All collections are of the same waste �ow and all visited dumps accept the
latter. There is a mandatory visit to a dump just before the end of a tour, i.e. a tour terminates
with an empty vehicle. Dumps are recycling plants. There could be multiple dumps for the
collected waste �ow and they can be used when and as needed along the tour. We consider time
windows for the depots, containers and dumps. A tour is also limited by the legal duration of
the working day. Accessibility restrictions apply to certain points, for example for containers
located in narrow streets that cannot be accessed by big collector trucks.

Each container is equipped with an ultrasound sensor that communicates the waste level to a
central database at the start of each day. Given the availability of historical data, a statistical
model is used to estimate for each container the point demand forecasts for each day of the
planning horizon. In addition, the model �t gives a consistent estimate of the forecasting

Figure 1: Example of a Collection Tour (Markov et al., 2016)
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error, which is used to calculate the risk of container over�ows and route failures during the
planning horizon. Experience suggests that full containers continue serving demand because
people place the waste beside them. Nonetheless, if a sensor communicates that a container is
full, it must be collected within the day. The collection policy thus assumes a back-ordering
inventory decision, because the collector is charged a penalty for a full container, but the
number of back-order days is limited to one.

Given the multi-day planning horizon, our problem falls under the framework of the Stochastic
Inventory Routing Problem (SIRP), with no inventory holding costs and unlimited inventory
capacity at the dumps. As a counterpart to inventory holding costs, we consider container
over�ow costs, which the collector pays to the municipality in the occurrence of such events.
Their correct attribution to the objective function involves the calculation of conditional prob-
abilities, which are day-dependent and dynamically a�ected by previous collections during the
planning horizon, and which lead to non-linearities. The contribution of our research is four-
fold. First, we incorporate dynamic probabilistic information in the solution process, which
impacts the cost through the probability of container over�ow on future days and the probabil-
ity of route failures, measured by the likelihood that a vehicle does not have su�cient capacity
to serve the realized demands before its next scheduled dump visit. Secondly, we utilize a
demand forecasting model that has been speci�cally designed for our purpose, and tested and
validated on real data, and integrate it with a state-of-the-art Adaptive Large Neighborhood
Search (ALNS) algorithm. Thirdly, our embedded vehicle routing problem (VRP) contains a
variety of rich features traditionally absent or rarely considered in the literature on the Inven-
tory Routing Problem (IRP), such as a heterogeneous �xed �eet, intermediate facilities and
time windows. Fourthly, the extensive computational testing demonstrates that our algorithm
produces excellent results on IRP benchmark and very good results on VRP benchmarks from
the literature. We are able to evaluate the bene�t of considering uncertainty in the objective
function on a set of rich IRP instances derived from real data coming from the canton of
Geneva, Switzerland. The SIRP performs signi�cantly better than alternative practical poli-
cies in its ability to control the occurrence of container over�ows for the same routing cost. We
also analyze the solution properties of a rolling horizon approach for a dynamic and stochastic
version of the problem and derive empirical lower and upper bounds on its solution cost.

The remainder of this article is organized as follows. Section 2 positions our work with respect
to the relevant VRP and IRP literature. Section 3 outlines the forecasting model and formalizes
our SIRP with a mathematical formulation. Section 4 describes the ALNS algorithm and the
solution methodology. Section 5 presents the numerical experiments, and �nally Section 6
concludes and explores future work directions.

2 Related Literature

Given the rich features of our problem, we position our contribution both within the VRP
and the IRP literature. In Section 2.1 below, we conduct a short survey of the VRP with
Intermediate Facilities (VRP-IF), the electric and alternative fuel VRP, and the heterogeneous
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�xed �eet VRP. Afterwards, in Section 2.2, we shift our attention to the stochastic IRP with
a speci�c focus on the modeling approach with respect to the treatment of uncertainty.

2.1 Related VRP Literature

One of the seminal applications of the VRP to waste collection is that of Beltrami and Bodin
(1974), who solve a periodic VRP-IF for commercial waste collection in New York City. An-
gelelli and Speranza (2002b) apply Cordeau et al.'s (1997) tabu search heuristic to a similar
periodic problem. The latter's methodological framework is used by Angelelli and Speranza
(2002a) to analyze the operational cost bene�ts of several di�erent collection policies in Val
Trompia, Italy and Antwerp, Belgium. Intermediate facilities in a distribution context are
used by Bard et al. (1998a) who develop a branch-and-cut algorithm and use it for instances
of limited size.

Kim et al. (2006) solve the waste collection VRP-IF by simulated annealing, explicitly consid-
ering also features such as tour compactness and workload balancing. A related problem, the
Multi-depot VRP with Inter-depot routes (MDVRPI), is proposed by Crevier et al. (2007).
They use the adaptive memory principle of Rochat and Taillard (1995) and decompose the
problem into multi-depot, single-depot and inter-depot subproblems, which are solved using
tabu search. A solution to the MDVRPI is obtained through a set covering formulation and
improved by tabu search. Crevier et al. (2007) generate two benchmark sets with a �xed
homogeneous �eet stationed at one depot, with the rest of the depots acting only as interme-
diate facilities. Muter et al. (2014) develop a branch-and-price algorithm for the MDVRPI and
manage to solve to optimality some instances with up to 50 customers.

A conceptually similar problem appears in the routing of electric and alternative fuel vehicles,
where recharging or refueling decisions correspond to emptying decisions. Conrad and Figliozzi
(2011) consider the recharging VRP, where electric vehicles can recharge at customer locations
with time windows. Erdo§an and Miller-Hooks (2012) treat the green VRP, where vehicles
use a sparse alternative fuel infrastructure. Schneider et al. (2014) solve the electric VRP with
time windows and recharging stations, while Schneider et al. (2015) combine recharging and
reloading facilities in the VRP with intermediate stops. A survey of the relevant literature is
available in Moghaddam (2015) and Pelletier et al. (2014).

The preceding literature assumes homogeneous �eets, whether limited or not. However, in
industry �eets are rarely homogeneous. They either start as heterogeneous or become such
as vehicles are added or replaced. More recently, Hiermann et al. (2014), Sassi et al. (2014),
Goeke and Schneider (2015), and Mancini (2015) have started �lling the gap by considering
conventional and alternative fuel vehicles simultaneously. Taillard (1999) was the �rst to
formally de�ne the Heterogeneous Fixed Fleet VRP (HFFVRP). Being a generalization of the
Vehicle Fleet Mix Problem (VFMP), the HFFVRP is more di�cult than the classical VRP or
the VFMP. Taillard's (1999) solution approach relies on heuristic column generation with AM,
and vehicle assignment costs are calculated at each iteration. The best heuristic approaches
for this problem are due to Penna et al. (2013) and Subramanian et al. (2012), and the only
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fully exact method is that of Baldacci and Mingozzi (2009).

The vehicle routing subproblem embedded in our IRP already includes most of the features
discussed above, notably a heterogeneous �xed �eet, multiple dumps playing the role of inter-
mediate facilities, in addition to time windows, a maximum tour duration, and accessibility
restrictions. The simultaneous presence of all these features is seldom considered in the VRP
literature. Our problem has the complication of including them in an IRP context. Thus,
while they are essential to describing a realistic problem inspired from practice, they also pose
a great challenge in terms of modeling and solution methodology.

2.2 Related SIRP Literature

Coelho et al. (2014b) conduct a survey of the IRP literature during the past thirty years.
Table 1 positions our problem in terms of the structural classi�cation scheme they propose.
We consider a �nite planning horizon which is used in a rolling fashion. There are multiple
containers that are emptied into multiple dumps, and so we identify the structure as many-to-
many. Multiple containers can be visited along a tour and the inventory policy is Order-Up-to
(OU), meaning that a visited container is always fully emptied. Container over�ow is served
at a penalty (back-order) and there is a limit on the number of back-order days. The �eet
is heterogeneous and �xed. Information-wise, the problem is stochastic and, when solved in
a rolling horizon fashion, dynamic with new container information revealed each day. Other
comprehensive surveys and literature reviews on the IRP are available in Abdelmaguid (2004),
Moin and Salhi (2007), Andersson et al. (2010), Yu et al. (2012), Coelho et al. (2014b), Ivarsøy
and Solhaug (2014) and Park et al. (2016), and a particular focus on stochastic problems and
aspects can be found in Moin and Salhi (2007), Yu et al. (2012) and Coelho et al. (2014b). In
the following, we limit our attention to �nite-horizon stochastic problems, i.e. the class to which
our problem belongs. In particular, we emphasize on the use of a rolling horizon approach,
the limitations of relying on the concept of optimal service frequencies, and the pros and cons
of various modeling approaches with respect to the problem's stochastic elements.

Trudeau and Dror (1992) extend the work of Dror and Ball (1987) on the optimal service

Table 1: Structural Classi�cation (Coelho et al., 2014b)

Criterion Classi�cation

Time horizon Finite (rolling)
Structure Many-to-many
Routing Multiple
Inventory policy Order-Up-to (OU)
Inventory decisions Back-ordering (with a penalty and limit)
Fleet composition Heterogeneous
Fleet size Multiple (�xed)
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frequency under a stochastic setting. They consider both stock-outs and route failures. Unlike
previous research (see e.g. Stewart and Golden, 1983; Dror et al., 1985; Dror and Levy, 1986;
Dror and Ball, 1987; Larson, 1988) which uses a vehicle with an arti�cially small capacity to
avoid route failures, Trudeau and Dror (1992) develop an analytical probability expression.
Our work di�ers from that of Trudeau and Dror (1992) in several major aspects. In particular,
we have a heterogeneous �xed �eet. Route failure in our case applies to a depot-to-dump or
a dump-to-dump trip, of which there could be several in a given tour. Finally, we do not
impose a maximum of one visit and one over�ow per container during the planning horizon,
which precludes the derivation of an exact closed-form probability measure. On the contrary, it
requires the complicated management of binary trees, tracking each container's visit-dependent
and conditional probability of over�ow on each day of the planning horizon. In addition, we
consider multiple rich routing features.

The work of Bard et al. (1998b) includes intermediate facilities in a distribution context. They
apply problem decomposition with a two-week rolling horizon. Customers to be visited during
the planning horizon are identi�ed and those scheduled for the �rst week are routed, after which
the horizon is rolled over by a week. The customer selection procedure is based on Jaillet et al.
(2002) who derive the optimal restocking frequency and the incremental cost of deviating from
it. In the �rst step of the decomposition scheme, customers whose optimal visit day falls within
the two-week horizon are assigned to speci�c days by solving a balanced generalized assignment
problem that minimizes the total incremental cost, accounting for uncertainty through a lower
and upper bound on the total daily demand to be served. The solution of the routing problem
relies on construction and improvement heuristics including inter-day customer exchanges.
Similar ideas, based on the identi�cation of customers who must be served versus those who
may be served are used in Bitsch (2012) and Mes et al. (2014), both with applications to
waste collection where the objective is the minimization of over�ows. The former relies on
the calculation of incremental costs, while the latter on expectation-based service frequency.
Due to the implied repetitive pattern, this type of approaches is only appropriate in situations
where demand stationarity can be assumed.

Campbell and Savelsbergh (2004) also deal with uncertainty through a decomposition approach
that solves the problem of assigning customers to days �rst, using the cost of a giant TSP tour
as a crude measure of the daily routing cost, and with coarser period aggregations toward the
end of the planning horizon. Afterwards, the IRP is solved for the �rst few days of the planning
horizon for the customers that were assigned there and assuming deterministic information.
This approach is used in a rolling horizon framework with the bene�t of re�ecting longer-term
costs in the shorter-term problem, i.e. on the days for which the actual IRP is solved. Such
a balance, usually expressed through a so-called reduction procedure, was the focus of much
of the above-mentioned IRP research (see Dror and Ball, 1987; Trudeau and Dror, 1992; Dror
and Trudeau, 1996; Jaillet et al., 2002). Stochasticity is also discussed in Coelho et al. (2014a),
who present a modeling and solution framework for dynamic and stochastic IRP, incorporating
the use of forecasting. However, their approach relies on constructing point forecasts to be
used in a rolling horizon fashion without explicit incorporation of probabilistic information
in the solution process. Independent of the modeling approach or the methodology used, the
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rolling horizon technique is useful in dealing with uncertainty by helping make forward-looking
decisions in the operational short-term.

More recently, research on the SIRP has dealt with uncertainty in various ways. Solyal�
et al. (2012), for example, use the robust optimization approach introduced by Bertsimas
and Sim (2003, 2004) to solve a problem with dynamic uncertain demands, ensuring that
vehicle capacity will not be violated for any realization of the customer demands, which are
independent and symmetric, and for which only a point estimate and a maximum deviation
are speci�ed. They develop a strong formulation and use a branch-and-cut solution approach.
Bertazzi et al. (2013) propose a heuristic rollout algorithm that uses a sampling approach to
generate demand scenarios for the current period and considers the average demand for future
ones. Decisions are made by solving a mixed integer program by branch-and-cut in each period.
A similar approach is used by Bertazzi et al. (2015) who apply it to an IRP with transportation
procurement. Adulyasak et al. (2015) propose a two-stage and a multi-stage approach for a
production-routing problem under demand uncertainty, in which the �rst stage determines
production setup and visit frequencies, while subsequent stages determine production and
delivery quantities. They develop exact formulations and a branch-and-cut algorithm, and
for handling a large number of scenarios, they propose a Benders decomposition approach,
which is able to solve instances of realistic size. Stochastic optimization with recourse is
used by Hemmelmayr et al. (2010) and Nolz et al. (2014), who present applications related
to blood product distribution and medical waste collection, respectively. Chance-constrained
approaches, often oriented towards maintaining a service level, can be found in Yu et al.
(2012), Abdollahi et al. (2014), Soysal et al. (2015) and Soysal et al. (2016), while static risk
expressions in the objective function that use the demand distribution parameters are applied
by Nekooghadirli et al. (2014a) and Nekooghadirli et al. (2014b).

The use of a particular modeling approach has a strong in�uence on how the problem at
hand is being viewed. Robust optimization, for example, protects against the worst case
scenario for a given budget of uncertainty. Thus, it has a clear risk-aversion bias. However,
it still leaves the question of how to de�ne an appropriate budget of uncertainty. And more
generally, this approach is less relevant for our problem where container over�ows and route
failures are not disastrous events. Their states are frequently revisited, unlike what is usually
the case in robust optimization. Furthermore, container over�ows and route failures have
a monetary cost which should �gure in the total expected cost incurred by the collector.
Thus, the integration of probability information in the objective is used to provide a monetary
dimension to these stochastic events, and this approach has a clear cost bias, as would be the
case for a cost-minimizing �rm. Scenario generation and chance-constrained approaches fall
in the middle. While scenario generation/stochastic programming would be very cumbersome
computationally for a rich IRP like ours, chance constraints may be integrated in our approach,
although the value added would probably be minimal, given that we can control the degree
of conservatism of the occurrence of stochastic events by modifying their associated costs or
penalties in the objective function. Our IRP has a cost bias and we include rich probability
information in the objective function. Moreover, unlike previous IRP research, we do not
assume a stationary demand distribution and, therefore, cannot rely on the estimation of
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optimal service frequencies or cyclic schedules such as in a periodic VRP. In terms of calculating
the over�ow probabilities, there are certain similarities to the conditional calculation of stock-
outs used in Ribeiro and Lourenço (2003). However, they formulate unrealistic assumptions
on the ability to observe inventory in future periods, and their problem is �nally solved using
a simple heuristic approach.

3 Formulation

In what follows, Section 3.1 presents a brief sketch of the forecasting model, Section 3.2 develops
a mathematical formulation for our SIRP, and Section 3.3 discusses the necessary changes to
the latter for solving benchmark instances from the literature. Table 2 summarizes the used
notations. Some of the notations, in particular the inventory holding cost, are only used
in the model reformulations presented in Section 3.3 but are still included in the table for
completeness and ease of reference. We note that container demand refers to the volume
amount placed in a container on a given day. Container inventory and capacity are also
measured in terms of volume. Vehicles, on the other hand, have both volume and weight
capacities. Depending on the density of the collected waste �ow, one of them becomes limiting
while the other may not be. However, we observe that if the weight capacity becomes limiting
before the volume capacity, the volume capacity can be adjusted to become limiting at the
same time. Through this simple preprocessing step, we avoid tracking both volume and weight
for the bene�t of a more elegant formulation.

3.1 Forecasting Model

Markov et al. (2015) propose a forecasting model for the daily container demands which ex-
hibits superior in- and out-of-sample performance compared to alternatives. It is based on a
discrete mixture of count-data models describing populations depositing di�erent waste vol-
umes in the containers. Thus, it supposedly captures a realistic underlying behavior though
simpli�ed. We assume a set V of distinct deposit volumes, where deposit volume v ∈ V is gen-
erated with a Poisson rate ξitv for container i on day t. The rate ξitv takes the functional form
ξitv = exp(κ>itγv), where κit is a vectors of covariates, such as the day of the week, weather
variables, holiday periods, etc., and γv is a vector of estimable parameters for deposit volume
v. We formulate an expression for the expected value of the demand of container i on day t
as follows:

E (ρit) =
∑
v∈V

vξitv. (1)

To �t the model, we minimize the sum of squared errors between the observed ρoit and the
expected demand E (ρit) over the set of containers P and a historical period H of data avail-
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Table 2: Notations

Sets

V set of container deposit volumes H historical estimation period
o origin d destination
D set of dumps P set of containers
N set of all points = {o} ∪ {d} ∪ D ∪ P K set of vehicles
T planning horizon = {0, . . . , u} T + shifted horizon = {1, . . . , u, u+ 1}

Skt set of dump-to-dump trips for vehicle
k ∈ K on day t ∈ T

S set of containers in a trip in Skt

Parameters

ξitg Poisson rate for deposit volume v of container i on day t
κit vector of covariates for container i on day t
γv vector of estimable parameters for deposit volume v
ρit demand of container i on day t (random variable)
εit error term of container i on day t
υ forecasting model error (standard deviation of the �t's residuals)
πij travel distance of arc (i, j)

τijk travel time of vehicle k on arc (i, j)

λi, µi lower and upper time window bound at point i
δi service duration at point i
ωi capacity of container i
χ container over�ow cost (monetary)
ζ container emergency collection cost (monetary)
σit 1 indicates that container i is in a state of full and over�owing on day t, 0 otherwise
ϕk daily deployment cost of vehicle k (monetary)
βk unit-distance running cost of vehicle k (monetary)
θk unit-time running cost of vehicle k (monetary)
αkt 1 if vehicle k is available on day t, 0 otherwise
αik 1 if container i is accessible by vehicle k, 0 otherwise
Ωk capacity of vehicle k
H maximum tour duration
ψ Route Failure Cost Multiplier (RFCM) ∈ [0, 1]

CS the average routing cost of going from S ∈ Skt to the nearest dump and back to S
hi inventory holding cost at point i

Decision Variables

xijkt 1 if vehicle k traverses arc (i, j) on day t, 0 otherwise (binary)
yikt 1 if vehicle k visits point i on day t, 0 otherwise (binary)
zkt 1 if vehicle k is used on day t, 0 otherwise (binary)
qikt expected pickup quantity by vehicle k from container i on day t (continuous)
Qikt expected cumulative quantity on vehicle k at point i on day t (continuous)
Iit expected inventory of container i at the start of day t (continuous)
Sikt start-of-service time of vehicle k at point i on day t (continuous)
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ability:

min
Γ

∑
i∈P

∑
t∈H

(
ρoit −

∑
v∈V

vξitv

)2
, (2)

assuming strict exogeneity and with errors represented by white noise:

ρit = E(ρit) + εit, where εit are iid normal, (3)

and where a consistent estimate of the variance is given by:

υ2 =

∑
i∈P
∑
t∈H (ρoit − E (ρit))

2

|P ||H|−#params
· (4)

The denominator in formula (4) is the total number of data observations |P ||H| minus the
number of estimated parameters in the model. For a more detailed description of the model,
the reader is referred to Markov et al. (2015).

3.2 Stochastic IRP Model

Our SIRP is de�ned for a planning horizon T = {0, . . . , u}, and for each day t we are given
a complete directed graph G(N ,A), with N = {o} ∪ {d} ∪ D ∪ P, where o and d represent
the depot as an origin and a destination, respectively, D is the set of dumps, P is the set
of containers, and A = {(i, j) : ∀i, j ∈ N , i 6= j} is the set of arcs. For modeling purposes, it
is assumed that the set D contains a su�cient number of replications of each dump to allow
multiple visits by the same vehicle on the same day.

There is an asymmetric distance matrix, with πij the travel distance of arc (i, j). Each vehicle
may have a di�erent average speed, which results in a vehicle-speci�c travel time matrix, where
τijk is the travel time of vehicle k on arc (i, j). Each point has a single time window [λi, µi],
where λi and µi stand for the earliest and latest possible start-of-service time. Start of service
after µi is not allowed, and if the vehicle arrives before λi, it has to wait. Service duration at
each point is denoted by δi. For containers it is mostly in�uenced by the type of container,
e.g. underground or overground, and for dumps by factors such as weighing and billing. Hence
service duration is not indexed for vehicle. Service duration at the depots is zero. There is an
expected demand E(ρit) for container i on day t. Container capacity is denoted by ωi, and
a cost χ is charged for a full and over�owing container. There is a heterogeneous �xed �eet
K, with each vehicle de�ned by its capacity Ωk, a daily deployment cost ϕk, a unit-distance
running cost βk, and a unit-time running cost θk. The binary �ags αkt denote whether vehicle
k is available on day t, and the binary �ags αik denote whether container i is accessible by
vehicle k. The maximum tour duration is denoted by H.

We introduce the following binary decision variables: xijkt = 1 if vehicle k traverses arc (i, j)

on day t, 0 otherwise; yikt = 1 if vehicle k visits point i on day t, 0 otherwise; zkt = 1 if vehicle
k is used on day t, 0 otherwise. In addition, the following continuous variables are used: qikt
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for the expected pickup quantity by vehicle k from container i on day t; Qikt for the expected
cumulative quantity on vehicle k at point i on day t; Iit for the expected inventory of container
i at the start of day t; and Sikt for the start-of-service time of vehicle k at point i on day t.
The inventory levels at the start of the planning horizon Ii0 are known with certainty. For
modeling purposes, we assume that container inventory is updated at the start of each day
before vehicle visits. Thus, the pickup quantity is independent of the time of day that the
vehicle collects a container.

3.2.1 Derivation of the Over�ow Probabilities.

Unlike in most traditional IRPs, we have no inventory holding costs at the containers or dumps.
To formulate the objective function, we introduce the notions of a regular and an emergency
collection. Let σit denote the state of container i on day t, where σit = 0 denotes that
container i is not full on day t, while σit = 1 denotes that it is full and over�owing. A regular
collection of container i on day t by vehicle k is one for which yikt = 1. On the other hand, an
emergency collection occurs when the container is in a state σit = 1 and for yikt = 0, ∀k ∈ K.
An emergency collection incurs a high cost ζ, which is an approach often employed in the IRP
literature (e.g. Dror and Ball, 1987; Trudeau and Dror, 1992; Hemmelmayr et al., 2010; Coelho
et al., 2014a), and empties the container in question. Our routing cost is thus counterbalanced
by the container over�ow cost χ and the emergency collection cost ζ which, due to embedded
conditionality, lead to a non-linear objective function. It should be mentioned that there
is an important conceptual di�erence between χ and ζ. While the former has a well-de�ned
monetary value which the collector bears in case of container over�ow, the latter is a parameter
that needs to be calibrated to represent the average actual cost of emergency collection or to
otherwise re�ect the collector's policy in such cases.

Assume that we start with an initial inventory Ii0 such that container i is initially in state
σi0 = 0. If the container never undergoes a regular collection during the planning horizon, its
state probability tree develops as illustrated in Figure 2. We observe that all branches starting
from a state σit = 0 involve the calculation of conditional probabilities, while those starting
from a state σit = 1 involve unconditional probabilities because the inventory is set to zero
by the emergency collection. For our problem, we are only interested in the probability of
over�ow, i.e. of being in a state σit = 1. For day t = 0, this is either 0 or 1, depending on
the initial state, while for all other days it is obtained by successively multiplying the branch
probabilities. If we impose a regular collection on day t = 2, the probability of over�ow on day
t = 2 is the probability of being in state σi2 = 1. To calculate the probability of over�ow for
subsequent days, we start a new tree with a root on day t = 2. Without loss of generality, we
can set the root of the new tree to state σi2 = 1 since the inventory is set to zero by the regular
collection and the two initial branches of the new tree will have unconditional probabilities.
Regardless of the initial state, all branch probabilities can be precomputed, including those
that occur when a new tree is started by a regular collection. For container i, the exhaustive
list is given by:

� The unconditional probability of over�ow with non-zero initial inventory. This only
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applies at the root node of the state probability tree on day t = 0 and is given by
P(Ii0 + ρi0 > ωi).

� The unconditional probabilities of over�ow with zero initial inventory. These apply either
at the root node or at a state of over�ow and are expressed by P(0+ ρih > ωi), ∀h ∈ T .

� The conditional probabilities of over�ow with non-zero initial inventory. These apply
along the tree's uppermost branch and write as P(Ii0 +

∑h
t=0 ρit > ωi | Ii0 +

∑h−1
t=0 ρit <

ωi), ∀h ∈ T : h > 0.

� The conditional probabilities of over�ow with zero initial inventory apply in all other
cases and are obtained as P(0+

∑h
t=g ρit > ωi | 0+

∑h−1
t=g ρit < ωi), ∀g, h ∈ T : h > g.

The calculation of the conditional probabilities involves the evaluation of:

P

(
Iig +

h∑
t=g

ρit > ωi

∣∣∣∣∣ Iig +
h−1∑
t=g

ρit < ωi

)
. (5)

Figure 2: State Probability Tree Starting from a Non-Full State Without a Regular Collection
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Using assumption (3), expression (5) takes the form:

P

(
h∑
t=g

εit > ωi − Iig −
h∑
t=g

E(ρit)

∣∣∣∣∣
h−1∑
t=g

εit < ωi − Iig −

h−1∑
t=g

E(ρit)

)
. (6)

Substitute a = ωi − Iig −
∑h−1
t=g E(ρit), and X =

∑h−1
t=g εit, where X∼N (0, (h − g)υ2) and X

is independent of εih. Formula (6) then rewrites as:

P (X+ εih > a− E(ρih) | X < a) =
P(εih > a− E(ρih) − X, X < a)

P(X < a)
=

=
1

ΦX(a)
× 1

2πυ2
√
h− g

∫a
−∞
∫∞
a−E(ρih)−x

e
− x2

2(h−g)υ2 e
− y2

2υ2 dxdy,

(7)

where ΦX(·) is the CDF of X. We standardize the joint probability in expression (7) by setting
x = x/(υ

√
h− g) and y = y/υ, and thus arrive at expression (8) for the conditional probability

we are looking for:

P (X+ εih > a− E(ρih) | X < a) =
1

2πΦ( a
υ
√
h−g

)

∫ a
υ
√
h−g

−∞
∫∞
a−E(ρih)−xυ

√
h−g

υ

e−
x2

2 e−
y2

2 dxdy =

=
1

2
√
2πΦ

(
a

υ
√
h−g

) ∫ a
υ
√
h−g

−∞ e−
x2

2 erfc

(
a− E(ρih) − xυ

√
h− g

υ
√
2

)
dx,

(8)

where Φ(·) is the CDF of a standard normal variable. The single integral in expression (8)
can be evaluated using a standard statistical package like R in the order of milliseconds.
For a problem of realistic size, all the necessary unconditional and conditional probabilities
can be automatically precomputed in a negligible amount of time using the latest container
information.

3.2.2 Objective Function.

We are now in a position to formulate the objective function z which comprises the Expected
Over�ow and Emergency Collection Cost (EOECC), the Routing Cost (RC), and the Expected
Route Failure Cost (ERFC):

min z = EOECC + RC + ERFC. (9)

The expected over�ow and emergency collection cost is expressed as:

EOECC=
∑

t∈T ∪T +

∑
i∈P

(
P (σit=1 |m=max (0, g<t : ∃k ∈ K : yikg=1))

(
χ+ζ−ζ

∑
k∈K

yikt

))
, (10)

where the probability of being in a state of over�ow is conditional on the most recent regular
collection, identi�ed for each container i by the index m. For a given container i, the max
operator returns the day g of the most recent regular collection, or 0 if there have been no
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regular collections before day t. The state probability is calculated by multiplication of the
involved branch probabilities on the tree, where conditional probabilities are computed using
formula (5). For a day t, the applied cost includes the container over�ow cost χ and the
emergency collection cost ζ in case there is no regular collection on that day, and only the
container over�ow cost χ in case there is a regular collection. Although there is no uncertainty
on day t = 0, we still need to pay the over�ow cost if the container is in a state of over�ow.
On the other hand, the inventories at the start of the �rst day after the end of the planning
horizon are completely determined by the decisions taken during the planning horizon. For
this reason, EOECC is computed for t ∈ T ∪ T +, where T + = {1, . . . , u, u+ 1}.

The routing cost does not consider the probability of skipping containers because they over-
�owed earlier than expected and underwent an emergency collection. Trudeau and Dror (1992)
develop a probabilistic expression for a similar problem with the assumption of a single visit
per customer and a single permitted stock-out during the planning horizon. We do not impose
these two assumptions on our problem, and moreover, unlike in Trudeau and Dror (1992), our
routing cost includes a time component as well, which means that if a point is removed from
or added to the tour, we need to recalculate waiting times and remove any slack. Therefore,
we prefer to keep the deterministic expression for the routing cost with the risk of it slightly
overestimating the expected routing cost:

RC =
∑
t∈T

∑
k∈K

ϕkzkt + βk∑
i∈N

∑
j∈N

πijxijkt + θk (Sdkt − Sokt)

. (11)

The expected route failure cost re�ects the vehicles' inability, due to insu�cient capacity, to
serve the containers on the scheduled depot-to-dump or a dump-to-dump trips. Compared
to Trudeau and Dror's (1992) work, our work has the additional complexity of multiple and
unlimited dump visits. Thus, similar to the case of the routing cost above, we develop the
more tractable yet realistic expression:

ERFC =

=
∑
t∈T \0

∑
k∈K

∑
S∈Skt

(
ψCS P

(∑
s∈S

(
Λsm+

t−1∑
h=m

ρsh

)
>Ωk

∣∣∣∣∣m=max(0, g<t : ∃k′ ∈ K : ysk′g=1)

))
,
(12)

where Skt is the set of depot-to-dump or dump-to-dump trips for vehicle k on day t, S is the
set of containers in a particular trip, CS is the average routing cost of going from this set to the
nearest dump and back, and Λsm is the inventory of container s after regular collection on day
m. The parameter ψ ∈ [0, 1], which we refer to as the Route Failure Cost Multiplier (RFCM),
is used to scale up or down the degree of conservatism regarding this cost component. The
probability is conditional on the most recent regular collection identi�ed for each container
s by the index m. For a given container s, the max operator returns the day g of the most
recent regular collection, or 0 if the container has not undergone any regular collections before
day t. The inventory of container s after regular collection on day m is de�ned as:

Λsm = Ism −
∑
k∈K

qskm . (13)
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Given an OU inventory policy, this value is 0 if there is a regular collection on day m, and is
equal to the initial inventory Is0 if there is no regular collection on day 0. Thus, the probability
of a route failure in a set S is the probability that the sum of the random daily demands, plus
potentially the initial inventories on day 0, collected from this set exceeds the vehicle capacity.
By de�nition, there are no route failures on day t = 0 as the container information is fully
known. We consider it safe to assume only one route failure per depot-to-dump or dump-to-
dump trip. It would indeed be very improbable that the expected inventories were so far from
the realized ones that they were more than twice as high for a given trip. Again, here we
do not consider the probability of skipping containers because they underwent an emergency
collection earlier. Hence, like the expected routing cost, the expected route failure cost is a
slight overestimation.

The nearest dump to each container can be precomputed. Probability-wise, once the days g of
the previous collection of each container are found, the remaining probability is unconditional.
Given that it involves multiple containers, it is impractical to precompute for all combinations.
Thus, we implement a solution in which the probability is evaluated during runtime using an
approximation of the standard normal distribution based on the approximation of the error
function:

erf(x) ≈ 1−
(
a1t+ a2t

2 + · · ·+ a5t5
)
e−x

2

, t =
1

1+ dx
, (14)

where d = 0.3275911, a1 = 0.254829592, a2 = −0.284496736, a3 = 1.421413741, a4 =

−1.453152027, a5 = 1.061405429, and whose maximum approximation error is 1.5 × 10−7
(Abramowitz and Stegun, 1972). These repetitive calculations have no discernible in�uence
on the algorithm's runtime.

3.2.3 Constraints.

The constraints are extended from the VRP with intermediate facilities presented in Markov
et al. (2016) and can be split into several categories, with the �rst category consisting of basic
vehicle routing constraints. Equalities (15) and (16) ensure that only available vehicles are
used, and that if a vehicle is used, its tour starts at the origin and ends at the destination,
with a visit to a dump immediately before that. Constraints (17) link the visit and the routing
variables, while constraints (18) stipulate that a container is visited by at most one vehicle on
a given day. Inequalities (19) guarantee that vehicles do not visit inaccessible points. Flow
conservation is represented by constraints (20).∑

j∈N
xojkt = αktzkt, ∀t ∈ T , k ∈ K (15)

∑
i∈D

xidkt = αktzkt, ∀t ∈ T , k ∈ K (16)

yikt =
∑
j∈N

xijkt =
∑
j∈N

xjikt, ∀t ∈ T , k ∈ K, i ∈ P (17)
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∑
k∈K

yikt 6 1, ∀t ∈ T , i ∈ P (18)

yikt 6 αik, ∀t ∈ T , k ∈ K, i ∈ P (19)∑
i∈N

xijkt =
∑
i∈N

xjikt, ∀t ∈ T , k ∈ K, j ∈ D ∪ P (20)

The inventory constraints are necessary for tracking the container inventories and linking them
to the vehicle visits and the pickup quantities. Equalities (21) track the inventories as a func-
tion of the previous day's inventories, pickup quantities and expected demands. Constraints
(22) impose the fact that, in expected terms, we do not accept container over�ows. As already
mentioned in Section 3.2.1, the inventories need to be computed over T +, starting from the
fully known inventories on day t = 0. Constraints (23) ensure that if the starting inventory
exceeds capacity, the container must be collected on day t = 0. The big-M re�ects the assump-
tion that the expected daily demand can never exceed the container capacity. In addition, a
daily rolling horizon enforces the one-day back-order limit. Inequalities (24) force the pickup
quantity to zero if the container is not visited. Inequalities (25) and (26) represent the OU
policy. The big-M values in constraints (24) and (26) can be set to 2ωi for t = 0 and to ωi
otherwise, re�ecting the fact that the picked-up inventory can never exceed capacity, except
on day t = 0.

Iit = Ii(t−1) −
∑
k∈K

qik(t−1) + E(ρi(t−1)), ∀t ∈ T +, i ∈ P (21)

Iit 6 ωi, ∀t ∈ T +, i ∈ P (22)

Ii0 −ωi 6 ωi
∑
k∈K

yik0, ∀i ∈ P (23)

qikt 6Myikt, ∀t ∈ T , k ∈ K, i ∈ P (24)

qikt 6 Iit, ∀t ∈ T , k ∈ K, i ∈ P (25)

qikt > Iit −M(1− yikt), ∀t ∈ T , k ∈ K, i ∈ P (26)

In the context of vehicle capacities, inequalities (27) limit the cumulative quantity on the
vehicle at each container, while equalities (28) reset it to zero at the origin, destination, and
dumps. Keeping track of the cumulative quantity on the vehicle is achieved by constraints
(29).

qikt 6 Qikt 6 Ωk, ∀t ∈ T , k ∈ K, i ∈ P (27)

Qikt = 0, ∀t ∈ T , k ∈ K, i ∈ N \ P (28)

Qikt + qjkt 6 Qjkt +Ωk (1− xijkt) , ∀t ∈ T , k ∈ K, i ∈ N \ {d}, j ∈ P (29)

The next four constraints express the intra-day temporal characteristics of the problem. In-
equalities (30) calculate the start-of-service time at each point. In addition, these constraints
eliminate the possibility of subtours and ensure that a point is not visited more than once by
the same vehicle. Constraints (31), (32) and (33) enforce the time windows and maximum
tour duration.

Sikt + δi + τijk 6 Sjkt + (µi + δi + τijk) (1− xijkt) , ∀t ∈ T , k ∈ K, i ∈ N \ {d}, j ∈ N \ {o} (30)
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λi
∑
j∈N

xijkt 6 Sikt, ∀t ∈ T , k ∈ K, i ∈ N \ {d} (31)

Sjkt 6 µj
∑
i∈N

xijkt, ∀t ∈ T , k ∈ K, j ∈ N \ {o} (32)

0 6 Sdkt − Sokt 6 H ∀t ∈ T , k ∈ K (33)

Finally, lines (34) and (35) establish the variable domains.

xijkt, yikt, zkt ∈ {0, 1}, ∀t ∈ T , k ∈ K, i, j ∈ N (34)

qikt, Qikt, Iit, Sikt > 0, ∀t ∈ T , k ∈ K, i ∈ N (35)

3.3 Model Reformulations for Solving Benchmark Instances

The model presented above describes a problem that is not encountered in the literature. In
order to evaluate the performance of the solution methodology presented in Section 4, we
benchmark it to less general problems from the literature. Below, we present the reformu-
lations of the original model to solve selected IRP and VRP instances from the literature.
The corresponding modi�cations to the general solution methodology are described in Sec-
tion 4.3.

3.3.1 IRP Reformulation.

For the benchmark IRP instances from the literature, we assume a distribution context and the
presence of inventory holding costs at the depot and the customers. There are no intermediate
facilities. We are in a deterministic setting and ρit = E (ρit). The commodity becomes available
at the depot at a rate ρot on day t and is consumed by customer i at a rate ρit on day t. Let
ho and hi denote the inventory holding cost per day at the depot and customer i, respectively.
In addition, we rede�ne qikt as the quantity delivered by vehicle k to customer i on day t, and
Qikt as the cumulative quantity delivered by vehicle k when arriving at point i on day t. The
objective function of the benchmark IRP is composed of the inventory holding costs at the
depot and the customers, and the routing cost, and writes as:

min zIRPB =
∑

t∈T ∪T +

hoIot +
∑

t∈T ∪T +

∑
i∈P

hiIit

+
∑
t∈T

∑
k∈K

ϕkzkt + βk∑
i∈N

∑
j∈N

πijxijkt + θk (Sdkt − Sokt)

. (36)

A special set of constraints is needed for the inventory de�nition at the depot. Constraints
(37) de�ne the inventory level at the depot as the sum of the previous day's inventory and
quantity made available minus the previous day's amount delivered to customers. Inequalities
(38) forbid a stock-out at the depot given the total quantity delivered to customers.

Iot = Io(t−1) + ρo(t−1) −
∑
k∈K

∑
i∈P

qik(t−1), ∀t ∈ T + (37)
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Iot >
∑
k∈K

∑
i∈P

qikt, ∀t ∈ T (38)

We rede�ne the evolution of the inventory level at the customers for a distribution context.
Constraints (39) de�ne the inventory level at the customers as the sum of the previous day's
inventory and quantity delivered minus the previous day's demand. Constraints (38) forbid
the occurrence of stock-outs.

Iit = Ii(t−1) +
∑
k∈K

qik(t−1) − ρi(t−1), ∀i ∈ P, t ∈ T + (39)

Iit > 0, ∀i ∈ P, t ∈ T + (40)

The OU policy also needs to be rede�ned for a distribution context. Constraints (41), (42),
and (43) express the fact that if a customer is visited, its inventory is brought up to its
capacity.

qikt > ωiyikt − Iit, ∀t ∈ T , k ∈ K, i ∈ P (41)

qikt 6 ωi − Iit, ∀t ∈ T , k ∈ K, i ∈ P (42)

qikt 6 ωiyikt, ∀t ∈ T , k ∈ K, i ∈ P (43)

To avoid unnecessary complications in the reformulation, we can safely assume that there is
a single dummy dump with zero service time and distance to the depot. The basic rout-
ing constraints (15)�(20), the vehicle capacity constraints (27)�(29), the intra-day temporal
constraints (30)�(33), and the domain constraints (34)�(35) can thus be reused.

3.3.2 VRP Reformulation.

For the VRP, it su�ces to collapse the planning horizon to T = {0} and rede�ne the objective
function z in terms of the Routing Cost (RC) only:

min zVRPB =
∑
k∈K

ϕkzk0 + βk∑
i∈N

∑
j∈N

πijxijk0 + θk (Sdk0 − Sok0)

. (44)

For day t = 0, demands are deterministic. As far as the constraints are concerned, the
inequality sign in constraints (18) of the original model becomes an equality sign, providing
that each container is visited by exactly one vehicle. Constraints (21) and (22) are dropped
since the VRP is solved for a single period and we disregard its e�ect on the future. Constraints
(23) are dropped as they become redundant given the modi�ed constraints (18). Since there is
no inventory tracking over the planning horizon, it is irrelevant whether we are in a collection
or in a distribution context.

4 Adaptive Large Neighborhood Search

Adaptive Large Neighborhood Search (ALNS) was introduced by Ropke and Pisinger (2006a)
in the context of the pickup and delivery problem with time windows. It is a type of large
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neighborhood search in which a number of fairly simple operators compete in modifying the
current solution. At each iteration of the search process, a number of customers is removed
from the current solution by a destroy operator, after which they are reinserted elsewhere by
a repair operator. In the context of our IRP, not all customers need to be visited every day, or
even at all. Hence, we do not require that all removed customers should be reinserted by the
repair operator. The search guiding principle can be based on any metaheuristic framework.
Simulated annealing appears to be the preferred approach in the ALNS literature, and is also
the one we implement. Given an incumbent solution s, a randomly drawn neighbor solution
s′ is always accepted if f(s′) < f(s), and with probability exp(−(f(s′) − f(s))/T) otherwise,
with f(s) representing the solution cost and T > 0 the current temperature. The temperature
is initialized as T start and is reduced at each iteration by a cooling rate r ∈ (0, 1). The search
stops when T reaches a predetermined T end.

Operator choice is governed by a roulette-wheel mechanism. Each operator i has a weight
Wi, which depends on its past performance and a score. Given the set of destroy (repair)
operators O, the destroy (repair) operator i is selected with probability Wi/

∑
j∈OWj. The

ALNS starts with all weights set to one and all scores set to zero. The scores of the selected
destroy-repair couple are increased by e1 if they �nd a new best feasible solution, by e2 < e1 if
they improve the incumbent, and by e3 < e2 if they do not improve the incumbent but the new
solution is accepted. This strategy rewards successful operator couples, while at the same time
maintaining diversi�cation during the search. It is important to note that if a destroy-repair
couple leads to a visited solution, no reward is applied. The search is divided into segments
of F iterations each, at the end of which the operator weights are updated. Let CFi denote the
score of operator i and NFi the number of times it was applied in the last segment of length F.
The new weights are computed as follows:

Wi =

{
Wi if NFi = 0,
(1− b)Wi + bC

F
i/
(
miN

F
i

)
otherwise.

(45)

In expression (45), mi is a normalization factor damping the weights of more computationally
expensive operators by multiplying the number of times they were applied (Ropke and Pisinger,
2006b; Coelho et al., 2012a). The value b ∈ [0, 1] is a reaction factor, controlling the relative
e�ect of past performance and the scores on the new weights. Once the weights are updated,
CFi and N

F
i are reset to zero. Algorithm 1 is a pseudocode of the ALNS implementation with

simulated annealing. The function f(·) represents the full solution cost including penalties
for feasibility violations, as explained in Section 4.1 next. Regarding the initial solution sinit,
we build empty tours consisting of the depot as an origin and destination and one dump in
between, without inserting any containers. An empty tour is built for each available vehicle
on each day of the planning horizon. Since the destroy operators will have no e�ect in the
beginning, the repair operators will insert containers and construct a non-empty solution.
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Algorithm 1 ALNS Pseudocode

Input initial solution sinit

Output best found solution sbest

1: all weights equal to 1, all scores equal to 0
2: sbest ← s← sinit

3: T ← T start

4: while T > T end do

5: s′ ← s

6: select a destroy-repair couple using roulette wheel and apply to s′

7: if f(s′) < f(s) then

8: s← s′

9: if f(s′) < f(sbest) and s′ is feasible then
10: sbest ← s′

11: update scores of destroy-repair couple by e1
12: else

13: update scores of destroy-repair couple by e2
14: end if

15: else if s′ is accepted
16: s← s′

17: update scores of destroy-repair couple by e3
18: end if

19: if iteration count is multiple of F then

20: update weights and reset scores to 0
21: end if

22: T ← (1− r)T

23: end while

4.1 Solution Representation

To facilitate the search and avoid becoming trapped in local optima, we admit infeasible
intermediate solutions at a penalty. This relaxation technique is especially useful for tightly
constrained problems. Let s be a solution and let N ′kt(s) denote all point visits by vehicle k on
day t in s, where each visit is a replication of the visited point. In addition, let P ′kt(s) ⊂ N ′kt(s)
denote all point visits where the next visit is a dump. We also de�ne the function (x)+ =

max{0, x}. Our ALNS admits the following types of intermediate feasibility violations:

1. Vehicle capacity violation is the sum of excess cumulative demand in P ′kt(s), ∀t ∈ T , k ∈
K. Formally, it is de�ned as:

VΩ(s) =
∑
t∈T

∑
k∈K

∑
i∈P ′kt

(Qikt −Ωk)
+. (46)

2. Time window violation is the total violation of the upper time window bounds µi in
N ′kt(s), ∀t ∈ T , k ∈ K. Lower time window bounds cannot be violated because if the
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vehicle arrives at point i before λi, it waits. Hence, formally, we have:

Vµ(s) =
∑
t∈T

∑
k∈K

∑
i∈N ′kt

(Sikt − µi)
+. (47)

3. Duration violation is expressed as the sum of excess durations. It is veri�ed after time
window violation. For each tour that has no time window violation, we apply forward
time slack reduction (Savelsbergh, 1992), which may minimize tour duration while pre-
serving time window feasibility. In mathematical terms, duration violation writes as:

VH(s) =
∑
t∈T

∑
k∈K

(Sdkt − Sokt − H)+. (48)

4. Container capacity violation is the sum of excess container inventories ∀t ∈ T +, i ∈ P,
or:

Vω(s) =
∑
t∈T +

∑
i∈P

(Iit −ωi)
+. (49)

5. Backorder limit violation is the sum of excess container inventories on day t = 0, ∀i ∈ P
that are not visited on day t = 0. In mathematical terms, this is expressed as:

V0(s) =
∑
i∈P

((
1−
∑
k∈K

yik0

)
(Ii0 −ωi)

+

)
. (50)

6. Accessibility violation is the sum of inaccessible visits in N ′kt(s), ∀t ∈ T , k ∈ K. They
are accounted for as:

Vα(s) =
∑
t∈T

∑
k∈K

∑
i∈N ′kt

(yikt − αik)
+. (51)

Including the possibility of all violations, the complete solution cost during the search is
represented by:

f(s) = z(s) + LΩVΩ(s) + LµVµ + LHVH(s) + LωVω(s) + L0V0(s) + LαVα(s). (52)

The parameters LΩ through Lα are the penalties for each type of feasibility violation. They
are dynamically adjusted during the search so as to encourage the exploration of infeasible
solutions but to avoid staying infeasible for too long. At each accepted solution, the incumbent
s is checked for each type of violation. If it is non-zero, its respective penalty is increased by a
factor ` ∈ (0, 1], otherwise it is reduced by the same factor. If s has no feasibility violation, the
values of f(s) and z(s) coincide. As indicated in Algorithm 1, the update of the best solution
requires feasibility with respect to conditions (46) through (51).
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4.2 Operators

The main ingredient of the ALNS are the destroy and repair operators. Some of the operators
are borrowed or inspired from Coelho et al.'s (2012a) ALNS for the consistent multi-vehicle
IRP and from Buhrkal et al.'s (2012) ALNS and Hemmelmayr et al.'s (2013) VNS for the VRP
with intermediate facilities. Our particular implementation also accounts for the fact that we
have a heterogeneous �xed �eet. We use the following destroy operators:

1. Remove ν containers randomly. This operator selects a random tour and removes a
random container from it. It is applied ν times, where ν is an integer drawn from a
discrete semi-triangular distribution bounded below by 1 and above by the number of
containers in P. Small ν's result in cosmetic changes to the solution, while big ν's, which
are drawn with a lower probability, lead to larger perturbations.

2. Remove ν worst containers. This operator removes the container that would lead to
the largest savings in the solution cost. It is applied ν times.

3. Shaw removals. Based on the ideas of Shaw (1997) and Ropke and Pisinger (2006a), this
operator removes customer clusters. In particular, it selects a random tour and a random
container i in it. It then proceeds to �nd the distance πmin

ij to the closest container j in
the same tour, and removes container i as well as all containers from this tour that are
within 2πmin

ij of i. If the selected container i is the only container in the tour, it is the
only one that is removed.

4. Empty a random day. This operator selects a random day and empties all tours per-
formed on it.

5. Empty a random vehicle. This operator selects a random vehicle and empties the tours
performed by it on all days.

6. Remove a random dump. This operator selects a random tour and a random dump in
it, excluding the last dump, and removes it.

7. Remove the worst dump. This operator removes the dump that would lead to the
largest savings in the solution cost. The last dump in each tour is never removed.

8. Remove consecutive visits. This operator inspects each container over the planning
horizon and, if it is visited on two consecutive days, removes the second visit. This is
based on the idea that optimal or good-quality solutions will rarely have container visits
on consecutive days.

In addition, we use the following repair operators:

1. Insert ν containers randomly. This operator selects a random tour and a random
container from P not visited on the day the tour is performed, and inserts it in the
tour using best insertion, i.e. in the position in the selected tour that would lead to the
smallest increase in the solution cost. It is applied ν times.
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2. Insert ν containers in the best way. This operator selects a random container from P
and inserts it in the tour and in the position that would lead to the smallest increase
in the solution cost, checking that the container is not visited on the day the tour is
performed. It is applied ν times.

3. Shaw insertions. This operator selects a random tour and a random container i ∈ P
not visited on the day the tour is performed. It then proceeds to �nd the distance πmin

ij

to the closest container j ∈ P also not visited on this day. It inserts into the selected
tour the container i as well as all containers not served on this day that are within 2πmin

ij

of i using best insertion.

4. Swap ν random containers. This operator selects two random tours and a random
container in each one, and swaps the container-to-tour assignment by using best insertion
in each tour. It is applied ν times.

5. Insert a dump randomly. This operator selects a random tour and a random dump
from D and inserts it at a random position in the tour.

6. Insert a dump in the best way. This operator selects a random dump from D and
inserts it in the tour and in the position that would lead to the smallest increase in the
solution cost.

7. Swap random dumps. This operator selects two random tours and a random dump in
each one, and swaps the dumps.

8. Replace a random dump. This operator selects a random tour and a random dump in
it, and replaces it with another random dump from D.

9. Reorder dumps. Based on the idea of Hemmelmayr et al. (2013), this operator selects a
random tour, removes all dump visits from it, and �nds the locally optimal dump visit
con�guration that preserves vehicle capacity feasibility. Figure 3 provides an illustrative
example of a tour starting at the depot, visiting containers i1 through i5, and terminating
at the depot. The values of ρ1 through ρ5 denote the container demands, and we assume
a vehicle with a capacity of 10 units. Because a dump will never be visited between the
depot and the �rst container, they can be merged into a single node. Each arc starts at a
container and ends at a container or the depot, visiting on its way the indicated containers
and the best dump, either d1 or d2, before the end node. The resulting directed graph
is not necessarily complete, as it only contains the vehicle capacity preserving arcs. The
solution to the problem amounts to �nding the shortest path from the origin to the
destination node representing the depot. We use the Bellman-Ford algorithm and post-
optimize the result using 2-opt local search.

The destroy operators that empty a random day and a random vehicle leave the a�ected
tour with the depot as an origin and destination, and a dump, and the cost of such a tour
is considered zero. Thus, all original tours always remain available during the search for
removal of points from or insertion of points into. This is a straightforward way to manage the
presence of a heterogeneous �xed �eet without having to re-evaluate periodically vehicle-to-
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Figure 3: Feasibility Graph of the Reorder Dumps Operator
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tour assignments. This strategy will likely not be applicable to more classical metaheuristics
that exploit much smaller neighborhoods.

4.3 Algorithmic Modi�cations for Solving Benchmark Instances

Several modi�cations to the original ALNS algorithm are needed in order to integrate the
model reformulations described in Section 3.3 and necessary for solving the benchmark IRP
and VRP instances.

4.3.1 Modi�cations for the Benchmark IRP.

The benchmark IRP considers no intermediate facilities and so we disregard all dump-related
operators. To avoid further changes to the algorithm, the always-present dump visit before the
destination depot is created as a dummy node with zero service time and distance to the depot,
and as such does not a�ect the solution. For a given solution s, we de�ne the depot inventory
violation as expressed by constraints (38) in the benchmark IRP reformulation:

VI(s) =
∑
t∈T

(∑
k∈K

∑
i∈P

qikt − Iot

)+

. (53)

The violation VI(s) is multiplied by parameter LI and added to the objective function repre-
sentation f(s) as in expression (52). Additionally, we rede�ne the container capacity violation
(49) in terms of stock-out as it applies to a distribution context:

Vω(s) =
∑
t∈T +

∑
i∈P

(−Iit)
+. (54)

The back-order violation (50) is dropped since back-orders do not apply to the benchmark
IRP.

4.3.2 Modi�cations for the Benchmark VRP.

In the original ALNS algorithm, the number of containers inserted into the solution by a repair
operator is randomly drawn and not necessarily the same as the number of containers removed
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by the destroy operator applied before it. This design allows to vary the number of containers
visited each day, as this is a decision variable in the IRP. Contrarily, the VRP assumes that all
containers are visited in the solution. To achieve the latter, we implement an initial solution
construction procedure and a simple rearrangement of the destroy and repair operators.

To construct an initial solution, we use repair operator number 1, insert ν containers ran-

domly, to insert all containers into the solution. The resulting initial solution is not necessarily
feasible. Then we rede�ne the operators so that all destroy operators and repair operators 4
through 9 are now drawn �rst, while repair operators 1 through 3 are drawn second. This
separation is based on the operators' ability to reinsert containers into the solution. In other
words, the repair operators are now only those that have this ability, namely insert ν con-

tainers randomly, insert ν containers in the best way, and Shaw insertions. Moreover,
the number of containers to be reinserted is not random. The repair operators now reinsert all
containers that were previously removed by the destroy operator. If the destroy operator did
not remove any containers, the repair operator is not applied. Given that all containers are
now visited in the solution, we drop violations (49) and (50) from the solution representation,
i.e. container capacity violation and backorder violation. If the problem at hand considers
no intermediate facilities, we disregard all dump-related operators. The always-present dump
visit before the destination depot in this latter case is created as a dummy node with zero
service time and distance to the depot, and as such does not a�ect the solution.

5 Numerical Experiments

The ALNS is implemented as a single-thread application in Java, and the forecasting model
and the probability calculator for the state probability tree (Figure 2) are scripted in R. All
tests have been carried out on a 3.33 GHz Intel Xeon X5680 server running a 64-bit Ubuntu
12.04.5. Each instance is solved 10 times, out of which we report the best and average result,
unless indicated otherwise. Section 5.1 describes how the algorithmic parameters were tuned.
This is followed by results of the ALNS performance on benchmark IRP and VRP instances
in Section 5.2. Finally, Section 5.3 presents an extensive analysis of the model and solution
methodology applied on instances derived from real data.

5.1 Parameter Tuning

All algorithmic parameters were tuned on the Archetti et al. (2007) instances for which optimal
solutions are available. We �rst tuned the SA-related parameters followed by the ALNS-
related parameters. Initial values were either borrowed from ALNS implementations in the
literature or based on preliminary trial-and-error combinations. The parameters were tuned
one by one, unless indicated otherwise, in the order in which they appear in Table 3. The
initial temperature was set su�ciently high for an initial feasible solution to be found without
di�culty. Once this is the case, the temperature is calibrated so that the probability of
accepting a solution which is worse than it by a factor of w is 50%. The purpose of this
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Table 3: Algorithmic Parameters

SA-Related ALNS-Related

Parameter Value Parameter Value

Initial temperature (T start) 10,000 F segment length 2000
Start temperature control parameter (w) 0.6 Reaction factor (b) 0.5
Cooling rate (r) 0.99998 Reward e1 30
Final temperature (T end) 0.01 Reward e2 20
Penalty change rate (`) 1.06 Reward e3 5

strategy is to limit the search at very high temperatures (Ropke and Pisinger, 2006a). The
cooling rate typically results in several hundred thousand iterations on the Archetti et al. (2007)
instances, and the �nal temperature allows su�cient time for the algorithm to converge. The
penalty change rate multiplies or divides the penalties associated with conditions (46) through
(51) as explained in Section 4.1. After �xing the SA-related parameters, we tuned the ALNS-
related parameters. The rewards were tuned together, and after testing several con�gurations
we chose one that attributes a relatively lower reward e3 for a non-improving but accepted
solution. Two of the operators, namely remove ν worst containers and insert ν containers

in the best way, were given a normalization factor mi of 4.5. The normalization factors for
the rest are all equal to one. All numerical experiments are performed with this parameter
setting, unless indicated otherwise.

5.2 Benchmark Results

The model reformulations and algorithmic modi�cations presented in Section 3.3 and Sec-
tion 4.3, respectively, were necessary in order to assess the performance of the solution method-
ology on benchmark instances from the literature. Section 5.2.1 and Section 5.2.2 below present
the results obtained by the ALNS on classical IRP and VRP instance testbeds.

5.2.1 Results on IRP Benchmarks.

We ran the ALNS algorithm on the IRP benchmark set proposed by Archetti et al. (2007),
which is the �rst classical IRP testbed in the literature. It represents a deterministic IRP in
a distribution context where an inventory holding cost ho applies at the depot, and inventory
holding costs hi apply at the customers. There is a single vehicle available each day, with
its daily deployment cost ϕk and unit-time running cost θk both equal to zero, and its unit-
distance running cost βk = 1. Stock-outs are forbidden at the customers and the depot. Vehicle
tours are only limited by the vehicle capacity, and no rich VRP features such as intermediate
facilities, time windows, or a maximum tour duration are considered.

The set includes two equal subsets with high, respectively low, inventory holding costs hi.
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The length of the planning horizon |T | is either 3 or 6 periods, and the number of customers
n varies from 5 to 50 for |T | = 3, and from 5 to 30 for |T | = 6. Five instances are generated
for each combination of hi, |T | and n, thus resulting in a total of 160 instances. Using a
branch-and-cut algorithm, Archetti et al. (2007) solve with a proof of optimality all instances
except one (low hi, |T | = 3, n = 50), where the gap is brought to 0.99% within the time limit
of two hours. A number of heuristic algorithms are tested on these instances or derivations
thereof (Archetti et al., 2012; Coelho et al., 2012a,b). The most successful one is the hybrid
heuristic of Archetti et al. (2012) which is able to achieve an optimality gap of 0.1% for the OU
policy based on a single experiment per instance, and with computation times up to several
thousand seconds for the largest instances on an Intel Dual Core 1.86 GHz processor.

Tables 4 and 5 report our results on the Archetti et al. (2007) instances with high and low
inventory holding costs, respectively. Each row represents the average over the �ve instances
for each combination of hi, |T | and n. The �rst two columns report the number of periods
|T | in the planning horizon and the number of customers n. This is followed by two versions
of the ALNS. The one labeled �Fast" runs on the parameter con�guration from Table 3, while
the one labeled �Slow" uses a cooling rate r of 0.999995 resulting in more iterations. For each
of them, we report the computation time in seconds, and the percent gap of the best and
average value of the objective function over 10 runs. Our results are comparable to the best
from the literature. The slow version attains a best gap of 0.02% and 0.06%, and an average
gap of 0.11% and 0.30% respectively, on the high and low inventory holding cost instances. In

Table 4: Results on Archetti et al. (2007) Instances with High Inventory Holding Cost

ALNS Fast Version ALNS Slow Version

|T | n Runtime(s.) Best Gap(%) Avg Gap(%) Runtime(s.) Best Gap(%) Avg Gap(%)

3 5 8 0.00 0.00 32 0.00 0.00
3 10 14 0.00 0.00 59 0.00 0.00
3 15 22 0.00 0.00 93 0.00 0.00
3 20 36 0.00 0.01 149 0.00 0.00
3 25 53 0.00 0.06 221 0.00 0.01
3 30 77 0.00 0.27 318 0.00 0.06
3 35 108 0.01 0.15 440 0.00 0.04
3 40 149 0.12 0.48 602 0.01 0.23
3 45 199 0.17 0.47 808 0.10 0.25
3 50 276 0.15 0.52 1074 0.07 0.25

6 5 14 0.00 0.00 55 0.00 0.00
6 10 28 0.00 0.01 113 0.00 0.00
6 15 53 0.00 0.07 198 0.00 0.01
6 20 81 0.04 0.14 331 0.01 0.08
6 25 128 0.19 0.64 513 0.10 0.38
6 30 189 0.08 0.70 772 0.07 0.38

Average 90 0.05 0.22 361 0.02 0.11
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Table 5: Results on Archetti et al. (2007) Instances with Low Inventory Holding Cost

ALNS Fast Version ALNS Slow Version

|T | n Runtime(s.) Best Gap(%) Avg Gap(%) Runtime(s.) Best Gap(%) Avg Gap(%)

3 5 7 0.00 0.00 30 0.00 0.00
3 10 14 0.00 0.00 55 0.00 0.00
3 15 22 0.00 0.00 89 0.00 0.00
3 20 34 0.00 0.04 141 0.00 0.01
3 25 52 0.00 0.17 210 0.00 0.04
3 30 71 0.02 0.56 295 0.00 0.14
3 35 101 0.01 0.53 423 0.00 0.18
3 40 140 0.37 1.20 567 0.12 0.48
3 45 191 0.59 1.71 751 0.26 1.03
3 50 247 0.30 1.52 1009 0.25 1.00

6 5 13 0.00 0.00 54 0.00 0.00
6 10 28 0.00 0.02 109 0.00 0.01
6 15 49 0.00 0.03 188 0.00 0.00
6 20 77 0.08 0.26 315 0.05 0.15
6 25 121 0.25 1.29 493 0.24 0.65
6 30 182 0.67 1.90 726 0.07 1.06

Average 84 0.14 0.58 341 0.06 0.30

comparison, Archetti et al.'s (2012) algorithm obtains a gap of 0.06% and 0.10%, respectively.
We are able to solve to optimality all instances with up to 35 customers for |T | = 3, and with
up to 15 customers for |T | = 6. Similar quality results can also be found in Coelho et al.
(2012a) and Coelho et al. (2012b), also when it comes to the higher gaps on the low inventory
holding cost instances. A possible explanation could be that for low inventory holding costs
the importance of the container selection decision in each period becomes relatively more
pronounced. Our computation times are also very competitive compared to those in the
literature, although a more rigorous scaling approach could be di�cult due to the lack of
precise processor architecture speci�cations in some of the works.

5.2.2 Results on VRP Benchmarks.

The SIRP that we study includes a rich routing problem. Since the routing component in the
IRP benchmarks under consideration is very simple, we test our ALNS on two VRP benchmark
instance sets, namely those of Crevier et al. (2007) and Taillard (1999).

Crevier et al. (2007) solve the Multi-depot VRP with Inter-depot routes (MDVRPI). Their
instances consist of two sets of randomly generated instances with intermediate facilities, a
homogeneous �xed �eet, and a maximum tour duration. Each vehicle's daily deployment cost
ϕk and unit-time running cost θk are both equal to zero, and its unit-distance running cost
βk = 1. The set (a1�l1) includes 12 newly generated instances with two to �ve intermediate
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facilities and 48 to 216 customers. The set (a2�j2) includes 10 instances derived from those of
Cordeau et al. (1997) by adding a central depot where the vehicles are stationed. It contains
four to six intermediate facilities and 48 to 288 customers. The Best Known Solutions (BKS)
to both sets are obtained by Hemmelmayr et al. (2013) who use a VNS with the dynamic
programming procedure for the insertion of the intermediate facilities presented in Section 4.2.
In Table 6, the instance name is followed by the computation time in seconds, the best and
average cost obtained by Hemmelmayr et al. (2013) in 10 runs. The next three columns report
the values produced by our ALNS. The last two columns represent the percent gap of our best
and our average cost with respect to those of Hemmelmayr et al. (2013). Our best results are
on average 0.49% from those of Hemmelmayr et al. (2013) and we are able to reach six of the
BKS. The gap grows to about 1% for the average value over 10 runs.

Taillard (1999) formalizes the Heterogeneous Fixed Fleet VRP (HFFVRP). The version we
solve, known as the HFFVRP with �xed and variable costs, considers a non-zero daily deploy-
ment cost ϕk and unit-distance running cost βk, and a zero unit-time running cost θk. The
instance set is derived from the eight largest Golden et al. (1984) instances by specifying ϕk
and βk for each vehicle k so that no single vehicle is better than any other in terms of its
capacity to cost ratio. The instances include 50, 75, and 100 customers, three to six vehicle
types and up to six vehicles per type. Taillard (1999) spurred a strong scienti�c interest in

Table 6: Results on Crevier et al. (2007) Instances

Hemmelmayr et al. (2013) ALNS

Instance Runtime(s.) Best Cost Avg Cost Runtime(s.) Best Cost Avg Cost Best Gap(%) Avg Gap(%)

a2 73.80 997.94 997.94 108.49 997.94 998.17 0.00 0.02
b2 384.60 1291.19 1291.19 511.67 1291.19 1296.57 0.00 0.42
c2 900.60 1715.60 1715.84 1703.63 1718.34 1732.29 0.16 0.96
d2 1808.40 1856.84 1860.92 4833.00 1868.08 1887.63 0.61 1.44
e2 2958.60 1919.38 1922.81 10,288.66 1940.67 1954.59 1.11 1.65
f2 4274.40 2230.32 2233.43 20,968.55 2270.12 2296.05 1.78 2.80
g2 222.60 1152.92 1153.17 253.66 1152.92 1153.94 0.00 0.07
h2 939.60 1575.28 1575.28 1801.07 1582.64 1591.36 0.47 1.02
i2 2515.20 1919.74 1922.24 8062.43 1945.07 1972.93 1.32 2.64
j2 4402.80 2247.70 2250.21 19,591.55 2275.09 2295.72 1.22 2.02

a1 85.20 1179.79 1180.57 105.42 1179.79 1196.35 0.00 1.34
b1 383.40 1217.07 1217.07 575.90 1217.07 1222.49 0.00 0.44
c1 1224.00 1866.76 1867.96 3483.87 1876.57 1888.09 0.53 1.08
d1 94.20 1059.43 1059.43 97.97 1061.23 1062.27 0.17 0.27
e1 373.20 1309.12 1309.12 496.69 1309.12 1332.22 0.00 1.76
f1 1536.00 1570.41 1573.05 3998.06 1572.46 1589.58 0.13 1.05
g1 202.80 1181.13 1183.32 220.09 1185.35 1187.93 0.36 0.39
h1 876.60 1545.50 1548.61 1445.75 1555.70 1565.24 0.66 1.07
i1 2014.80 1922.18 1923.52 5504.89 1932.49 1946.75 0.54 1.21
j1 166.80 1115.78 1115.78 275.86 1118.84 1123.06 0.27 0.65
k1 873.60 1576.36 1577.96 1591.90 1582.32 1598.36 0.38 1.29
l1 2128.80 1863.28 1869.70 5992.99 1884.08 1909.46 1.12 2.13

Average 1292.73 1559.71 1561.32 4177.82 1568.96 1581.87 0.49 1.17
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Table 7: Results on Taillard (1999) Instances

ALNS

Instance BKS Runtime(s.) Best Cost Avg Cost Best Gap(%) Avg Gap(%)

13 3185.09 359.52 3214.48 3236.09 0.92 1.60
14 10,107.53 378.82 10,140.11 10,148.63 0.32 0.41
15 3065.29 367.82 3069.76 3078.58 0.15 0.43
16 3265.41 365.38 3288.69 3306.93 0.71 1.27
17 2076.96 714.02 2109.72 2141.08 1.58 3.09
18 3743.58 780.14 3776.04 3835.14 0.87 2.45
19 10,420.34 1581.91 10,489.85 10,511.57 0.67 0.88
20 4761.26 1386.04 4896.63 4917.27 2.84 3.28

Average 5078.18 741.70 5123.16 5146.91 1.01 1.67

this problem resulting in at least a dozen algorithms in the literature. The proof of optimality
of the solutions to the 50- and 75-customer instances of the problem is due to Baldacci and
Mingozzi (2009). In Table 7, the instance name is followed by the BKS, which are due to mul-
tiple authors. Next are the computation time in seconds, the best and average cost obtained
by our ALNS. The last two columns report the percent gap of our best and average cost with
respect to the BKS. Our results are in the order of 1-2% from the BKS, most of which are
proved to be optimal. Computation times are in the order of �ve to 25 minutes.

5.3 Case Study

In this section, we analyze the performance of our ALNS on sets of IRP instances derived from
real data. Section 5.3.1 evaluates the e�ect of including the probability information in the
objective function in terms of its impact on the expected cost and the frequency of occurrence
of container over�ows and route failures. Section 5.3.2 compares the probabilistic approach to
alternative practical policies such as arti�cial bu�er capacities at the containers and trucks.
Section 5.3.3 employs a daily rolling horizon approach and derives empirical lower and upper
bounds on the resulting cost over a given planning horizon.

5.3.1 Probabilistic policies.

The state-of-practice data used in Sections 5.3.1 and 5.3.2 includes 63 instances, each covering
a week of white glass collections in the canton of Geneva, Switzerland in 2014, 2015, or 2016.
Tours should respect a maximum duration of four hours each, and the time windows correspond
to 8:00 a.m. to 12:00 p.m. The planning horizon is seven days long, starting on Monday and
�nishing on Sunday. As established by constraints (22) in the mathematical model, there
should be no expected over�ows on the �rst day after the planning horizon, in our case the
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following Monday. Each instance contains up to two heterogeneous vehicles of volume capacity
in the order of 30,000 liters and weight capacity of 10,000 to 15,000 kg, which are not available
on the weekend. On average, there are 41 containers per instance, and the maximum is 53,
and their volumes range from 1000 to 3000 liters. There are two dumps located far apart in
the periphery of the city of Geneva. For the trucks, we use a daily deployment cost of 100
CHF, a cost of 2.95 CHF per kilometer and a cost of 40 CHF per hour. The over�ow cost,
which is normally determined by the municipality, is set to 100 CHF. The demands for each
instance are forecast by the model from Section 3.1 using the past 90 days of observations for
each container. Two deposit sizes�two and ten liters�are used. For each instance, there is a
distinct forecasting error υ estimated by formula (4).

We perform two types of experiments on these instances. The �rst one considers the complete
objective function with all relevant costs, as de�ned by expression (9). We label the prob-
lem with this objective �Complete". The second one minimizes the routing cost de�ned by
expression (11), ignoring all costs related to container over�ows, emergency collections and
route failures, and we label the problem with the latter objective �Routing-only". Tables 8, 9
and 10 summarize the numerical results. In these three tables, the �rst three columns identify
the type of objective considered, the Emergency Collection Cost (ECC), and the Route Fail-
ure Cost Multiplier (RFCM). For each combination of emergency collection cost and RFCM,
Table 8 reports the computation time and descriptive statistics about the average number of
tours, container collections and dump visits, as well as the best and average cost for 10 runs
and the percent gap between them. We observe that computation times are in the order of
10 to 15 minutes, which is acceptable for an operational problem that is solved on a daily
basis. The results indicate clearly that the complete objective solution collects on average
more than twice as many containers and, as a consequence, performs more tours and dump
visits. In terms of expected cost, it is 50 to 60% more expensive. Since the optimal solution
is not available, we can only judge the quality of the result based on the gap between the best
and the average solution. It is in the order of 1% for the routing-only objective, and grows to
roughly 2% for the complete objective, re�ecting the more challenging search space produced

Table 8: Probabilistic Policies: Basic Results for Cost Analysis on Real Data Instances

Avg Num Avg Num Avg Num Best Cost Avg Cost Gap Avg-
Objective ECC RFCM Runtime(s.) Tours Containers Dump Visits (CHF) (CHF) Best(%)

Complete 100.00 1.00 781.71 1.96 43.44 2.31 664.76 679.54 2.22
Complete 100.00 0.50 862.13 1.96 43.43 2.30 664.82 678.84 2.11
Complete 100.00 0.25 806.52 1.95 43.52 2.28 664.34 677.81 2.03
Complete 100.00 0.00 715.82 1.95 43.80 2.28 664.00 677.11 1.97
Complete 50.00 1.00 915.61 1.92 41.08 2.20 650.86 662.18 1.74
Complete 50.00 0.50 812.67 1.91 41.22 2.21 650.55 662.28 1.80
Complete 50.00 0.25 809.76 1.91 41.19 2.19 650.72 661.88 1.71
Complete 50.00 0.00 790.21 1.91 41.07 2.19 651.09 661.93 1.66
Complete 25.00 1.00 814.44 1.90 39.56 2.13 641.43 651.24 1.53
Complete 25.00 0.50 789.00 1.90 39.56 2.14 641.79 652.04 1.60
Complete 25.00 0.25 789.40 1.90 39.57 2.15 641.42 651.85 1.63
Complete 25.00 0.00 783.33 1.89 39.59 2.13 642.71 651.71 1.40
Routing-only 0.00 0.00 725.46 1.83 16.77 1.87 422.64 425.08 0.58
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by its non-linear objective function. It appears that the solution cost is strongly in�uenced by
the emergency collection cost, but almost una�ected by the RFCM.

Table 9 is a more detailed breakdown of the cost and e�ciency structure of the various policies.
The fourth, �fth and sixth column decompose the average solution cost from Table 8 into
routing, over�ow and route failure cost. The last three columns report the total collected
volume in liters, and the volume per unit of total cost and routing cost, which can be regarded
as performance indicators. The results reveal that the routing cost of the complete objective
solution is on average only 30 to 35% higher than that of the routing-only objective solution.
The rest of the di�erence in the total solution cost is explained by the contribution of the
expected over�ow cost. The routing cost is lower for a lower emergency collection cost, while
the expected over�ow cost is higher. A higher emergency collection cost necessitates more
frequent visits as an attempt to further limit over�ows. On the contrary, paying a higher
emergency collection cost for a lower number of resulting over�ows in this case does slightly
reduce the expected over�ow cost captured in the objective function. The route failure cost in
both solutions is practically null. Not surprisingly, the solutions with the complete objective
collect more volume as well. However, a better indication of their e�ciency is provided by the
collected volume per unit cost, which is 15% higher with respect to the total cost, and 35%
higher with respect to the routing cost.

The relevance of the probability information captured by the objective function can be evalu-
ated through the analysis of the occurrence of extreme events. After solving each instance, we
perform 10,000 simulations. The forecasting error is sampled independently for each container
and each day using the estimate υ. We then evaluate the e�ect on the occurrence of container
over�ows and route failures in the solution provided by the ALNS algorithm. An over�ow is
counted on each day, i.e. if a container is over�owing on two consecutive days because it is not
collected, we count two over�ow events. Table 10 summarizes the average number of over�ows
and route failures at the 75th, 90th, 95th and 99th percentiles of the 10,000 simulation runs
on each of the 63 instances. We observe a strong negative correlation of the average number of
over�ows with the emergency collection cost and of the average number of route failures with

Table 9: Prob. Policies: Key Performance Indicators for Cost Analysis on Real Data Instances

Avg Routing Avg Over�ow Avg Rte Failure Avg Collected Liters Per Liters Per Unit
Objective ECC RFCM Cost (CHF) Cost (CHF) Cost (CHF) Volume (L) Unit Cost Routing Cost

Complete 100.00 1.00 579.78 99.73 0.03 47,234.59 69.51 81.47
Complete 100.00 0.50 579.46 99.33 0.05 47,225.62 69.57 81.50
Complete 100.00 0.25 577.84 99.93 0.04 47,455.19 70.01 82.13
Complete 100.00 0.00 578.83 98.28 0.00 47,662.90 70.39 82.34
Complete 50.00 1.00 559.44 102.72 0.02 45,646.48 68.93 81.59
Complete 50.00 0.50 558.37 103.82 0.09 45,852.89 69.24 82.12
Complete 50.00 0.25 558.47 103.35 0.07 45,949.94 69.42 82.28
Complete 50.00 0.00 557.16 104.77 0.00 45,788.15 69.17 82.18
Complete 25.00 1.00 547.74 103.46 0.04 44,682.00 68.61 81.57
Complete 25.00 0.50 548.10 103.83 0.11 44,653.66 68.48 81.47
Complete 25.00 0.25 547.75 104.05 0.06 44,678.38 68.54 81.57
Complete 25.00 0.00 546.34 105.37 0.00 44,773.34 68.70 81.95
Routing-only 0.00 0.00 425.08 0.00 0.00 25,286.94 59.49 59.49
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Table 10: Prob. Policies: Container Over�ows and Route Failures for Real Data Instances

Avg Num Over�ows Avg Num Route Failures

Objective ECC RFCM 75th Perc. 90th Perc. 95th Perc. 99th Perc. 75th Perc. 90th Perc. 95th Perc. 99th Perc.

Complete 100.00 1.00 0.98 1.78 2.40 3.58 0.03 0.03 0.04 0.05
Complete 100.00 0.50 0.99 1.78 2.39 3.55 0.04 0.05 0.05 0.07
Complete 100.00 0.25 0.97 1.80 2.38 3.56 0.04 0.05 0.06 0.10
Complete 100.00 0.00 0.94 1.77 2.33 3.54 0.08 0.10 0.12 0.16
Complete 50.00 1.00 1.26 2.19 2.82 4.14 0.05 0.05 0.05 0.05
Complete 50.00 0.50 1.28 2.19 2.84 4.16 0.06 0.07 0.08 0.09
Complete 50.00 0.25 1.28 2.18 2.83 4.15 0.04 0.06 0.07 0.10
Complete 50.00 0.00 1.31 2.23 2.85 4.18 0.07 0.09 0.10 0.12
Complete 25.00 1.00 1.48 2.46 3.14 4.58 0.05 0.05 0.05 0.07
Complete 25.00 0.50 1.48 2.46 3.14 4.58 0.05 0.07 0.07 0.10
Complete 25.00 0.25 1.51 2.50 3.18 4.61 0.04 0.07 0.07 0.09
Complete 25.00 0.00 1.54 2.51 3.19 4.64 0.08 0.10 0.10 0.12
Routing-only 0.00 0.00 16.97 20.45 22.56 26.70 0.01 0.03 0.04 0.05

the RFCM. What is more striking, however, is the di�erence between the series of complete
solutions on the one hand and the routing-only solution on the other. While the complete
solutions are able to limit the number of over�ows to no more than �ve, even at the extreme
of the simulated distribution, the average number of over�ows in the routing-only solution is
higher by a degree of magnitude.

Figure 4 is a visual representation of the average cost of over�ows that the collector would pay
at the 75th, 90th, 95th and 99th percentile of the simulated demand distribution over all 63
instances, for the routing only solution and for the complete solution with an ECC of 100 CHF
and an RFCM equal to one. The di�erences are consequential. The cost due to the routing-
only objective is from 17 times higher at the 75th percentile to 7 times higher at the 99th
percentile, which is a clear indication of the underestimation of risk in the face of stochastic
demand. Even at the 99th percentile, the complete objective would result in a total cost of
less than 1000 CHF, compared to more than 3000 CHF for the routing-only objective.

Figures 5 depicts the average number of container over�ows at the 75th, 90th, 95th and 99th
percentile for each instance over 10 runs. For the complete objective with an ECC of 100 CHF

Figure 4: Average Cost of Over�ows at Di�erent Percentiles of the Simulated Distribution
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Figure 5: Over�ows for All Instances at Di�erent Percentiles of the Simulated Distribution
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and an RFCM equal to one, the ratio of container over�ows to the number of containers in
the instance goes from 2% at the 75th to 10% at the 99th percentile. For the routing-only
objective, these values are 41% and 66%, respectively.

To study the main drivers of the number of container over�ows, we perform a series of linear
regressions. Table 11 consists of two parts. In part (a) the explanatory factor is the forecasting
error υ, while in part (b) it is the number of containers in the instance. In both parts, the
�rst column identi�es the type of objective considered, and the rest of the columns correspond
to the dependent variable, i.e. the average number of container over�ows at the 75th, 90th,
95th and 99th percentile. For each of them, we report the coe�cient of the explanatory factor
followed by a signi�cance code, and the coe�cient of determination R2. We observe that all
coe�cients are positive as expected and most of them are signi�cant at the 99% con�dence
level. The regressions on the forecasting error suggest that it explains approximately half of
the variability in the container over�ows for the routing-only objective and about a third in the
case of the complete objective with an ECC of 100 CHF and an RFCM equal to one. This result
is intuitive as higher forecasting errors lead to larger demand perturbations in the simulation
experiments and, as a consequence, to a higher rate of over�ows. The results of the regressions
on the number of containers in the instance exhibit a more pronounced di�erence. While it can
explain approximately 25% of the variability in the container over�ows for the routing-only
objective, the number of containers in the instance seems not to have an e�ect on the over�ows
in the case of the complete objective with an ECC of 100 CHF and an RFCM equal to one.
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Table 11: Driving Factors for the Occurrence of Container Over�ows

(a) Regressions on Forecasting Error υ

75th Percentile 90th Percentile 95th Percentile 99th Percentile

Objective Coe�cient R2 Coe�cient R2 Coe�cient R2 Coe�cient R2

Complete with ECC=100, RFCM=1 0.02∗∗∗ 0.36 0.02∗∗∗ 0.31 0.03∗∗∗ 0.37 0.03∗∗∗ 0.39
Routing-only 0.16∗∗∗ 0.52 0.18∗∗∗ 0.52 0.19∗∗∗ 0.51 0.21∗∗∗ 0.51

(b) Regressions on Number of Containers in the Instance

75th Percentile 90th Percentile 95th Percentile 99th Percentile

Objective Coe�cient R2 Coe�cient R2 Coe�cient R2 Coe�cient R2

Complete with ECC=100, RFCM=1 0.03∗∗ 0.08 0.03∗∗ 0.07 0.03∗∗ 0.07 0.04∗∗ 0.07
Routing-only 0.34∗∗∗ 0.25 0.37∗∗∗ 0.24 0.41∗∗∗ 0.26 0.47∗∗∗ 0.27

Note: Signi�cance codes ∗∗∗ 99%, ∗∗ 95%

We observe both very low values of the R2 statistic and less signi�cant coe�cients. This is a
desirable result as it would suggest that the number of over�ows does not scale up with the
instance size. It also has a managerial implication, giving a reliable estimate of extreme events
over a wide range of situations.

5.3.2 Alternative Policies.

To further study the theoretical justi�cation and practical relevance of the probabilistic ap-
proach, we compare it to an intuitive routing-only approach, in which during the solution of
the problem we use arti�cially low capacities for the containers and the trucks. This policy is
an attempt to control the number of container over�ows and route failures and it also leads,
undoubtedly, to higher routing costs due to the necessity of more frequent visits. After each
instance is solved, we perform the same simulation-based validation of the solution as in Sec-
tion 5.3.1. However, during the simulation we count the number of container over�ows and
route failures with respect to the original container and truck capacities. Thus, we have a fair
comparison between the probabilistic approach and the alternative policies of arti�cially low
capacities.

Tables 12, 13 and 14 are structured in the same way as Tables 8, 9 and 10 in Section 5.3.1.
Here, the objective is always routing-only and what varies are the Container E�ective Capacity
(CEC) and the Truck E�ective Capacity (TEC) as fractions of their original capacities. In
Table 12, we note the strong negative correlation between the container e�ective capacity and
the average number of tours, collected containers and dump visits in the solutions. We also
notice that the relative increase in the number of collected containers is much higher than the
reduction of the container e�ective capacity. This is an artifact of the �nite planning horizon
as many containers may be collected two or three times rather than once or twice due to
their smaller e�ective capacities. This e�ect will most likely diminish over the long run. The
solution cost appears to be in�uenced by both the container and the truck e�ective capacity.
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Interestingly, the solution gap grows substantially when the container e�ective capacity is
reduced to 75%. One explanation could be that since demands on certain days are quite high,
this con�guration leads to a tighter and at the same time more fragmented search space of
feasible solutions for the ALNS.

Table 13 shows the gradual growth of the routing cost as we reduce the e�ective capacities.
Since the objective is always routing-only, the over�ow and route failure components do not
apply. The last three columns show that, in addition to collecting more containers and as a
result more volume, the solutions with lower container e�ective capacities also collect more
volume per unit cost and unit routing cost. This is easily explained by the fact that collecting
more containers in the same geographic area reduces the average distance among them while
at the same time increasing the total collected volume. Table 14 describes the average results
of the 10,000 simulation runs that were performed on each instance with the original container
and truck e�ective capacities. It is immediately clear that considering arti�cially low capacities
during the solution has a marked e�ect in reducing over�ows and route failures. To be precise,
the average number of over�ows drops by roughly a third when the container e�ective capacity
is reduced to 90% and by roughly two thirds when it is reduced to 75%. On the other hand,
reducing the truck e�ective capacity to 90% can e�ectively eliminate the occurrence of route
failures.

Figures 6 and 7 present a side-by-side comparison of the probabilistic and the alternative poli-

Table 12: Alternative Policies: Basic Results for Cost Analysis on Real Data Instances

Avg Num Avg Num Avg Num Best Cost Avg Cost Gap Avg-
Objective CEC TEC Runtime(s.) Tours Containers Dump Visits (CHF) (CHF) Best(%)

Routing-only 1.00 1.00 812.43 1.83 16.77 1.87 422.72 425.48 0.65
Routing-only 1.00 0.90 845.99 1.84 16.72 1.88 422.73 426.94 0.99
Routing-only 1.00 0.75 865.26 1.83 16.81 1.93 424.29 428.02 0.88
Routing-only 0.90 1.00 882.96 2.00 22.69 2.04 486.88 488.76 0.39
Routing-only 0.90 0.90 853.53 2.00 22.69 2.06 487.38 489.20 0.37
Routing-only 0.90 0.75 860.20 2.00 22.71 2.17 489.55 491.91 0.48
Routing-only 0.75 1.00 1003.83 2.10 33.80 2.57 547.48 564.83 3.17
Routing-only 0.75 0.90 1010.03 2.11 33.87 2.73 553.27 570.32 3.08
Routing-only 0.75 0.75 1010.74 2.11 33.89 2.97 558.16 575.98 3.19

Table 13: Alt. Policies: Key Performance Indicators for Cost Analysis on Real Data Instances

Avg Routing Avg Over�ow Avg Rte Failure Avg Collected Liters Per Liters Per Unit
Objective CEC TEC Cost (CHF) Cost (CHF) Cost (CHF) Volume (L) Unit Cost Routing Cost

Routing-only 1.00 1.00 425.48 0.00 0.00 25,311.81 59.49 59.49
Routing-only 1.00 0.90 426.94 0.00 0.00 25,233.43 59.10 59.10
Routing-only 1.00 0.75 428.02 0.00 0.00 25,371.43 59.28 59.28
Routing-only 0.90 1.00 488.76 0.00 0.00 31,532.12 64.51 64.51
Routing-only 0.90 0.90 489.20 0.00 0.00 31,611.40 64.62 64.62
Routing-only 0.90 0.75 491.91 0.00 0.00 31,732.72 64.51 64.51
Routing-only 0.75 1.00 564.83 0.00 0.00 44,134.12 78.14 78.14
Routing-only 0.75 0.90 570.32 0.00 0.00 44,084.86 77.30 77.30
Routing-only 0.75 0.75 575.98 0.00 0.00 44,079.24 76.53 76.53

35



Table 14: Alt. Policies: Container Over�ows and Route Failures for Real Data Instances

Avg Num Over�ows Avg Num Route Failures

Objective CEC TEC 75th Perc. 90th Perc. 95th Perc. 99th Perc. 75th Perc. 90th Perc. 95th Perc. 99th Perc.

Routing-only 1.00 1.00 16.97 20.45 22.58 26.72 0.01 0.03 0.03 0.04
Routing-only 1.00 0.90 17.02 20.51 22.65 26.80 0.00 0.00 0.00 0.00
Routing-only 1.00 0.75 16.91 20.40 22.54 26.65 0.00 0.00 0.00 0.00
Routing-only 0.90 1.00 10.32 13.14 14.85 18.29 0.02 0.02 0.02 0.02
Routing-only 0.90 0.90 10.30 13.09 14.81 18.24 0.00 0.00 0.00 0.00
Routing-only 0.90 0.75 10.32 13.09 14.85 18.28 0.00 0.00 0.00 0.00
Routing-only 0.75 1.00 4.24 6.08 7.27 9.68 0.03 0.03 0.03 0.03
Routing-only 0.75 0.90 4.24 6.06 7.26 9.68 0.00 0.00 0.00 0.00
Routing-only 0.75 0.75 4.22 6.04 7.26 9.67 0.00 0.00 0.00 0.00

cies of using arti�cially low container and truck capacities. In both �gures, the �rst 12 bars
represent the probabilistic model with complete objective function for various Emergency Col-
lection Costs (ECC) and Route Failure Cost Multipliers (RFCM). The last nine bars represent
the alternative policies of using arti�cially low capacity for various Container E�ective Ca-
pacities (CEC) and Truck E�ective Capacities (TEC). We should point out that the baseline
routing-only policy with container and truck e�ective capacity of 100% has the lowest routing
cost. Figure 6 reveals that the routing cost of the probabilistic policies considered ranges from
approximately 550 to 580 CHF depending mostly on the value of the emergency collection cost.
This latter range is relatively limited compared to the range of routing costs for the alternative
policies, which goes from 425 to 575 CHF, with pronounced jumps linked to the variation of
the container e�ective capacity. Thus the most expensive probabilistic and the most expensive
alternative policies that we consider have basically the same routing cost.

We contrast the above observation with the average number of over�ows and route failures
after the simulation-based validation of both types of policies. These are presented in Figure 7,
in parts (a) and (b), respectively. What part (a) of the �gure reveals is that all considered
probabilistic policies are able to contain the number of over�ows to very low values. There
is still a slight increase in the number of over�ows (with an associated slight decrease in the
routing cost) when the emergency collection cost is reduced from 100 to 50 and then to 25 CHF.

Figure 6: Comparison of Routing Cost for Probabilistic and Alternative Policies

400

450

500

550

600

ECC=1
00

,R
FCM

=1

ECC=1
00

,R
FCM

=0
.5

ECC=1
00

,R
FCM

=0
.2

5

ECC=1
00

,R
FCM

=0

ECC=5
0,

RFCM
=1

ECC=5
0,

RFCM
=0

.5

ECC=5
0,

RFCM
=0

.2
5

ECC=5
0,

RFCM
=0

ECC=2
5,

RFCM
=1

ECC=2
5,

RFCM
=0

.5

ECC=2
5,

RFCM
=0

.2
5

ECC=2
5,

RFCM
=0

CEC=1
,T

EC=1

CEC=1
,T

EC=0
.9

CEC=1
,T

EC=0
.7

5

CEC=0
.9

,T
EC=1

CEC=0
.9

,T
EC=0

.9

CEC=0
.9

,T
EC=0

.7
5

CEC=0
.7

5,
TEC=1

CEC=0
.7

5,
TEC=0

.9

CEC=0
.7

5,
TEC=0

.7
5

Policies

A
vg

 R
ou

tin
g 

C
os

t (
C

H
F

)

36



Figure 7: Comparison of Container Over�ows and Route Failures for Prob. and Alt. Policies
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(a) Overflows
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(b) Route Failures

Percentiles 75th  90th  95th  99th  

Nevertheless, the average number of over�ows across all instances is less than �ve even at the
99th percentile. In comparison, the average number of over�ows for the alternative policies
is markedly higher. While reducing the container e�ective capacity leads to a considerable
drop in the number of over�ows, the best values are still more than twice as high as those for
the probabilistic policies with similar or lower routing cost. We must stress here that since
we compare the performance of two policy types in terms of number of over�ows at di�erent
percentiles, we must isolate that component from the solution cost of the probabilistic model.
Since the route failure cost is a negligible component, the comparison of the routing costs
provides an excellent benchmark. The above �ndings clearly indicate the superior performance
of the probabilistic policies in the face of stochastic demand. Whereas the alternative policies
can only control over�ows in the expected sense, the probabilistic model attributes a cost
to this uncertainty over the whole planning horizon. Thus it uses foresight in a much more
intelligent way. Not surprisingly, it collects more containers over the planning horizon for an
almost identical routing cost.

Lastly, part (b) of Figure 7 shows how both types of policies perform in terms of the average

37



number of route failures over all instances. Here, the alternative policies appear to be more
successful. As already noted before, reducing the truck e�ective capacity to 90% is su�cient
to eliminate the occurrence of route failures. As far as the probabilistic policies are concerned,
we identify an interesting pattern. The number of route failures is positively correlated with
the emergency collection cost and negatively correlated with the route failure cost multiplier.
The latter is an intuitive result. The former relationship, however, is slightly more intricate.
What is at play here is a trade-o� between container over�ows and route failures. A higher
emergency collection cost incentivizes more frequent visits. Trucks thus collect more containers
in each tour and, by consequence, in each depot-to-dump or dump-to-dump visit. Since trucks
are fuller on average, the solution is subject to a higher risk of route failures. The probabilistic
policies collect on average more containers than the alternative policies and this could be a
valid explanation of the latter's better performance when it comes to limiting the number of
route failures. However, as reported in Table 9, the contribution of the expected route failure
cost to the total solution cost is immaterial.

5.3.3 Rolling Horizon Approach.

In practice, the SIRP that we consider will be solved on a daily rolling horizon basis using
the latest available container level information. In this approach, the problem is solved for a
planning horizon T , the tours that are scheduled on day t = 0 are executed, the horizon is
rolled over by a day, the problem is re-solved for the new initial container levels and updated
forecasts, and so on. Thus, true demands are gradually revealed each day, but the demands
over the planning horizon are still stochastic. This type of problem is known as the Dynamic
and Stochastic Inventory Routing Problem (DSIRP). The solution of the DSIRP requires the
solution of an SIRP at each rollover. The cost of the DSIRP is composed of the total routing
and over�ow cost on day t = 0 resulting from the solution of the SIRP at each rollover. We
note that the route failure cost does not apply on day t = 0. We also note that over�ows
on day t = 0 are deterministic, since the container levels are fully known, and thus for each
over�ow on day t = 0 the full over�ow cost χ is paid.

In the solution of the DSIRP, true demands are gradually revealed in the solution process,
which reduces uncertainty. Thus, we hypothesize that its solution cost should be bounded
above by the solution cost of a static SIRP for the same planning horizon. Assume that we
solve the SIRP for a planning horizon T = {0, . . . , u}. In order to compare its cost to that of the
DSIRP, we should roll over for a number of times equal to the length of the planning horizon
T , i.e. the last rollover should be on day u. Moreover, for rollover t the initial container levels
are updated by true demands and also dependent on the solution of rollover t − 1. Updated
forecasts should ideally be used if available. We also hypothesize that the solution of the
DSIRP should be bounded below by the solution of a static IRP using true demands for the
same planning horizon T . Using true demands rids the problem of any uncertainty. The
solution of the IRP results in an intelligent assignment of tours to days. Thus, the number of
executed tours over the planning horizon will be minimized and tours may not be executed on
each day. This is not necessarily the case for the solution of the DSIRP, which has no memory
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of the past rollovers and may assign tours on day t = 0 for each rollover.

To test our hypotheses, we generate a second set of real data instances. It comprises 41 in-
stances, each covering two weeks of white glass collections in the canton of Geneva, Switzerland
in 2014, 2015, or 2016. The instances �t the same description as the previous set of 63 in-
stances. On average, there are 69 containers per instance, and the maximum is 86. We solve
the static IRP with true demands and static SIRP with forecast demands for the �rst week,
and the DSIRP with a one week planning horizon and rollovers for the �rst week. Table 15
presents the results we obtain. Since we are interested in verifying the empirical existence
of the hypothesized bounds, we report the best cost out of 10 runs. We observe that the
hypothesized bounds are obtained in all but four cases, which are shown in bold. The relative
di�erences are also very interesting to look at. The solutions of the DSIRP are on average
60% more expensive than those of the static IRP with true demands. This result is inevitably
related to the level of uncertainty as represented by the forecasting error υ. In other words,
if more accurate forecasting methodologies are available, this gap may be brought down. On
the other hand, the static SIRP approach is on average 15% more expensive than the rollover
approach for the DSIRP. This clearly shows the bene�t of applying the latter in practical
situations.

6 Conclusion

We motivate and formulate a rich stochastic IRP inspired from practice. Our objective function
captures the routing cost and the relevant uncertain components with the goal of minimizing

Table 15: Analysis of Rolling Horizon DSIRP Bounds

Static IRP with Rolling DSIRP with Static SIRP with Static IRP with Rolling DSIRP with Static SIRP with
Instance True Demand Forecast Demand Forecast Demand Instance True Demand Forecast Demand Forecast Demand

Inst_1 276.44 582.89 665.19 Inst_22 429.20 531.04 607.63
Inst_2 448.67 784.55 854.49 Inst_23 241.44 551.58 690.62
Inst_3 307.95 653.60 819.79 Inst_24 547.92 758.84 748.71

Inst_4 266.15 574.23 700.36 Inst_25 446.31 618.80 696.75
Inst_5 454.61 682.24 824.57 Inst_26 442.38 589.53 695.11
Inst_6 485.30 677.92 764.86 Inst_27 441.36 589.07 707.30
Inst_7 268.65 569.11 649.57 Inst_28 468.46 616.53 738.58
Inst_8 429.56 585.42 681.23 Inst_29 436.25 575.25 701.73
Inst_9 442.34 599.24 659.30 Inst_30 414.41 677.65 690.37
Inst_10 448.70 564.04 650.88 Inst_31 442.87 544.75 668.51
Inst_11 467.88 549.61 670.36 Inst_32 255.32 612.44 694.35
Inst_12 449.20 674.53 626.18 Inst_33 460.04 677.54 808.74
Inst_13 254.66 556.94 629.93 Inst_34 505.55 682.90 711.62
Inst_14 276.60 585.77 683.65 Inst_35 490.37 989.21 785.51

Inst_15 431.08 548.56 790.39 Inst_36 454.60 646.95 805.95
Inst_16 529.60 635.37 701.64 Inst_37 465.31 607.52 746.64
Inst_17 423.07 578.84 662.76 Inst_38 520.38 721.23 815.21
Inst_18 458.18 595.36 680.75 Inst_39 243.94 613.96 705.10
Inst_19 448.66 524.63 611.56 Inst_40 450.94 624.76 759.97
Inst_20 418.12 520.30 653.18 Inst_41 403.01 575.80 688.24
Inst_21 276.32 791.63 626.29

Note: The four instances for which the hypothesized bounds do not hold are shown in bold.
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the expected cost subject to a range of practical and policy-related constraints. To solve the
problem, we develop an ALNS algorithm which produces excellent results on IRP benchmarks
sets from the literature, as well as very good results on rich vehicle routing instances. The
application of the methodology to instances derived from real data demonstrates the relevance
of the probability information captured in the objective function. The computational exper-
iments demonstrate that including probabilistic information in the objective function leads
to only a moderate increase in the routing cost, while avoiding major expenditures even at
relatively lower percentiles of the demand distribution. Based on our policy, we can control
the rate of occurrence of undesirable events, like over�ows and route failures, by scaling the
probability-related costs considered in the objective function. The probabilistic approach sig-
ni�cantly outperforms alternative policies of using arti�cially low capacities for the containers
and the trucks in its ability to control the occurrence of container over�ows for the same
routing cost. We also analyze the solution properties of a rolling horizon approach and pro-
pose empirical lower and upper bounds. Given that our problem is interesting from both a
theoretical and a practical point of view, it lends itself to a rich variety of potential future
work directions. Decomposition methods such as column generation may be investigated for
calculating optimal solutions on small and medium-size instances or lower bounds on larger
instances with the purpose of providing more meaningful benchmark results for the ALNS.
Scenario-generation and the integration of chance constraints present another research avenue,
oriented more towards the modeling approach rather than the solution methodology. More
practically relevant ideas include the integration of a location aspect regarding the dumps, the
possibility of open tours, online re-optimization and the solution of a multi-�ow problem.
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