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Abstract

We introduce a unified framework for rich vehicle and inventory routing problems with
complex physical and temporal constraints. Demands are stochastic, can be non-stationary,
and are forecast using any model that provides the expected demands and their error
term distribution, which can be any theoretical or empirical distribution. We offer a
detailed discussion on the modeling of demand stochasticity, focusing on the probabilities
and cost effects of undesirable events, such as stock-outs and route failures, and their
associated recourse actions. Tractability is achieved through the ability to pre-compute
or at least partially pre-process the stochastic information, which is possible under mild
assumptions for a general inventory policy. We integrate the stochastic aspect into a
mixed integer non-linear program, illustrate applications to various problem classes, and
show how to model specific problems through the lens of inventory routing. The case study
is based on two sets of realistic instances, representing a waste collection inventory routing
problem and a facility maintenance problem, respectively. We analyze the effects of our
assumptions on modeling realism and tractability, and demonstrate that our framework
significantly outperforms alternative deterministic policies in its ability to limit the number
of undesirable events for the same routing cost.

Keywords: unified framework; rich routing problems; stochastic demands; forecasting;
tractability; stock-outs; route failures; recourse
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1 Introduction

The Vehicle Routing Problem (VRP) is an integer programming and combinatorial optimiza-
tion problem that seeks to find the cheapest set of tours to serve a number of customers. In its
basic form, there is a single depot that accommodates a homogeneous fleet and each vehicle
performs a single tour that starts and ends at the depot. Customers have fixed demands of
a single commodity and the number of customers in each tour is only limited by the vehicle
capacity. The VRP was formally introduced in the seminal work of Dantzig and Ramser (1959)
in the context of fuel delivery and is one of the most practically relevant and widely studied
problems in operations research. A generalization of the VRP, the Inventory Routing Problem
(IRP) introduces a planning horizon and seeks to optimize simultaneously the vehicle tours,
delivery times and delivery quantities. The seminal work on the IRP was motivated by the
delivery and inventory management of industrial gases (Bell et al., 1983). The literature on
the VRP, the IRP and their many variants is vast, driven both by their mathematical proper-
ties and by their numerous practical applications in the distributions and collection of goods
and the transportation of people. The need to solve ever larger and richer routing problems
has pushed researchers over the past decades to develop advanced modeling techniques and
solution methodologies.

In this context, rich routing problems are generalizations of the basic VRP that include a
variety of practically relevant features. For instance, the fleet may be heterogeneous instead of
homogeneous. Each vehicle may perform multiple tours per day, instead of one, and visit both
customers and replenishment stops subject to time windows and accessibility restrictions. De-
pending on the application, there could be multiple depots with the possibility of open tours
that have different origin and destination depots or multi-day tours that last over several days.
Driving schedules must respect regulations on maximum working hours while equity conside-
rations might imply that all drivers work similar hours. Customers may have preferences for a
given driver or visit periodicity. Because of their inherent difficulty, such problems have seen
increased academic interest in recent years due to the methodological and technological pro-
gress that has been made (Lahyani et al., 2015). Another defining characteristic of real-world
problems is uncertainty, which may present itself in the form of stochastic demands, stochastic
customer presence, stochastic travel and service times, etc (Gendreau et al., 2016). The rich
routing features, combined with the necessity of tracking inventory over the planning horizon
for the IRP, inevitably compound the effects of uncertainty. Failure to account for uncertainty
often leads to solutions that are suboptimal or even infeasible given the realizations of the
stochastic parameters (Louveaux, 1998).

When the realizations of the stochastic parameters deviate from the expected ones, they may
lead to undesirable events. For example, longer than expected travel or service times may
result in the inability to serve subsequent customers within their time windows. Thus, the pre-
planned customer sequence may be suboptimal or even infeasible if delays make it impossible
to visit all customers by the end of the working day. Higher than expected demands may
lead to customers stocking out earlier than expected, which could necessitate the dispatch of
an emergency vehicle at a high cost. A related undesirable event is the route failure, which
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happens when the delivery vehicle runs out of capacity before the next replenishment stop,
again due to higher than expected demand realizations (Dror and Trudeau, 1986). These
undesirable events often require corrective action, referred to as recourse. The emergency
delivery is an example of a recourse in the case of stock-out. A detour to a replenishment
stop is performed in the case of route failure. Given that undesirable events and their recourse
actions are often expensive and can even be disruptive, we would like our decisions for the
future to be as unaffected by them as possible.

In this work, we propose a unified framework for modeling and solving rich routing problems,
including among others the VRP and the IRP, in the presence of non-stationary stochastic de-
mands. Our contribution is four-fold and starts with the explicit modeling of the probabilities
and cost effects of undesirable events and their associated recourse actions, and the proof that
our formulation is valid for distribution, collection and other contexts. Then, we integrate the
cost of uncertainty that one expects to pay in the objective function. Indeed, taking a small
risk may be beneficial if it significantly reduces the other cost components, for example those
related to routing. Thus, our approach is oriented towards cost minimization and the pricing
of risk. As such, we distinguish it from alternative ones, in particular robust optimization
(Bertsimas and Sim, 2003, 2004), where the focus is on protecting feasibility.

Our second contribution concerns the integration of real-world demand forecasting techniques.
The routing literature, and the IRP literature in particular, typically uses simple forecasting
techniques, if at all. Besides, stochastic demands are usually modeled as independent and
identically distributed (iid) random variables from the normal distribution (Gendreau et al.,
2016). Our framework can use any state-of-the-art forecasting model that provides the ex-
pected demands over the planning horizon and a measure of uncertainty represented by their
error term distribution. The latter can be any theoretical or empirical distribution, thus ad-
dressing one of the gaps between theory and practice identified by Gendreau et al. (2016). We
describe the use of simulation techniques, which hence become necessary in the calculation
of the probabilities of interest. This leads us to the third contribution, which concerns the
preservation of computational tractability in the face of the above generalizations through the
ability to pre-compute or at least partially pre-process the bulk of the stochastic information
for a general inventory policy under mild assumptions and modeling simplifications.

Our final contribution lies in the generality and practical relevance of the approach. We de-
velop a Mixed Integer Non-Linear Program (MINLP) and illustrate applications to various
problem classes from the literature and practice, such as health care, waste collection, and
maritime inventory routing. Moreover, we demonstrate that certain problems, for example
facility maintenance, where breakdown probabilities accumulate over the planning horizon,
can be seen through the lens of inventory routing. The case study is based on two sets of
realistic instances, representing a waste collection IRP and a facility maintenance problem, re-
spectively. We analyze the effects of our assumptions on modeling realism and tractability, and
demonstrate that our framework significantly outperforms alternative deterministic policies in
its ability to limit the number of undesirable events for the same routing cost.

The remainder of this article is organized as follows. Section 2 offers a brief review of the rele-
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vant literature on rich routing problems from several application areas, including health care,
waste collection, and maritime, with a focus on demand stochasticity. Section 3 introduces
the main concepts and modeling elements used by the unified framework. These are further
discussed and elaborated in Section 4, which details the treatment of demand stochasticity,
and Section 5, which develops the optimization model. In turn, Section 6 provides examples of
adapting the framework to various specific problem classes. Section 7 presents the numerical
experiments and, finally, Section 8 concludes and outlines future work directions.

2 Related Literature

This section offers a literature review of routing problems with stochastic demands, starting
from rich vehicle and inventory routing problems in general and then exploring several specific
and pertinent application areas. The analysis comments on the variety of approaches used
in integrating stochastic demands in the modeling and solution process, thus highlighting the
need for a unified approach.

2.1 Rich Vehicle and Inventory Routing Problems

Rich vehicle routing problems are multi-constrained routing problems that extend the classi-
cal capacitated VRP (Dantzig and Ramser, 1959) by including features relevant to real-world
problems. The recent work of Lahyani et al. (2015) develops a taxonomy and a definition
of rich VRPs. Surveys on various aspects concerning heterogeneous fleets, intermediate re-
plenishment facilities, time windows, open tours and multiple depots are available in Markov
et al. (2014, 2016b) and Markov et al. (2016a). Rich routing problems often include an un-
certainty component. In dynamic problems, parameters are partly unknown and gradually
revealed with time. In dynamic and stochastic problems, we have in addition access to proba-
bility information related to the unknown parameters. Ritzinger et al. (2016) summarize the
recent literature on dynamic and stochastic VRPs and offer a classification scheme based on
the available stochastic information. Gendreau et al. (2016) center their survey on the state of
the art of the a priori and the re-optimization paradigms for stochastic VRPs, the two being
the predominantly used paradigms by researchers.

Although multi-constrained IRPs with real-world features have recently begun to appear in
the literature, the term rich IRP has not established itself as in the case of the VRP. Zhalechian
et al. (2016) and Soysal (2016), for example, discuss closed-loop IRP systems with stochastic
demands. Both include environmental considerations in the objective function. Zhalechian
et al. (2016) also include social considerations, present a fuzzy approach, and develop a hybrid
meta-heuristic and a lower bounding procedure, which are applied on a small case study.
Soysal (2016) use CPLEX to solve a small case study and, based on a simulation experiment,
confirm the benefit of including uncertainty in the model. Rahimi et al. (2017) describe a
rich IRP with environmental considerations and stochastic parameters, including stochastic
demand, and propose a fuzzy approach. Their solution methodology relies on a meta-heuristic

3



from the literature. However, the focus of their numerical experiments is not on the effect
of uncertainty. Furthermore, none of these studies models explicitly recourse actions in the
events of stock-outs and route failures, which occur as a consequence of demand uncertainty.
Markov et al. (2016a) provides a review of the literature on road-based stochastic IRPs with
a finite horizon dimension and discuss the advantages and disadvantages of various modeling
approaches. Sections 2.2, 2.3 and 2.4 below extend the survey to several additional application
areas of routing problems with stochastic demands that can be modeled using the unified
framework. Finally, Section 2.5 positions our approach.

2.2 Health Care Routing Problems

Stochastic demand appears in health care routing problems involving the pick-up and deli-
very of drugs, biological samples, and medical equipment. Hemmelmayr et al. (2010) solve
a stochastic blood distribution problem, which considers shortfalls and spoilage. To balance
delivery and spoilage costs, they limit the probability of spoilage to 5% by sampling product
usage during the spoilage period and taking the 5% quantile as the maximum inventory le-
vel at the hospital. Hemmelmayr et al. (2010) develop a two-stage stochastic program with
recourse, assuming knowledge of the inventory in the beginning of each day of the planning
horizon. The authors extend an exact approach and a VNS meta-heuristic from the literature,
in both cases using external sampling to convert the two-stage stochastic optimization problem
into a deterministic one. Through a simulation experiment, they show that a simple recourse
policy is sufficient to provide a reliable and cost-efficient blood supply. Niakan and Rahimi
(2015) and Shi et al. (2017) study the problem of delivering drugs with uncertain demands to
patient homes. Both articles apply fuzzy programming approaches to the problem and report
the added value of incorporating uncertainty into the model. The broader literature on health
care routing problems identifies workload balancing and the continuity of service, or continuity
of care in this specific context, as two of the most important concerns in this field (see e.g.
Lanzarone and Matta, 2009, 2012; Lanzarone et al., 2012; Errarhout et al., 2014, 2016).

2.3 Waste Collection Routing Problems

Markov et al. (2016a) describe a stochastic IRP for the collection of recyclable waste with the
integration of demand forecasting. Demand stochasticity leads to the occurrence of container
overflows and route failures. The proposed stochastic model significantly outperforms alter-
native deterministic policies in its ability to limit the occurrence of container overflows for
the same routing cost. Still in the area of waste collection, Johansson (2006) and Mes (2012)
use simulation to confirm the benefits of migrating from static to dynamic collection policies
in Malmö, Sweden and a study area in the Netherlands, respectively, where containers are
equipped with level and motion sensors, respectively. Mes (2012) finds a positive added value
of investing in level sensors compared to simple motion sensors that detect when a container
is emptied. Mes et al. (2014) apply optimal learning techniques to tune the parameters re-
lated to inventory control (deciding which containers to select) assuming accurate container
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level information. Nolz et al. (2011) develop a tabu search algorithm for a stochastic IRP
for the collection of infectious waste from pharmacies. Nolz et al. (2014b) propose a scenario
sampling method and an ALNS algorithm for the same problem. Nolz et al. (2014a) extend
this to a bi-objective problem, trading off satisfaction of pharmacies, local authorities and the
minimization of public health risks against routing costs. They propose three meta-heuristic
approaches for this problem. Bitsch (2012) develops a VNS for an IRP applied to the col-
lection of recyclable waste in a Danish region. Waste level is stochastic and containers should
be emptied so that the probability of overflow is six standard deviations away.

2.4 Maritime Routing Problems

Papageorgiou et al. (2014) identify three features that distinguish maritime from road-based
IRPs, specifically: 1) the absence of a central depot, which entails multi-period open tours,
2) the long travel times and port operations, which prolong the planning horizon, and 3) the
shorter succession of port visits, in comparison to the typically dozens of customer visits in
road-based IRPs. Cheng and Duran (2004) solve a crude oil transportation problem with
inventory management, integrating discrete event simulation and stochastic optimal control.
The optimal control problem is formulated as a Markov decision process that incorporates
travel time and demand uncertainty. Yu (2009) discusses a problem with multiple supply
and demand ports, where the only stochastic element is the demand. It is formulated as a
stochastic program and branch-and-price is used to solve medium-sized instances. Arslan and
Papageorgiou (2015) study a maritime fleet renewal and deployment problem under demand
and charter cost uncertainty, which determines the fleet size, mix, and deployment strategy
to satisfy stochastic demands over the planning horizon. They solve the problem in a rolling
horizon fashion using a stochastic programming look-ahead model, and explore the impact of
different scenario trees with different recourse functions. Zheng and Chen (2016) propose a
real option model to solve a fleet replacement model under demand and fuel price uncertainty.
Monte Carlo simulation is used to find replacement probabilities in future years and the net
present value of cost savings. The distribution of Liquefied Natural Gas (LNG) is a particularly
important application area. Moraes and Faria (2016) study an LNG planning problem for an
oil and gas company. They develop a two-stage stochastic linear model to address uncertain-
ties related to the LNG demand and spot prices. Halvorsen-Weare et al. (2013) consider an
LNG routing and scheduling problem with time windows, berth capacity and inventory level
constraints. They propose and test various robustness strategies with respect to travel times
and daily LNG production rates.

2.5 Discussion

The reviewed literature reveals a variety of approaches for capturing demand uncertainty. Aut-
hors use different simplifying assumptions and modeling techniques, with or without explicit
recourse policies and penalties for the occurrence of undesirable events. All these approaches
come with their benefits and limitations. Scenario generation and stochastic modeling based
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on Markov decision processes both lead to problems that suffer from the curse of dimensionality
for realistic-size instances (Pillac et al., 2013). Approximate dynamic programming (Powell,
2011) helps alleviate some of the issues in the latter case. In their recent work, Rossi et al.
(2017) also note the instance size limitations of dynamic programming in solving the bowser
routing problem, a special version of the IRP, and propose heuristic approximations. Thus,
while scenario-based approaches allow significant freedom in modeling undesirable events and
recourse actions, they are computationally heavy for an already hard combinatorial problem
like ours. Robust optimization does not suffer from this limitation but its focus is on protecting
against the worst-case scenario. It maintains feasibility for a given budget of uncertainty, is
distribution-free, and relies on specific reformulations depending on whether parameter un-
certainty in the standard-form mathematical program appears column-wise (Soyster, 1973),
row-wise (Bertsimas and Sim, 2003, 2004), or only in the right-hand side (Minoux, 2009). Yet,
complications arise if there is inter-row dependency in the uncertainty on the right-hand side
(see Delage and Iancu, 2015). We do not see this approach very often used for routing problems
(Gendreau et al., 2016), but we should mention the works of Sungur et al. (2008) and Gounaris
et al. (2013) who consider stochastic demands in a VRP context, and Aghezzaf (2008) and
Solyalı et al. (2012) in an IRP context. Chance constrained approaches guarantee that a con-
straint will be satisfied with a given probability. These are appropriate if uncertainty appears
row-wise and have typically been used to model route failures in vehicle routing problems with
stochastic demands (see references in Gendreau et al., 2014). We highlight that the majority
of the distribution-based approaches in the literature on routing problems assume iid normally
distributed demands (Gendreau et al., 2016).

Using a set of key concepts and modeling elements, our framework provides the ingredients
for modeling and solving rich routing problems with non-stationary stochastic demands. The
approach distinguishes itself through several unifying features, namely 1) the applicability
to various problem types, including among others rich VRPs and IRPs, 2) the integration
of real-world demand forecasting with very few distributional assumptions, 3) the explicit
modeling of undesirable events and recourse actions and their direct integration in the objective
function or the constraints, 4) the tractability of the resulting framework through the ability
to pre-compute or at least partially pre-process most of the stochastic information for a general
inventory policy, 5) and the intuitive evaluation of the produced solution through simulation.
Simulation is used both to measure the frequency of occurrence of undesirable events in the
final solution and to evaluate how closely it models the real cost given the imposed assumptions
and modeling simplifications.

3 Key Concepts and Modeling Elements

This section introduces the key concepts and modeling elements used in our framework as
well as the relationships among them. For the sake of generality, consider a problem in a
distribution context. We comment on the changes that apply to a collection or another context
when needed. There is a planning horizon T = {0, . . . , u} of discrete time periods, such as days
or another appropriate level of discretization. Deliveries are performed by a heterogeneous
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fixed fleet K, with each vehicle k ∈ K defined by a per-period deployment cost ϕk, a unit-
distance running cost βk, a unit-time running cost θk, and a capacity Ωk. The fleet reduces
to a homogeneous one if the values of these parameters are identical for all vehicles.

For each vehicle k ∈ K and period t ∈ T , we are given a directed graph Gkt(Nkt,Akt). The setO
includes all origin and destination depots, where O′

kt ⊆ O is the set of origin depots for vehicle
k in period t and O′′

kt ⊆ O is the set of destination depots for vehicle k in period t. In addition,
P is the set of demand points, D is the set of supply points, Nkt = O′

kt∪O′′
kt∪P ∪D is the set

of all points potentially reachable by vehicle k in period t, and Akt = {(i, j) : ∀i, j ∈ Nkt, i 6= j}
is the set of arcs connecting the latter. The set D contains a sufficient number of replications
of each supply point to allow multiple visits by the same vehicle in the same period. The
distance matrix is asymmetric, with πij the length of arc (i, j) ∈ Akt, for any vehicle k and
period t. Vehicle k can have a specific travel time matrix for each period t, where τijkt is
the travel time of vehicle k on arc (i, j) ∈ Akt in period t. Point i ∈ O ∪ P ∪ D presents a
time window [λi, µi], where λi and µi stand for the earliest and latest possible start-of-service
time at that point. There is a maximum of one service for demand point i per period. Start
of service after µi is not allowed and if the vehicle arrives before λi, it has to wait. Service
duration at point i is denoted by δi, with service durations in the set O being zero.

Each demand point i ∈ P has an inventory capacity of ωi, a visit cost of ξi, and an inventory
holding cost of ηi. It is visited at most once per period, while the parameter νi specifies the
minimum number of times it must be visited over the planning horizon. There is the option of
imposing periodicity on the visits as well. The set Ci contains the visit period combinations for
demand point i, and the binary constant αrt denotes whether period t belongs to visit period
combination r ∈ Ci for demand point i. The binary flags αikt denote whether point i ∈ P ∪D
is accessible by vehicle k in period t. They can also be used to express continuity of service,
restricting the vehicle(s) that can visit demand point i.

In period t, demand point i exhibits non-stationary stochastic demand ρit. It is important to
highlight that stochasticity refers to normal operations, and not to hazard or deep uncertainty
(Gendreau et al., 2016). Demand stochasticity implies a probability of stock-out, one of two
possible states for each demand point, which happens when its inventory becomes negative.
Let σit = 1 denote that demand point i is in a state of stock-out in period t and let σit = 0

denote the opposite. Point i incurs a stock-cost of χi for all t ∈ T where σit = 1. For t ∈ T
where σit = 1 and no vehicle k ∈ K visits demand point i, an emergency delivery recourse
action is applied with a cost of ζi. We apply a limited back-order policy where a delivery must
be performed in the same period t in which a stock-out occurs. We can limit the probability
of stock-out at the demand points to a maximum allowable level γDP. Demand stochasticity
and the probability of stock-out are further discussed in Sections 4.1 and 4.2.

In the IRP, the two classical inventory policies are the Order-Up-to (OU) level policy and the
Maximum Level (ML) policy (Bertazzi et al., 2002; Archetti et al., 2011). Under the former
delivery is up to the capacity ωi, while under the latter the delivery quantity is part of the
decisions. We consider a discretized ML policy, which is more general than the OU policy, but
less general than the classical ML policy. In the discretized ML policy, the delivery quantity
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is still part of the decisions, but is chosen from a discrete set as shown in Figure 1. Let the set
Li define for each demand point i its allowable discrete inventory levels. For the case where
Li = {ωi}, ∀i ∈ P, the discretized ML policy reduces to the OU policy. The use of a discretized
ML policy allows the tractable pre-processing of much of the probability information related
to undesirable events. This topic is further discussed in Section 4.2.

Our framework considers unlimited supply point inventories. In many practical applications,
for example waste collection, supply point inventories are irrelevant. From a more fundamental
point of view, this modeling choice is also due to the complex propagations of uncertainty that
tracking supply point inventories would entail. For example, it is unclear, unless explicitly
postulated as a rule, which supply points would be affected by the stock-out and route failure
recourse actions described above and by how much. Another example is related to the residual
quantity still on the vehicle when reaching a supply point. That is, if the demands of the
previously visited demand points were lower than expected, the vehicle would need to load
less than expected at the supply point due to the residual quantity already on board. This
directly affects tracking the supply point inventory. Given the possibility of multiple supply
point visits in each period, correctly accounting for this uncertainty propagation leads to
complex conditionality which is nearly impossible to evaluate without expensive simulation
runs.

A tour executed by vehicle k in period t starts from an origin o′ ∈ O′
kt and ends at a destination

o′′ ∈ O′′
kt and is a sequence of demand and supply point visits. The maximum tour duration

of vehicle k in period t is denoted by Hkt. If Hkt = 0, vehicle k is not available in period t.
A tour’s origin and destination need not coincide, and the correct definition of the sets O′

kt

and O′′
kt implies that O′′

kt ∩O′
k(t+1) 6= ∅, i.e there is at least one depot where vehicle k can end

its tour in period t and start its tour in period t+ 1. The correct definition of the above sets
also implies that when Hkt = 0, ∃o′ ∈ O′

kt and o
′′ ∈ O′′

kt s.t. πo′o′′ = 0, i.e there is at least
one physical depot at which vehicle k can idle in period t. A penalty Θ is applied on the
difference between the minimum and maximum vehicle workload, the latter represented by
the total duration of all tours a vehicle executes over the planning horizon. Thus, the penalty
serves as an incentive to balance workload among the vehicles.

We distinguish a tour from a trip, the latter being a sequence S of demand points visited by
vehicle k between two supply point visits. The supply point visits delimiting the trips may

Figure 1: Discrete Maximum Level Policy Example

Discrete level 1

Discrete level 2

Discrete level 3
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Table 1: Notations

Sets

T planning horizon = {0, . . . , u} T + shifted planning horizon = {1, . . . , u, u + 1}

O′kt set of origins for vehicle k in period t O′′kt set of destinations for vehicle k in period t
P set of demand points D set of supply points
Nkt = O′kt ∪ O′′kt ∪ P ∪ D K set of vehicles
Ci set of visit per. comb. for demand point i Li set of discrete levels for demand point i
Sk set of trips executed by vehicle k S a particular trip in Sk

St set of dem. points in trip S visited in per. t

Parameters

ϕk per-period deployment cost of vehicle k (monetary)
βk unit-distance running cost of vehicle k (monetary)
θk unit-time running cost of vehicle k (monetary)
Ωk capacity of vehicle k
πij length of arc (i, j)

τijkt travel time of vehicle k on arc (i, j) in period t
λi, µi lower and upper time window bound at point i
δi service duration at point i
ωi inventory capacity of demand point i
ξi visit cost to demand point i (monetary)
ηi inventory holding cost at demand point i (monetary)
νi minimum number of times that demand point i must be visited over the planning horizon
αrt 1 if period t belongs to visit period combination r, 0 otherwise
αikt 1 if point i is accessible by vehicle k in period t, 0 otherwise
ρit stochastic demand of point i in period t
εit stochastic error term of demand point i in period t
σit 1 if demand point i is in a state of stock-out in period t, 0 otherwise
χi stock-out cost at demand point i (monetary)
ζi emergency delivery cost to demand point i (monetary)
Hkt maximum tour duration for vehicle k in period t
Θ penalty on the difference b/w min and max vehicle workload over the planning horizon (monetary)
ψ Route Failure Cost Multiplier (RFCM) ∈ [0, 1]

CS the avg routing cost of going from S ∈ Sk to the nearest supply point and back to S (monetary)
γDP maximum allowable probability of stock-out at the demand point in the range of (0,1]
γRF maximum allowable probability of route failure in the range of (0,1]

Decision Variables

xijkt 1 if vehicle k traverses arc (i, j) in period t, 0 otherwise (binary)
yikt 1 if point i is visited by vehicle k in period t, 0 otherwise (binary)
zkt 1 if vehicle k is used in period t, 0 otherwise (binary)
cir 1 if visit period combination r is assigned to demand point i, 0 otherwise (binary)
`irt 1 if discrete level r is chosen for demand point i in period t, 0 otherwise (binary)
qikt expected delivery quantity to demand point i by vehicle k in period t (continuous)
Qikt expected cumulative quantity delivered by vehicle k arriving at point i in period t (continuous)
Iit expected inventory at demand point i at the start of period t (continuous)
Sikt start-of-service time of vehicle k at point i in period t (continuous)

¯
bkt, b̄kt lower and upper bound on the tour duration of vehicle k in period t (continuous)

¯
B, B̄ lower and upper bound on the workload for each vehicle (continuous)
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be in the same or in different periods. In a given solution, the set of supply point delimited
trips performed by vehicle k is denoted by Sk. Demand stochasticity affects trips through
the probability of route failure, which is the probability of the total demand in trip S ∈ Sk

exceeding the vehicle capacity Ωk. The recourse action is a visit to a supply point. The cost of
this recourse action is CS , which is the average routing cost of going from the demand points
in S to their nearest supply point and back. To control its degree of conservatism, this cost
can be pre-multiplied by a Route Failure Cost Multiplier (RFCM) of ψ. We can also limit the
probability of route failure to a maximum allowable level γRF. The probability of route failure
is further discussed in Section 4.3. All sets and parameters discussed above are summarized
in Table 1.

4 Capturing Demand Stochasticity

Our framework considers stochastic demands with all other parameters being fully determinis-
tic. Below, we describe in detail how the unified framework captures stochastic demands. In
particular, Section 4.1 outlines the forecasting of future demands and the minimum amount
of forecasting information that the framework needs. Then, Sections 4.2 and 4.3 derive the
probabilities of stock-out and route failure, respectively. We focus specifically on the issue
of tractability and the fact that all probability information can be pre-computed or at least
partially pre-processed.

4.1 Demand Decomposition and Forecasting

Given a demand point i ∈ P and a period t ∈ T , the stochastic demand ρit decomposes
as:

ρit = E (ρit) + εit , (1)

where E (ρit) is the expected demand and εit is the error component. Let us represent εit, ∀t ∈
T , i ∈ P in the form of a vector as follows:

ε = (ε11, . . . , ε1|T |, ε21, . . . , ε|P ||T |) . (2)

The associated joint distribution is Φ, and ε∼ Φ satisfies var (ε) = K, with K representing
any covariance structure.

Definition 1 A forecasting model provides the expected demands E (ρit) , ∀t ∈ T , i ∈ P
and the distribution Φ of ε.

Any forecasting model that complies with Definition 1 can be used. Moreover, the distribution
Φ need not be theoretical. The only requirement is that we should be able to simulate it.
Therefore, an empirical distribution is also admissible as we can sample from it. The forecasting
model thus remains as general as possible, giving freedom for the use of methodologies suitable
to the specific application area.
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4.2 Demand Point Probabilities

Extending the terminology introduced in Section 3, we distinguish between a regular and an
emergency delivery to demand point i ∈ P. Let the binary decision variable yikt = 1 denote a
visit to demand point i by vehicle k ∈ K in period t ∈ T , and let yikt = 0 denote otherwise. In
other words, a regular delivery to demand point i in period t is one for which yikt = 1 for some
vehicle k ∈ K. Contrarily, an emergency delivery is a recourse action performed in a state of
stock-out in the absence of a regular delivery, i.e. for t ∈ T where σit = 1 and yikt = 0, ∀k ∈ K.
Moreover, an emergency delivery always brings the inventory level at demand point i to its
capacity ωi. That is, for emergency deliveries we restrict the inventory policy to OU. This is
in view of preserving tractability and is discussed in further detail below.

To formalize the discussion below, we also introduce the decision variable Iit, which represents
the expected inventory level of demand point i at the start of period t, and the decision variable
qikt, which represents the expected delivery quantity to demand point i by vehicle k in period
t. Using these, we can establish the inventory of point i after delivery in period t as:

Λit = Iit +
∑
k∈K

qikt . (3)

Therefore, if qikt = 0, ∀k ∈ K, it follows that Λit = Iit. The two definitions that follow
illustrate the information availability over the planning horizon T and the sequence of actions
in each period t ∈ T .

Definition 2 The initial inventory Ii0 for each demand point i ∈ P is observed and known
with certainty. It can be positive, zero or negative.

As a consequence, the probability of stock-out of any demand point in period t = 0 is either
0 or 1.

Definition 3 For each demand point i ∈ P and period t ∈ T , we have: 1) a potential
regular delivery which sets Λit 2) followed by a realization of the demand ρit. In other
words, for a given period t, deliveries take place before demand realizations.

Given that both the stock-out cost χi and the emergency delivery cost ζi for demand point i
are only paid in a state of stock-out, we are interested in calculating the probability of stock-
out for all i ∈ P over the planning horizon. To do this, we extend the ideas presented in
Markov et al. (2016a) in the context of the waste collection IRP. Consider a regular delivery
to demand point i in period g ∈ T . We identify four possible ways of reaching a state of
stock-out. Given the stochastic demand decomposition formula (1) and the action sequence
in Definition 3, they and their associated probabilities are formulated as:

� Reaching a state of stock-out in period g+ 1 from a regular delivery in period g. Its
probability is unconditional and is given by:

P (Λig − ρig 6 0) = P (εig > Λig − E (ρig)) . (4)
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� Reaching a state of stock-out in periods later than g+ 1 from a regular delivery in
period g. Its probability is conditional and is given by:

P

(
Λig −

h∑
t=g

ρit 6 0

∣∣∣∣∣Λig −
h−1∑
t=g

ρit > 0

)
=

= P

(
h∑
t=g

εit > Λig −
h∑
t=g

E (ρit)

∣∣∣∣∣
h−1∑
t=g

εit < Λig −

h−1∑
t=g

E (ρit)

)
, ∀h > g .

(5)

� Reaching a state of stock-out in period g′ + 1 from a state of stock-out in period
g′ > g. Its probability is unconditional and is calculated as a special case of formula (4)
as follows:

P
(
ωi − ρig′ 6 0

)
= P

(
εig′ > ωi − E

(
ρig′
))
, ∀g′ > g . (6)

� Reaching a state of stock-out in periods later than g′ + 1 from a state of stock-out
in period g′ > g. Its probability is conditional and is calculated as a special case of
formula (5) as follows:

P

ωi − h∑
t=g′

ρit 6 0

∣∣∣∣∣∣ωi −
h−1∑
t=g′

ρit > 0

 =

= P

 h∑
t=g′

εit > ωi −
h∑
t=g′

E (ρit)

∣∣∣∣∣∣
h−1∑
t=g′

εit < ωi −

h−1∑
t=g′

E (ρit)

, ∀h > g′ > g .
(7)

Appendix A proves that the calculation of the probabilities of overflow for a collection problem
is identical. For a demand point i with a regular delivery in period g, the above probabilities
are mapped on a binary tree as illustrated in Figure 2, in which the state of stock-out is
shaded in gray. The probability of stock-out in period t > g is the sum of the probabilities of
all possible paths reaching a state σit = 1 starting from the root node with an inventory after
delivery of Λig in period g. The probability of stock-out in period g is calculated on the basis
of the previous tree, and is 0 or 1 for g = 0. Thus, we arrive at the general expression for the
probability of stock-out of demand point i in period t:

pDP
it = P (σit = 1 |Λim : m = max (0, g ∈ T : g < t : ∃k ∈ K : yikg = 1)) . (8)

It correctly defines the probability of stock-out as conditional on the inventory after delivery
of the most recent regular delivery, identified for each demand point i by the index m. The
max operator returns the period 0 if the demand point has not had any regular deliveries prior
to period t.

Proposition 1 Under a discretized ML policy, the stock-out probabilities in expression
(8) can be pre-computed. Moreover, the number of probabilities to pre-compute grows
linearly with the number of discrete levels.
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Figure 2: Demand Point State Probability Tree
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Proof. For the unconditional probabilities (4) and (6), the number of distinct expressions to
evaluate is linear in the number of periods t ∈ T , while for the conditional probabilities (5)
and (7) it is polynomial. As a consequence, the resulting stock-out probabilities in formula
(8) can be efficiently pre-computed. Secondly, the formula defines the probability of σit = 1

as conditional only on the inventory level Λim chosen in the most recent delivery period m.
The probabilities (8) for demand point i are precomputed for each r ∈ Li, hence the number
probabilities to pre-compute grows linearly with the number of discrete levels. �

The emergency deliveries still apply an OU policy, otherwise the combinatorial dimension
would becomes intractable. Appendix B demonstrates the use of simulation to pre-compute
the stock-out probabilities (4)–(7) given a general distribution Φ and a covariance structure K
among the error terms ε in formula (2). In Section 3, it was mentioned that the discretized ML
inventory policy is used for the sake of tractability in order to avoid cumbersome calculations
at runtime. Indeed, as mentioned in the proof to Proposition 1, the ability to pre-compute
the stock-out probabilities relies on the discrete values of Λim.

Finally, for expression (8) to be rigorously defined, the value of Λim must be the expected one.
This condition always holds for the OU policy, which delivers up to capacity. However, the
ML policy implies a non-negative probability of the chosen Λim being lower than the realized
inventory. There are several possibilities for handling this, including:
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� Performing no delivery. This approach leads to an additional layer of conditionality in
the calculation of the stock-out probabilities, given that there may be no actual delivery
in the most recent visit period m in formula (8). Even if the stock-out probabilities
can still be pre-computed, there is a marked increase in complexity which makes the
approach unattractive.

� Picking up the excess inventory. This approach destroys the monotonically decreasing
property of the residual quantity on the vehicle at each successive demand point. The
route failure probabilities now become conditional on the previous demand point visits.
As described in Section 4.3 below, route failure probabilities are calculated at runtime.
Thus, additional complications in the probability expression would lead to tractability
issues.

� Discarding the excess inventory. This approach is the most appealing from a modeling
point of view as it allows the use of the expected values Λim both in the calculation of
stock-out and route failure probabilities. Discarding excess inventory can in principle be
penalized, its probability being a straightforward extension of formula (8). Hence, we
formulate the following assumption.

Assumption 1 A regular delivery to demand point i ∈ P in period t ∈ T discards any
inventory above the chosen level Λit. Thus, a regular delivery sets Λit according to
expectation.

Assumption 1 underlies the calculation of the stock-out probabilities as defined by formula (8)
as well as the calculation of the route failure probabilities discussed in Section 4.3 next.

4.3 Route Failure Probabilities

Recalling the notation introduced in Section 3, for each vehicle k in a given solution, we identify
the set of supply point delimited trips Sk. Let the binary decision variables xijkt = 1 if vehicle
k traverses arc (i, j) in period t, and 0 otherwise. For a vehicle k, given xijkt, ∀i, j ∈ P, t ∈ T ,
Algorithm 1 builds the set of supply point delimited trips Sk, where as before S is a trip in
Sk. The algorithm identifies the sequence of visits using the routing variables xijkt for each
period t ∈ T . A visit to a supply point starts a new trip S . In the context of multi-period
trips, the supply points delimiting the trips S ∈ Sk may be visited in different periods t.
Thus, each trip S is further decomposed into sets St, where St ∈ S is the set of demand
points in trip S that are visited in period t.

The above notation is used in the formulation of the probability of route failure, which is the
probability of the total demand in trip S ∈ Sk exceeding the vehicle capacity Ωk. We define
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Algorithm 1 Construction of the Set of Supply Point Delimited Trips Sk for Vehicle k
Input any solution with values of xijkt, ∀i, j ∈ P, t ∈ T for vehicle k
Output set of supply point delimited trips Sk for vehicle k
1: S ← Sk ← ∅
2: for t ∈ T do
3: St ← ∅
4: c← j :

∑
o′∈O′kt

∑
j∈Nkt xo′jkt = 1

5: while c /∈ O′′
kt do

6: if c ∈ D then
7: add St as an element of S ; add S as an element of Sk

8: St ← S ← ∅
9: else if c ∈ P then

10: add c as an element of St
11: end if
12: c← j :

∑
j∈Nkt xcjkt = 1

13: end while
14: add St as an element of S

15: end for

the quantity ΓS delivered in trip S as:

ΓS =
∑
S0∈S

∑
s∈S0

(Λs0 − Is0) +
∑
t∈T \0

∑
St∈S

∑
s∈St

(
Λst −Λsm +

t−1∑
h=m

ρsh

)
,

where m = max(0, g ∈ T : g < t : ∃k′ ∈ K : ysk′g = 1) .

(9)

The first summand in formula (9) represents the quantity delivered in period t = 0, for which
there is no uncertainty, while the second summand defines the quantity delivered in periods
t > 0 given the action sequence in Definition 3 and the expected inventory after delivery under
Assumption 1. Similar to formula (8), the index m identifies the most recent regular delivery
to point s. Having defined ΓS , the probability of route failure in trip S ∈ Sk performed by
vehicle k ∈ K becomes:

pRF
S ,k = P (ΓS > Ωk) . (10)

Formula (10) captures the probability of multiple route failures in each trip S . Unlike in the
case of the stock-out probabilities, the probabilities of route failure depend on the optimization
decisions, in particular the sets Sk, ∀k ∈ K at each solution and the values of Λst and Λsm.
As a consequence, these probabilities cannot be precomputed. Moreover, the distribution of
ΓS is unknown except for special cases, e.g. when the distributions Φ of ε is the normal. This
motivates the following assumption.

Assumption 2 The calculation of the route failure probabilities assumes independent
and identically distributed (iid) error terms εit drawn from any distribution Φ of ε.
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Consider ε as defined by equation (2) above. We impose the iid assumption on the error
terms by stipulating:

Φ (ε) =
∏
t∈T

∏
i∈P

Φ′ (εit) , (11)

where Φ′ is the marginal cumulative distribution function of εit.

Assumption 2 is widely used in the routing literature in the context of normally distributed
demands (Gendreau et al., 2016). In our framework, it is only imposed for the calculation of the
route failure probabilities, without imposing normality or other distributional restrictions. In
essence, the assumption renders the demands ρsh in formula (9) independent of the particular
s ∈ P and h ∈ T . With Assumption 2, the distribution of ΓS depends only on the number n
of summed demands, where n is bounded above by |P |(|T | − 1). Since Definition 3 stipulates
that in each period deliveries are performed before demand realizations, the demands of the
last period of the planning horizon cannot be served during the planning horizon. Hence
the bound, which considers a trip serving all demands realized before the last period of the
planning horizon. Given this bound, an empirical distribution function can be derived for
each n and used at runtime. The use of simulation for this partial pre-processing of the route
failure probabilities through the derivation of empirical distribution functions is elaborated in
Appendix C. In addition, the numerical experiments in Section 7.2 demonstrate that the use
of these pre-processed distributions at runtime has an insignificant effect on the computational
burden.

5 Optimization Model

This section develops the objective function and the constraints of the optimization model.
The formulation is presented and interpreted from a distribution point of view. Nevertheless,
since collection can be viewed as the distribution of empty space, the optimization model itself
does not change. To complete the notation, we provide the list of decision variables, including
those already used in Section 4. Starting with the binary variables, xijkt = 1 if vehicle k
traverses arc (i, j) in period t, 0 otherwise; yikt = 1 if point i ∈ O∪P ∪D is visited by vehicle
k in period t, 0 otherwise; zkt = 1 if vehicle k is used in period t, 0 otherwise; cir = 1 if
visit day combination r ∈ Ci is assigned to demand point i, 0 otherwise; `irt = 1 if inventory
level r ∈ Li is chosen for demand point i in period t, 0 otherwise. Moving to the continuous
variables, qikt is the expected delivery quantity to demand point i by vehicle k in period t;
Qikt is the expected cumulative quantity delivered by vehicle k arriving at point i ∈ O∪P ∪D
in period t; Iit is the expected inventory at demand point i at the start of period t; Sikt is the
start-of-service time of vehicle k at point i ∈ O ∪P ∪D in period t;

¯
bkt and b̄kt are the lower

and upper bound on the tour duration of vehicle k in period t; and
¯
B and B̄ are the lower and

upper bound on the workload for each vehicle. These definitions also appear in Table 1.
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5.1 Objective Function

The objective function consists of four deterministic and two stochastic components, all of
which are independent of one another. Different combinations of these make it possible to mo-
del a variety of routing problems, whether with deterministic or stochastic demands. Starting
with the deterministic components, the Expected Inventory Holding Cost (EIHC) is the cost
due to keeping the expected inventory at the demand points. Since the inventories in the first
period after the end of the planning horizon are completely determined by the decisions taken
during the planning horizon, the EIHC is computed for t ∈ T ∪T +, where T + is the planning
horizon shifted right by one period. The EIHC is formulated as:

EIHC =
∑

t∈T ∪T +

∑
i∈P

ηiIit . (12)

The Visit Cost (VC) component applies a cost for each visit to a demand point:

VC =
∑
t∈T

∑
k∈K

∑
i∈P

ξiyikt . (13)

The Routing Cost (RC) component applies the three vehicle-related costs, namely the per-
period deployment cost ϕk, the unit-distance running cost βk and the unit-time running cost
θk, for each period t ∈ T and each vehicle k ∈ K:

RC =
∑
t∈T

∑
k∈K

ϕkzkt + βk ∑
i∈Nkt

∑
j∈Nkt

πijxijkt + θk

 ∑
o′′∈O′′kt

So′′kt −
∑
o′∈O′kt

So′kt

. (14)

The Workload Balancing (WB) component attempts to balance the workload over the planning
horizon equally among the vehicles by penalizing the difference between the lowest and the
highest vehicle workload:

WB = Θ(B̄−
¯
B) . (15)

Moving to the stochastic components, the Expected Stock-Out and Emergency Delivery Cost
(ESOEDC) component, as its name suggests, reflects the stock-out and emergency delivery
cost and writes as:

ESOEDC =
∑

t∈T ∪T +

∑
i∈P

(
χi + ζi − ζi

∑
k∈K

yikt

)
pDP
it , (16)

where the probability of stock-out at the demand point pDP
it is defined by formula (8). For

demand point i in period t, the ESOEDC component applies the stock-out cost χi and the
emergency delivery cost ζi in case there is no regular delivery in that period, and only the
stock-out cost χi in case there is a regular delivery. Although there is no uncertainty in period
t = 0, we still need to pay the stock-out cost if the demand point is in a state of stock-out.
Since the stock-out probabilities in the first period after the end of the planning horizon are

17



completely determined by the decisions taken during the planning horizon, the ESOEDC is
also computed for t ∈ T ∪ T +.

The Expected Route Failure Cost (ERFC) captures the risk of the vehicles running out of
capacity before reaching the next scheduled visit to a supply point due to higher than expected
demands. It is expressed as:

ERFC =
∑
k∈K

∑
S∈Sk

ψCS pRF
S ,k , (17)

where the probability of route failure pRF
S ,k is defined by formula (10). As in Section 4.3, Sk

is the set of supply point delimited trips executed by vehicle k, S ∈ Sk is a particular trip
in that set, and CS is the average routing cost of going from the demand points in S to
the nearest supply point and back. The parameter ψ ∈ [0, 1], which we refer to as the Route
Failure Cost Multiplier (RFCM), is used to scale up or down the degree of conservatism of the
ERFC component.

The resulting objective is non-linear due to the non-linear nature of the ESOEDC and ERFC
components. In the former, the degree of yikt is higher than one due to the implicit presence
of yikt also in pDP

it as defined by formula (8). In the latter, the probability pRF
S ,k is in general

non-linear in the value of ΓS as given by the relationship in formula (10). The objective
function z is formulated as:

min z = EIHC + VC + RC + WB + ESOEDC + ERFC, (18)

where the RC, ESOEDC and ERFC components are generalized fromMarkov et al. (2016a).

5.1.1 Overestimation of the Real Cost

To keep the approach tractable, the objective function is a simplification of the real cost and
as a result it deviates from it. More precisely, the modeling simplifications are summarized as
follows.

Assumption 3 All terms of the objective function (18), except the ESOEDC, ignore the
cost effect of demand points stocking out earlier than expected.

Fully capturing this effect would imply developing complex probability expressions for all
cost components. Alternatively, the probability calculations can be simplified through the
imposition of other restrictive assumptions. A case in point is the work of Trudeau and Dror
(1992), who impose a maximum of one delivery and stock-out for each demand point over
the planning horizon. Given that there is an emergency delivery recourse action, such points
are skipped in subsequent tours. This makes it easier to formulate analytical expressions that
capture the above effect. Our framework does not limit the number of deliveries and stock-outs
over the planning horizon. In this regard, Trudeau and Dror’s (1992) approach of skipping
demand points stocking out earlier than expected is only one of a range of possible reaction
policies.
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Definition 4 A reaction policy is a response to the recourse action by changes later in
the planning horizon.

Reaction policies can vary from doing nothing to completely re-optimizing the subsequent
decisions. The possibility of multiple stock-outs followed by emergency deliveries leads to
the conditional dependence of reaction policies, with consequences on tractability. In par-
ticular, it precludes the partial pre-processing of the route failure probabilities discussed in
Section 4.3.

Proposition 2 In the absence of the EIHC component, objective function (18) overesti-
mates the real cost.

Proof. Consider demand point i ∈ P that stocks out in period g and is not visited for a regular
delivery in period g. For a do-nothing reaction policy, there is no effect on the VC, RC and
WB components as it implies no change in the routing decisions. The ESOEDC component
already captures the probability of demand points stocking out earlier than expected. For the
effect on the ERFC component, we identify two cases:

1. There is a vehicle k ∈ K that visits point i for a regular delivery in trip S ∈ Sk in
period t > g. Given the emergency delivery to point i in period g, vehicle k will deliver
less than expected in trip S , reducing the probability of route failure pRF

S ,k according to
formula (10).

2. Alternatively, there is no trip S that visits point i in period t > g. Therefore, pRF
S ,k

remains unaffected for all trips S ∈ Sk, ∀k ∈ K.

Given the existence of a more sophisticated reaction policy, the overestimation of the real cost
may be higher. The above discussion assumes out the EIHC component. In a distribution
problem, a stock-out in period g, followed by an emergency delivery, results in inventory levels
Iit being higher than expected for t > g. Thus, expression (12) of the EIHC underestimates
the inventory holding cost for t > g. It is the contrary for a collection problem, where an
overflow in period g, followed by an emergency collection, results in inventory levels Iit being
lower than expected for t > g. In this case, expression (12) of the EIHC overestimates the
inventory holding cost. �

The overestimation due to the do-nothing reaction policy is straightforward to evaluate through
simulation on the final solution. On the other hand, the evaluation of the effect of an optimal
reaction policy would require re-optimizing the decisions after each stock-out. Section 7.2.2
presents a trivial upper bound on the optimal reaction policy for a case study based on a waste
collection IRP and shows that the practical effect of Assumption 3 is marginal.

5.2 Deterministic Constraints

Starting with the basic routing constraints, tours must have an origin and a destination depot,
as ensured by constraints (19), which also allow for simple relocation tours not visiting any
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demand or supply points. Constraints (20) and (21) forbid returns to the origin depots and
departures from the destination depots. Given the possibility of open tours, we need to
ensure that a vehicle’s destination depot in period t is the same as its origin depot in period
t + 1. Constraints (22) propagate this condition through the planning horizon. Further on,
constraints (23) and (24) link the visit and the routing variables, and constraints (25) ensure
that a demand point is visited at most once per period. Accessibility restrictions and continuity
of service are enforced by constraints (26). Constraints (27) ensure flow conservation.∑

o′∈O′kt

∑
j∈Nkt

xo′jkt =
∑
i∈Nkt

∑
o′′∈O′′kt

xio′′kt, ∀t ∈ T , k ∈ K (19)

∑
i∈Nkt

xio′kt = 0, ∀t ∈ T , k ∈ K, o′ ∈ O′
kt (20)

∑
j∈Nkt

xo′′jkt = 0, ∀t ∈ T , k ∈ K, o′′ ∈ O′′
kt (21)

∑
i∈Nkt

xiokt =
∑

j∈Nk(t+1)

xojk(t+1), ∀t ∈ T , k ∈ K, o ∈ O′′
kt ∩ O′

k(t+1) (22)

yikt =
∑
j∈Nkt

xijkt, ∀t ∈ T , k ∈ K, i ∈ Nkt \O′′
kt (23)

yjkt =
∑
i∈Nkt

xijkt, ∀t ∈ T , k ∈ K, j ∈ O′′
kt (24)

∑
k∈K

yikt 6 1, ∀t ∈ T , i ∈ P (25)

yikt 6 αikt, ∀t ∈ T , k ∈ K, i ∈ P ∪ D (26)∑
i∈Nkt

xijkt =
∑
i∈Nkt

xjikt, ∀t ∈ T , k ∈ K, j ∈ P ∪ D (27)

The periodicity aspect is established by constraints (28), which assign exactly one visit period
combination to each demand point, and constraints (29), which in turn limit visits to the
periods corresponding to the assigned visit period combination (Cordeau et al., 1997). The
set Ci may contain visit period combinations with different frequencies, which makes the visit
frequency part of the optimization decisions.∑

r∈Ci

cir = 1, ∀i ∈ P (28)

∑
k∈K

yikt −
∑
r∈Ci

αrtcir = 0, ∀t ∈ T , i ∈ P (29)

The inventory constraints at the demand points comply with the action sequence in Defini-
tion 3. Constraints (30) track the expected inventory in period t as a function of the expected
inventory, the quantity delivered to the point, and its expected demand in period t− 1. Con-
straints (31) ensure that the expected inventory remains non-negative, and constraints (32)
force a delivery if the inventory is below zero in period t = 0. Constraints (33)–(36) define
the choice of a discrete inventory level and the delivery quantity it entails. In particular,
constraints (33) stipulate that if a demand point is visited, then a discrete inventory level
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after delivery must be chosen. Constraints (34) and (35) provide a lower and an upper bound
on the delivery quantity which, if the point is visited, is equal to the difference between the
chosen discrete inventory level after delivery and the expected inventory. The latter also imply
that if the point is visited, the chosen level will be higher than the expected inventory. Con-
straints (36) force the delivery quantity to zero if the point is not visited. The big-M values
in constraints (34) and (36) are equal to 2ωi for t = 0 and to ωi otherwise, reflecting the fact
that the expected delivery quantity cannot exceed demand point capacity, except in period
t = 0.

Iit = Ii(t−1) +
∑
k∈K

qik(t−1) − E(ρi(t−1)), ∀t ∈ T +, i ∈ P (30)

Iit > 0, ∀t ∈ T +, i ∈ P (31)

− Ii0 6 ωi
∑
k∈K

yik0, ∀i ∈ P (32)∑
k∈K

yikt −
∑
r∈Li

`irt = 0, ∀t ∈ T , i ∈ P (33)

qikt >
∑
r∈Li

r`irt − Iit −M(1− yikt), ∀t ∈ T , k ∈ K, i ∈ P (34)

qikt 6
∑
r∈Li

r`irt − Iit +ωi(1− yikt), ∀t ∈ T , k ∈ K, i ∈ P (35)

qikt 6Myikt, ∀t ∈ T , k ∈ K, i ∈ P (36)

In the context of vehicle capacities, constraints (37) limit the cumulative quantity delivered by
the vehicle at each demand point, while constraints (38) reset it to zero at the supply points.
Keeping track of the cumulative quantity delivered by the vehicle is achieved by constraints
(39). In the context of multi-period trips, constraints (40) link the quantity delivered by the
vehicle from one period to the next. Forcing the vehicle to visit a supply point immediately
after the origin depot or immediately before the destination depot applies to certain problems
and is exemplified in Section 6 next.

qikt 6 Qikt 6 Ωk, ∀t ∈ T , k ∈ K, i ∈ P (37)

Qikt = 0, ∀t ∈ T , k ∈ K, i ∈ D (38)

Qikt + qjkt 6 Qjkt +Ωk (1− xijkt) , ∀t ∈ T , k ∈ K, i ∈ Nkt, j ∈ Nkt \D (39)

Qo′k(t+1) > Qo′′kt, ∀t ∈ T , k ∈ K, o′ ∈ O′
kt, o

′′ ∈ O′′
kt (40)

The next set of constraints expresses the intra-period temporal characteristics of the problem.
Constraints (41) calculate the start-of-service time at each point and eliminate the possibility
of subtours. Constraints (42) enforce the time windows. Constraints (43) bound the tour
duration from above and below. Constraints (44) enforce the maximum tour duration, and
with it availabilities and vehicle use. Constraints (45) and (46) bound the total tour duration
over the planning horizon for each vehicle. The difference between

¯
B and B̄ is the difference

between the lowest and highest vehicle workload over the planning horizon, which is penalized
by the WB component in the objective function.

Sikt + δi + τijkt 6 Sjkt + (µi + δi + τijkt) (1− xijkt) , ∀t ∈ T , k ∈ K, i ∈ Nkt, j ∈ Nkt (41)
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λiyikt 6 Sikt 6 µiyikt, ∀t ∈ T , k ∈ K, i ∈ Nkt (42)

¯
bkt 6

∑
o′′∈O′′kt

So′′kt −
∑
o′∈O′kt

So′kt 6 b̄kt, ∀t ∈ T , k ∈ K (43)

b̄kt 6 Hktzkt, ∀t ∈ T , k ∈ K (44)

¯
B 6
∑
t∈T ¯

bkt, ∀k ∈ K (45)

B̄ >
∑
t∈T

b̄kt, ∀k ∈ K (46)

Finally, lines (47)–(48) establish the variable domains.

xijkt, yikt, zkt, cir′ , `ir′′t ∈ {0, 1}, ∀t ∈ T , k ∈ K, i, j ∈ Nkt, r′ ∈ Ci, r′′ ∈ Li (47)

qikt, Qikt, Iit, Sikt,
¯
bkt, b̄kt,

¯
B, B̄ > 0, ∀t ∈ T , k ∈ K, i ∈ Nkt (48)

5.3 Probabilistic Constraints

As an alternative to integrating stochastic demand information in the objective function
through the ESOEDC and the ERFC components, it can be included at the constraint level
in the form of probabilistic constraints. Constraints (49) and (50) below impose a maximum
allowable probability of stock-out and route failure, respectively.

pDP
it 6 γ

DP, ∀t ∈ T , i ∈ P (49)

pRF
S ,k 6 γ

RF, ∀k ∈ K,S ∈ Sk (50)

6 Application Examples

The framework developed and presented in Sections 3, 4 and 5 can be applied to problems from
different fields of routing and logistics optimization. In the sections below, we discuss in more
detail a vehicle routing problem, a health care inventory routing problem, a waste collection
inventory routing problem, a maritime inventory routing problem, and a facility maintenance
problem.

6.1 Vehicle Routing Problem

In a VRP setting, the presence of stochastic demands may lead to route failures but stock-
outs do not apply. To adapt the framework, we define a planning horizon T = {0, 1, 2}, s.t.
Hk0 = Hk2 = 0, ∀k ∈ K, i.e. the planning horizon consists of three periods and no vehicle is
available in periods t = 0 and t = 2. Moreover, Ii0 = ωi and Li = {ωi}, ∀i ∈ P, i.e. the initial
inventory of all demand points is equal to capacity and we apply an OU inventory policy.
Given the action sequence of Definition 3, the visits to the demand points in period t = 1

deliver the demands ρi0 of period 0. The VRP is a single-period problem and the fact that it
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is effectively solved for period t = 1 is of no consequence. In model (VRP), the objective (51)
consists of the RC and the ERFC components. Given constraints (38) and (39), constraints
(52) force a visit to a supply point immediately after the origin depot. Constraints (25) are
replaced by constraints (53) below to enforce a delivery to each demand point in period t = 1,
a necessary condition for a feasible VRP solution. The periodicity related constraints (28) and
(29) are dropped as they become irrelevant for a single period.

(VRP) min z = RC + ERFC (51)

s.t. Constraints (19)–(24), (26)–(27), (30)–(48)

Qo′k1 = Ωk, ∀k ∈ K, o′ ∈ O′
k1 (52)∑

k∈K
yik1 = 1, ∀i ∈ P (53)

6.2 Health Care Inventory Routing Problem

The health care IRP generalizes the nurse routing and scheduling problem, in which nurses visit
patient homes to provide treatment. In this problem, P is the set of patient homes and D is the
set of medical facilities. In addition to providing treatment, nurses deliver medications with
stochastic demand. Continuity of care and workload balancing, which are the two paramount
concerns in the nurse routing problem, are supported by the framework. As is the periodic
aspect, given that medical treatments typically have to be performed with a certain frequency.
Pricing can also be introduced in the setup via a negative visit cost. We keep the model
(HCIRP) general, including all constraints, and with the objective function (54) including all
but the EIHC component.

(HCIRP) min z = VC + RC + WB + ESOEDC + ERFC (54)

s.t. Constraints (19)–(48)

6.3 Waste Collection Inventory Routing Problem

In this IRP variant, trucks collect waste from containers with stochastic demands. Here, P
denotes the set of waste containers and D denotes the set of disposal facilities. We can apply the
framework with minimal changes by relabeling the problem as the distribution of empty space.
The objective function of model (WCIRP) includes the RC, ESOEDC and ERFC components.
Given constraints (38) and (39), constraints (56) force a visit to a disposal facility immediately
before the destination depot.

(WCIRP) min z = RC + ESOEDC + ERFC (55)

s.t. Constraints (19)–(48)

Qo′′kt = 0, ∀t ∈ T , k ∈ K, o′′ ∈ O′′
kt (56)
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Markov et al. (2016a) solve this problem in the context of recyclable waste collection from
sensorized containers, using past container level information to predict future demands as-
suming a normal distribution of the error terms. They present a case study with rich IRP
instances derived from real data from the canton of Geneva, Switzerland. The authors are
able to achieve a significant reduction in the occurrence of overflows for the same routing cost
compared to alternative deterministic policies. They also analyze the solution properties of a
rolling horizon approach and derive empirical lower and upper bounds.

6.4 Maritime Inventory Routing Problem

In this problem, a fleet of ships transports a commodity from a set D of supply terminals to a
set P of demand terminals. A particular feature of this application is that emergency deliveries
may be impractical due to long shipping distances, which would make the state of stock-out
at a demand terminal a final state. This can be achieved simply by setting the probabilities
defined by expression (6) to one. Since emergency deliveries are not performed, the emergency
delivery cost ζi = 0, ∀i ∈ P. Maritime routing problems are also characterized by open and
multi-period tours, which may include idling. In our framework, constraints (19) allow for
open tours, while multi-period tours are enabled by defining the set of depots so that ∃o ∈ O
s.t. πoi = πio = 0, ∀i ∈ P ∪ D and O′

kt ≡ O′′
kt ≡ O, ∀t ∈ T , k ∈ K, or in other words there is

an origin and a destination depot at zero distance from each demand and supply terminal. A
tour can thus effectively end at a demand or supply terminal in period t and start from it in
period t + 1. The objective function of model (MIRP) includes all but the WB component.
The VC component, in particular, may be used to capture terminal docking fees.

(MIRP) min z = EIHC + VC + RC + ESOEDC + ERFC (57)

s.t. Constraints (19)–(48)

6.5 Facility Maintenance Problem

The facility maintenance problem is a probability-based routing problem in which a set of
facilities is visited by a set of technicians for inspection. In this problem, the set P represents
the facilities, while the set D is irrelevant. Uncertainty with respect to breakdowns can be
considered as accumulating in a fashion similar to that of inventory. Consider facility i ∈ P
in period t. We can interpret the state σit = 1 as a breakdown, and the state σit = 0 as
operational. If a facility is in a state of breakdown in period t, an emergency visit must be
performed to repair it. The probability of breakdown pDP

it of facility i in period t is adapted
from expression (8) as a function of the most recent visit to the facility and is modeled as:

pDP
it = P (σit = 1 | g ∈ Z : g < t : ∃k ∈ K : yikg = 1). (58)

The use of the set Z, which includes the negative integers, implies that the most recent visit
may be before the start of the planning horizon T . The states σi0, ∀i ∈ P are known with
certainty. The objective function (59) in model (FMP1) is the sum of routing cost and the
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Expected Emergency Repair Cost (EERC). All inventory related constraints (30)–(36) and
vehicle capacity related constraints (37)–(40) are irrelevant and are hence dropped. The new
set of constraints (60) is added to force a visit to a facility in a state of breakdown in period
t = 0.

(FMP1) min z = RC + EERC (59)

s.t. Constraints (19)–(29), (41)–(48)∑
k∈K

yik0 = 1, ∀i ∈ P : pDP
i0 = 1 (60)

The EERC is a reformulation of the ESOEDC from formula (16) and is expressed as:

EERC =
∑

t∈T ∪T +

∑
i∈P

pDP
it ζi. (61)

Since the probabilities in the facility maintenance problem are provided exogenously, as oppo-
sed to being calculated based on demand stochasticity, an alternative formulation involving the
probabilistic constraints (49) is given in model (FMP2). Since the treatment of the probability
of breakdown is in the constraints, the objective (62) is routing-only.

(FMP2) min z = RC (62)

s.t. Constraints (19)–(29), (41)–(48)

Constraints (49)

Constraints (60)

Given that the facility maintenance problem considers no demands, unlike in the case of the
waste collection IRP, there is no deterministic equivalent problem that simply ignores the sto-
chastic components. We could imagine several deterministic policies, for example periodicity-
based visits enforced by constraints (28)–(29). A more flexible deterministic alternative would
be visiting a facility i ∈ P at least νi times over the planning horizon. In the model (FMPD)
below, this is ensured by constraints (63).

(FMPD) min z = RC

s.t. Constraints (19)–(29), (41)–(48)

Constraints (60)∑
t∈T

∑
k∈K

yikt > νi, ∀i ∈ P (63)

7 Numerical Experiments

In what follows, we analyze the key modeling and performance features of the unified framework
with a series of numerical experiments. Section 7.1 introduces the testbeds, namely a set of
waste collection IRP instances proposed by Markov et al. (2016a) and a new set of facility
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maintenance instances. This is followed by Section 7.2 which restates the main conclusions of
Markov et al. (2016a) on the waste collection IRP instances and performs further experiments
on this set. In particular, Section 7.2.1 studies the effect on the computation burden of
using empirical distribution functions for calculating the route failure probabilities at runtime,
while Section 7.2.2 analyzes the objective function’s overestimation of the real cost. Finally,
Section 7.3 presents the new case study based on the facility maintenance problem. Various
solution methodologies can be applied to the framework, as long as they can handle the
probability-based calculations and support its the rich routing features. We extend the ALNS
developed by Markov et al. (2016a), which exhibits excellent performance on VRP and IRP
benchmark instances from the literature, as well as on the waste collection IRP instances
referred to above. The extension details are outlined in Appendix D. The ALNS is implemented
as a single-thread application in Java and the calculator for the state probability trees in
Figure 2 is scripted in R. All experiments have been performed on a 3.33 GHz Intel Xeon X5680
server running a 64-bit Ubuntu 16.04.2 and each instance has been solved 10 times.

7.1 Instances

The waste collection IRP instances introduced in Markov et al. (2016a) are 63 instances of white
glass collections performed in the canton of Geneva, Switzerland. Figure 3, which is borrowed
from Markov et al. (2016a), maps the collection points for recyclable materials extracted from
the cantonal open data portal (SITG, 2017). Not all of these points are included in the
case study, and further details are not disclosed for confidentiality reasons. The instances are
created using the historical records of weekly visits for a sample period covering the years 2014,
2015 and 2016. The planning horizon is seven days long, starting on Monday and finishing

Figure 3: Geneva Service Area (Markov et al., 2016a)
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on Sunday. Moreover, according to constraints (31) there should be no expected overflows on
the following Monday. On average, there are 41 containers per instance, with a maximum of
53, and their volumes range from 1000 to 3000 liters. Collection takes three or five minutes
depending on container type. There are two dumps located far from each other outside the city
of Geneva. The fleet consists, depending on the instance, of one or two heterogeneous vehicles
with volume capacities of approximately 30,000 liters and weight capacities of 10,000 to 15,000
kg, which do not perform collections during the weekend. Demands are forecast using the
count data mixture model presented in Markov et al. (2016a) using the previous 90 days of
data, and assuming independent normally distributed error terms εit for all i ∈ P and t ∈ T ,
which is supported by the data. Absence of historical container level data prevents demand
forecasting for certain weeks of the sample period, for which instances are not generated.
We use realistic or reasonable values for the tour duration, the time windows and the cost
parameters. In particular, tours are restricted to a maximum duration of four hours each,
and the time windows correspond to 8:00 a.m. until noon. For the trucks, we use a daily
deployment cost of 100 CHF, a per-kilometer cost of 2.95 CHF and a per-hour cost of 40 CHF.
We assume that the municipality charges the collector 100 CHF for a container overflow.

The second set consists of 94 instances of the facility maintenance problem with an average
of 42 facilities and a maximum of 62. These instances are built from the same data used for
building the waste collection IRP instances. However, since the facility maintenance problem
described in Section 6.5 does not consider demands, we are not limited by the absence of
historical container level data. Hence, the 94 instances of the facility maintenance problems
vs. the 63 instances of the waste collection IRP. For each facility i ∈ P, we set a service
duration of 30 minutes, and tours are now constrained to a maximum duration of eight hours,
instead of four. The probability of breakdown is modeled using the cumulative distribution
function of the log-logistic distribution. That is, the probability pDP

it of breakdown of facility
i in period t defined in formula (58) is given by:

pDP
it =

1

1+
(
t−g
α

)−β , (64)

where g is the period of the most recent visit. We set the value of β to 5, while α is randomly
chosen for each facility as an integer between 10 and 15, inclusive. Figure 4 plots the breakdown

Figure 4: Breakdown Probabilities for Different Values of α
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probability for the different values of the α parameter. In addition, for each facility in period
0, we draw a random integer between 1 and 3, inclusive, for the number of days since the most
recent visit. In effect, the probability accumulates in a way similar to how inventory builds up
in the IRP.

7.2 Waste Collection Case Study

Markov et al. (2016a) solve the waste collection IRP represented by the model (WCIRP)
formulated in Section 6.3. Their ALNS, which is also used in this study, exhibits excel-
lent performance on VRP and IRP benchmark instances from the literature. On the waste
collection IRP instances, the stochastic model performs significantly better compared to alter-
native deterministic policies often employed in practice, such as buffer capacities, in its ability
to reduce the occurrence of container overflows for the same routing cost. The authors also
confirm the benefits of a rolling horizon approach. Dynamically including new information at
each rollover results in solutions which are on average 11% cheaper compared to those of a
static problem solved for the same planning horizon. Here, we conduct further experiments on
these instances. In particular, Section 7.2.1 assesses the effect on the computational burden
of using empirical distribution functions at runtime for calculating the route failure probabili-
ties. Section 7.2.2 analyzes the objective function’s overestimation of the real cost previously
discussed in Section 5.1.1.

7.2.1 Use of Empirical Distribution Functions

As described in Section 4.3, assuming iid error terms drawn from any distribution Φ allows
the partial pre-processing of the route failure probabilities through the derivation of empirical
distribution functions to be used at runtime. Clearly, the main risk of using such functions at
runtime is their effect on the computation time, and hence tractability, and the precision of
the resulting probability. To investigate this, we use the simulation methodology described in
Appendix C to build Empirical Cumulative Distribution Functions (ECDFs) forM = 100,000
draws. The ECDFs are constructed using the EmpiricalDistribution class of the Apache
Commons Math 3.6.1 release1. We test two configurations for the ECDFs, one binning the
draws in 1000 bins and one binning them in 100 bins. Testing shows that the configuration
with 1000 bins exhibits a squared error with respect to the normal distribution in the order of
10−7, while for the configuration with 100 bins, it is in the order of 10−6.

The normality of the error terms of the waste collection IRP instances allows us to make a
meaningful comparison between analytical approximation and the use of ECDFs for the route
failure probabilities. In particular, the distribution of ΓS in formula (9) remains normal and
can thus be analytically approximated at runtime. In parallel, the set of relevant ECDFs
discussed in Section 4.3 and Appendix C can be pre-processed for the comparison. Table 2
reports the results of the experiments, which are performed for an Emergency Collection Cost

1http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
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Table 2: Impact of Empirical Distribution Functions on Tractability

Cost (CHF) Runtime (s.) ECDF calls (millions)

ALNS version Bins ECC RFCM Best Avg Worst Best Avg Worst Best Avg Worst

Original – 100.00 1.00 662.65 666.64 672.87 870.65 906.84 936.40 – – –
ECDFs 1000 100.00 1.00 662.63 666.74 673.35 909.06 948.77 982.68 52.95 58.90 65.00
ECDFs 100 100.00 1.00 662.49 666.46 672.73 869.52 903.81 932.79 52.94 58.44 63.90

(ECC) ζi = 100 CHF for all containers i ∈ P and a Route Failure Cost Multiplier (RFCM)
ψ = 1. In the table, each row presents averaged values over the 63 instances. The first column
identifies the version of the ALNS used, i.e. the original one of Markov et al. (2016a), which
uses analytical approximation, vs. the one using ECDFs. The analytical approximation is
based on the following approximation of the error function:

erf(x) ≈ 1−
(
a1t+ a2t

2 + · · ·+ a5t5
)
e−x

2

, t =
1

1+ px
, (65)

where p = 0.3275911, a1 = 0.254829592, a2 = −0.284496736, a3 = 1.421413741, a4 =

−1.453152027, a5 = 1.061405429, and whose maximum approximation error is 1.5 × 10−7
(Abramowitz and Stegun, 1972).

The second column in Table 2 identifies the binning configuration, while the third and fourth
columns show the ECC and the RFCM, which are the same for all instances. The fifth, sixth
and seventh columns present the best, average and worst cost over 10 runs. In a similar fashion,
the eighth, ninth and tenth columns report the best, average and worst computation time, and
the eleventh, twelfth and thirteenth columns report the best, average and worst number of calls
to the ECDFs over 10 runs. Expectedly, Table 2 shows that the different implementations have
no impact on the solution cost. We also observe that the implementation with 100 bins has a
computation time that is virtually the same as that of the original implementation. However,
as mentioned before, the binning configuration with 1000 bins has a squared error which is one
degree of magnitude lower, while its computation time is only about 5% higher. Therefore, this
configuration may be preferable. Analytical approximation can only be used for a limited set
of distributions, including the normal, for which the distribution of sums of random variables
is defined and easily approximated. For all other cases, pre-processed ECDFs can be used
and Table 2 provides encouraging results indicating that they preserve tractability and have a
negligible impact on computation time.

7.2.2 Overestimation of the Real Cost

As discussed in Section 5.1.1, the objective function overestimates the real cost because all
terms, except the ESOEDC, ignore the cost effect of demand points stocking out earlier than
expected. In addition, the overestimation depends on the type of reaction policy, which De-
finition 4 describes as the response to the recourse action by changes later in the planning
horizon. To study the magnitude of this effect, we perform a simulation experiment counting
the number of realized overflows. Given the final solution of each instance, we simulate 10,000
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scenarios, sampling the independent normally distributed error terms εit for each container
i ∈ P and each day t ∈ T , and applying them to the expected demands E(ρit). Then, for
each scenario we analyze the effect of the realized overflows on the overestimation of the real
cost.

Computing the overestimation for a do-nothing reaction policy is trivial. In the absence of
inventory holding costs, the effect may only appear in the ERFC component as detailed in
the proof to Proposition 2. Clearly, the overestimation will be higher for an optimal reaction
policy which, in the occurrence of overflows, re-optimizes all subsequent decisions. However,
computing the overestimation for an optimal reaction policy has a significant computational
burden, as it requires that re-optimization be done after each overflow for the 10,000 simulated
scenarios. Therefore, we consider the following intuitive upper bound on the overestimation
for an optimal reaction policy. Consider a container i that overflows on day g and is visited
for a regular collection on days t > g. Now, take the minimum day h = min t > g on which
container i is visited for a regular collection and posit an optimal reaction policy so good that
it removes the cost effect of container i from all days t > h. First, we remove the container
from all tours performed on days t > h, thus considering the highest possible overestimation
of the RC and ERFC components. Secondly, we disregard its probability of overflow on days
t > h, thus considering the highest possible overestimation of the ESOEDC component.

Figure 5 plots the overestimation for a do-nothing reaction policy as well as the discussed
upper bound on the overestimation for an optimal reaction policy of objective (55) of the waste
collection IRP at the 75th, 90th, 95th and 99th percentile of the 10,000 scenarios. We present
the results for an Emergency Collection Cost (ECC) ζi = 25, 50 and 100 CHF, identical for all
containers, and a Route Failure Cost Multiplier (RFCM) ψ = 1. Each box-plot is constructed
using the average values over 10 runs for each of the 63 instances. The overestimation for the
do-nothing reaction policy is marginal, which is due to the low probability of route failure
observed in general for the waste collection IRP instances. Unsurprisingly, the upper bound
on the overestimation for the optimal reaction policy appears to be linked to the level of the
ECC. The median upper bound is approximately zero for the 75th, 90th and 95th percentile,
with the maximum values reaching 2.5%. It becomes more pronounced at the 99th percentile,
where the median values are 0.61%, 0.37% and 0.22% for an ECC of 100 CHF, 50 CHF and
25 CHF, respectively, which indicates the generally very low level of overestimation of the
real cost. The maximum values do not exceed 8% for an ECC of 100 CHF, and 4% for an
ECC of 50 CHF and 25 CHF. There is a strong correlation in the order of 70% between the
number of realized overflows and the upper bound across the 63 instances. In Section 4, we
argued the importance of tractability in terms of the probability calculations that enter the
objective function. Using simplification techniques in the probability expressions ignores some
of the uncertainty propagation which, as proved in Proposition 2, leads to an overestimation
of the real cost. Nevertheless, the results for the waste collection IRP instances indicate that
this overestimation is marginal, and even a trivial upper bound on the optimal reaction policy
implies a median overestimation of the real cost of less than 1%.
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Figure 5: Objective Function’s Overestimation of the Real Cost

(a) Objective Function Overestimation for ECC = 100 CHF, RFCM = 1
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(b) Objective Function Overestimation for ECC = 50 CHF, RFCM = 1
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7.3 Facility Maintenance Case Study

The facility maintenance problem defined in Section 6.5 considers a set of facilities that have
to be periodically inspected in order to limit the occurrence of breakdowns. Unlike the waste
collection IRP, this problem does not consider demands. Thus, there is no deterministic equi-
valent to the stochastic problem. We start by comparing the two stochastic models proposed
in Section 6.5. The models (FMP1) and (FMP2) treat uncertainty using a probabilistic ob-
jective function and probabilistic constraints, respectively. While both approaches use the
same probability information, they do not use it in the same way. Specifically, the probabi-
listic objective approach calculates the probability of incurring the emergency repair cost and
lets the model determine the best balance between the routing and the expected emergency
repair cost. The breakdown probabilities in the final solution thus depend on the value of the
emergency repair cost itself. The probabilistic constraints approach controls the probability of
breakdown in a rather artificial way. One usually knows what it costs to perform an emergency
repair, while it is unclear what a reasonable value of the maximum allowable probability of
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breakdown γDP should be. At any rate, while these two approaches are different modeling-
wise and from a conceptual stance, they are expected to be able to produce the same range of
results. To verify this, we solve the model (FMP1) for a set of Emergency Repair Cost (ERC)
ζi values, where ζi is identical for each facility i ∈ P, and the model (FMP2) for a set of values
for γDP.

The results are summarized in Tables 3 and 4, where each line is an averaged result over the
94 instances. In both tables, the first column identifies the modeling approach, the second one
reports the value of the ERC and the third one the value of the maximum allowable breakdown
probability γDP. In Table 3, the fourth column presents the average runtime in seconds, while
the fifth and sixth columns report the average number of tours and facility visits, respectively.
The rest of the columns report the best, average and worst results over 10 runs, and the
percent gap between the average and best, and the worst and best results. Computation times
are reasonable and, as expected, strongly correlated to the number of facility visits, and as a
result to the cost. Not surprisingly, higher numbers of facility visits also correspond to higher
numbers of tours. The gap between the average and the best solutions is in the order of 1-2%,
and the gap between the worst and the best solutions is in the order of 2-3%, evidence of the
stability of the ALNS.

Table 4 decomposes the solution cost into Routing Cost (RC) and Expected Emergency Repair
Cost (EERC), whose averages are provided in the fourth and fifth columns, respectively. The
last four columns are the result of a simulation experiment with 10,000 scenarios as the one
described in Section 7.2.2, and report the average number of breakdowns over the 94 instances
at the 75th, 90th, 95th and 99th percentile of the 10,000 scenarios. There appears to be, as
expected, a clear negative correlation between the routing cost and the number of breakdowns
at any percentile. This happens because higher routing costs are associated with more frequent
facility visits and, as per formula (64), with lower breakdown probabilities. Moreover, we notice
that the routing cost and the number of breakdowns for models (FMP1) and (FMP2) vary

Table 3: Basic Results for Model (FMP1) vs. Model (FMP2)

Avg Num Avg Num Best Cost Avg Cost Worst Cost Gap Avg- Gap Worst-
Model ERC γDP Runtime (s.) Tours Visits (CHF) (CHF) (CHF) Best (%) Best (%)

(FMP1) 1000.00 – 585.81 3.18 51.90 1810.57 1831.88 1857.70 1.18 2.60
(FMP1) 500.00 – 558.97 2.98 45.88 1594.88 1618.29 1641.24 1.47 2.91
(FMP1) 250.00 – 508.93 2.51 39.35 1404.90 1421.62 1443.89 1.19 2.78
(FMP1) 100.00 – 419.05 1.81 27.19 1125.71 1139.90 1158.42 1.26 2.91
(FMP1) 50.00 – 484.82 0.87 12.70 852.41 853.69 855.13 0.15 0.32
(FMP1) 25.00 – 478.33 0.84 2.75 556.32 556.32 556.32 0.00 0.00
(FMP2) – 0.25 248.72 0.84 2.31 195.73 195.73 195.73 0.00 0.00
(FMP2) – 0.20 319.59 0.99 6.81 304.19 304.27 304.52 0.03 0.11
(FMP2) – 0.15 410.53 1.37 19.91 575.17 576.80 579.06 0.28 0.68
(FMP2) – 0.10 500.31 1.99 29.02 836.40 841.00 845.57 0.55 1.10
(FMP2) – 0.08 550.26 2.27 36.31 1003.84 1010.44 1016.76 0.66 1.29
(FMP2) – 0.05 584.48 2.62 41.07 1144.97 1154.82 1166.69 0.86 1.90
(FMP2) – 0.04 584.95 2.86 41.63 1201.01 1212.19 1226.82 0.93 2.15
(FMP2) – 0.03 627.74 2.88 43.83 1237.16 1249.44 1264.50 0.99 2.21
(FMP2) – 0.02 667.10 3.49 49.01 1438.88 1453.06 1463.91 0.99 1.74
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Table 4: Performance Indicators for Model (FMP1) vs. Model (FMP2)

Avg Num Breakdowns

Model ERC γDP Avg RC (CHF) Avg EERC (CHF) 75th Perc. 90th Perc. 95th Perc. 99th Perc.

(FMP1) 1000.00 – 1444.59 387.29 1.21 1.98 2.47 3.44
(FMP1) 500.00 – 1304.26 314.03 1.76 2.53 3.13 4.20
(FMP1) 250.00 – 1108.69 312.94 2.59 3.49 4.13 5.34
(FMP1) 100.00 – 780.78 359.12 5.20 6.55 7.41 9.07
(FMP1) 50.00 – 369.76 483.93 11.55 13.54 14.74 17.06
(FMP1) 25.00 – 201.93 354.39 16.46 18.76 20.18 22.84
(FMP2) – 0.25 195.73 0.00 16.75 19.02 20.48 23.17
(FMP2) – 0.20 304.27 0.00 14.35 16.50 17.82 20.36
(FMP2) – 0.15 576.80 0.00 9.19 10.97 12.07 14.18
(FMP2) – 0.10 841.00 0.00 5.62 6.98 7.85 9.58
(FMP2) – 0.08 1010.44 0.00 3.91 5.06 5.84 7.29
(FMP2) – 0.05 1154.82 0.00 2.53 3.48 4.11 5.31
(FMP2) – 0.04 1212.19 0.00 2.17 3.06 3.58 4.75
(FMP2) – 0.03 1249.44 0.00 2.01 2.82 3.41 4.52
(FMP2) – 0.02 1453.06 0.00 1.22 2.02 2.47 3.43

within similar ranges. This is confirmed by Figure 6, which is a visual representation of the
above results. It shows that the two approaches are logically equivalent, with similar routing
costs corresponding to similar levels of occurrence of breakdowns. We stress again that both
approaches are probabilistic, using the same uncertainty information in different ways.

Figure 6: Comparison of Routing Cost and Breakdowns for Model (FMP1) vs. Model (FMP2)
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To complete the picture, we compare the two probabilistic models to model (FMPD) of
Section 6.5, which is a flexible deterministic approach oblivious to any uncertainty infor-
mation. It considers a routing-only objective function and stipulates that each facility i ∈ P
must be visited at least νi times during the planning horizon. Table 5, which is structured
in the same way as Table 4, summarizes the results for νi = 1 and 2, with νi identical for
all i ∈ P. Some of the instances become infeasible for higher values of νi. Based on the
above information, Figure 7 presents a side-by-side comparison of the studied probabilistic
and deterministic policies. Part (a) of the figure plots the number of breakdowns at the 99th
percentile of each deterministic policy from Table 5 and the closest outperforming probabilistic
policy from Table 4. Part (b), in turn, compares the corresponding routing costs. Overall, the
comparison reveals that given a deterministic policy, we can find a probabilistic one that leads
to fewer breakdowns and is at the same time cheaper, thus highlighting the clear superiority
of the stochastic modeling approaches. In the analysis above, we disregard the EERC compo-
nent from the comparison, as it merely provides a cost dimension to the number of expected
breakdowns. In effect, we compare the two policy types in terms of the number of realized
breakdowns after subjecting them to the same simulation experiment.

Table 5: Performance Indicators for Model (FMPD)

Avg Num Breakdowns

Model ERC νi Avg RC (CHF) Avg EERC (CHF) 75th Perc. 90th Perc. 95th Perc. 99th Perc.

(FMPD) – 2 1945.96 0.00 3.16 4.10 4.56 5.71
(FMPD) – 1 1140.10 0.00 4.28 5.47 6.26 7.77

Figure 7: Comparison of probabilistic and deterministic policies
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8 Conclusion

This work introduces, formulates and analyzes a unified framework for various classes of rich
routing problems, including among others the VRP and the IRP. Demand is stochastic, can
be non-stationary, and is forecast with any model that provides the expected demands over
the planning horizon and the error term distribution, where the latter can be any theoretical
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or empirical distribution that can be simulated. We explicitly model undesirable events and
include a variety of features relevant to real-world routing problems, such as multiple depots,
open and multi-period tours, intermediate facilities, time windows, accessibility restrictions,
visit periodicities and service choice, etc. The practical applicability of the approach is rein-
forced by the fact that the probability information related to demand stochasticity can be
pre-computed or at least partially pre-processed. Thus, we can preserve tractability, which
is critical for operational problems such as waste collection, facility maintenance, and other
discussed in the text. Finally, we show that certain problems where the inventory component
is not present, such as facility maintenance, can still be viewed through the prism of inven-
tory routing, with event probabilities at the demand points, or breakdown probabilities in
this specific example, accumulating as would inventory. The case study is based on realistic
instances of the waste collection IRP and the facility maintenance problem. We demonstrate
the tractable calculation of the route failure probabilities, which is possible for iid error terms
from any distribution using pre-processed ECDFs. Using a simulation approach, we also verify
that the effect of our assumptions and modeling simplifications in terms of overestimation of
the real cost is marginal. Finally, we observe that our framework significantly outperforms
alternative deterministic policies in its ability to limit the number of undesirable events for
the same routing cost.

The future research directions can be classified into those of mainly practical interest and
those of mainly theoretical interest. Starting from the first group, in our view the most
important task is the development of additional benchmark instances, which will allow us to
test the framework’s full capabilities on different problem types. While there exist benchmark
instances for many of the problems modeled in Section 6, they are largely deterministic or
involve simple routing structures. Thus, it is crucial that the instances be based on real data.
We are interested in evaluating how the framework performs on concrete problems faced by
real actors in the transportation domain. Another practically relevant research idea concerns
information availability. In our framework, demand is modeled at discrete time periods and
inventory is updated at the start of each period. Yet, visiting a customer at different times
during the same period would probably imply different delivery quantities. Real-time, or
online, optimization can be used to deal with continuous time demands. In this setup, the
system is updated after each customer visit and the subsequent decisions are fully or partially
re-optimized based on the latest available information.

This leads us to the second group of future work directions—those of primarily theoretical
interest. From a general standpoint, our framework is the first step in designing even more
comprehensive objective functions that account for more complex uncertainty propagations.
This should make it possible to relax some of the assumptions and allow for increasingly com-
plex routing structures, for example including multiple commodities and compartmentalization
(Mendoza et al., 2011). The integration of other stochastic elements, in particular travel and
service times, is also extremely relevant, especially in application areas such as maritime rou-
ting. Finding the balance between modeling realism and the preservation of tractability is one
of the main challenges in this direction. In terms of solution methodology, an important area of
future research is the development of theoretical lower bounds. Our optimization models rely
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on arc-based formulations which are known to provide weak lower bounds (Semet et al., 2014;
Poggi and Uchoa, 2014). Such models quickly become intractable even for moderate instance
sizes. A promising direction is the development of a path-based formulation and a state-of-
the-art column generation procedure. While this is rather straightforward for the linear and
deterministic case where the pricing problem is an Elementary Shortest Path Problem with
Resource Constraints (ESPPRC), the non-linear nature of our objective function will certainly
pose challenges in this regard. Certain simplifications in the routing structure and approxima-
tions like demand discretization may be sufficient to linearize the objective function and cast
the pricing problem as an ESPPRC. Alternatively, a more complicated pricing problem will
need to be modeled and solved. Either way, the ultimate goal is the evaluation of the quality
of the ALNS or any other meta-heuristic methodology applied to the framework.

A Equivalence of Stock-out and Overflow Probabilities

At the demand point level, the undesirable event for a distribution problem is a stock-out while
for a collection problem it is an overflow. Given that collection can be seen as the distribution
of empty space, these two events are modeled equivalently.

Proposition 3 The calculation of the probability of overflow for a collection problem is
identical to the calculation of the probability of stock-out for a distribution problem.

Proof. Let Λ′
ig denote the inventory after a regular collection of demand point i in period

g. This collection is accompanied by a corresponding delivery of empty space. Thus, the
empty space inventory after a regular delivery is Λig =

(
ωi −Λ

′
ig

)
, where ωi is the capacity

of demand point i. Given a regular collection in period g, the unconditional probability of
overflow of demand point i in period g+ 1 is expressed as:

P
(
Λ′
ig + ρig > ωi

)
= P

((
ωi −Λ

′
ig

)
− ρig 6 0

)
= P (Λig − ρig 6 0) , (A.1)

the last expression being equivalent to expression (4) for a distribution problem. Given a
regular collection in period g, the conditional probability of overflow in periods later than
g+ 1 is expressed as:

P

(
Λ′
ig +

h∑
t=g

ρit > ωi

∣∣∣∣∣Λ′
ig +

h−1∑
t=g

ρit < ωi

)
=

P

((
ωi −Λ

′
ig

)
−

h∑
t=g

ρit 6 0

∣∣∣∣∣ (ωi −Λ′
ig

)
−

h−1∑
t=g

ρit > 0

)
=

P

(
Λig −

h∑
t=g

ρit 6 0

∣∣∣∣∣Λig −
h−1∑
t=g

ρit > 0

)
, ∀h > g ,

(A.2)

the last expression being equivalent to expression (5) for a distribution problem. The proofs
for the unconditional and conditional probabilities of overflow given an emergency collection
in period g′ > g follow as special cases. �

36



B Pre-computing the Stock-out Probabilities

To pre-compute the unconditional and conditional probabilities of stock-out (4)–(7), choose a
sufficiently large number M and for m ∈ {1, . . . ,M} simulate:

em =
(
em11, · · · , em1|T |, e

m
21, · · · , em|P ||T |

)
, (B.1)

by drawing ε from Φ, where ε is the vector of error terms defined by equation (2). Using the
result of (B.1), the probability in formula (4) is pre-computed as:

P (Λig − ρig 6 0) = P (εig > Λig − E (ρig)) =

∑M
m=1 IF (emit > Λig − E (ρig) , 1, 0)

M
. (B.2)

Using the same technique, the probability in formula (5) develops and pre-computes as:

P

(
Λig −

h∑
t=g

ρit 6 0

∣∣∣∣∣Λig −
h−1∑
t=g

ρit > 0

)
=

= P

(
h∑
t=g

εit > Λig −
h∑
t=g

E (ρit)

∣∣∣∣∣
h−1∑
t=g

εit < Λig −

h−1∑
t=g

E (ρit)

)
=

=
P
(∑h

t=g εit > Λig −
∑h
t=g E (ρit) ,

∑h−1
t=g εit < Λig −

∑h−1
t=g E (ρit)

)
P
(∑h−1

t=g εit < Λig −
∑h−1
t=g E (ρit)

) =

=

∑M
m=1 IF

(∑h
t=g e

m
it>Λig−

∑h
t=g E (ρit) AND

∑h−1
t=g e

m
it<Λig−

∑h−1
t=g E (ρit) , 1, 0

)
∑M
m=1 IF

(∑h−1
t=g e

m
it < Λig −

∑h−1
t=g E (ρit) , 1, 0

) ,

∀h > g .

(B.3)

The function IF ([condition], 1, 0) is equal to 1 if the condition is satisfied, and to 0 otherwise.
The probabilities in formulas (6) and (7) are pre-computed as special cases of (B.2) and (B.3),
respectively. The time complexity of calculating each probability is linear in M.

C Partially Pre-processing the Route Failure Probabilities

Formula (10), which defines the probability of route failure, develops as:

P (ΓS > Ωk) =

= P (E(ΓS ) + E > Ωk) =
= P (E > Ωk − E(ΓS )) ,

(C.1)

where the cumulative error term E is derived from the definition of the delivery quantity ΓS
in trip S in formula (9) as follows:

E =
∑
t∈T \0

∑
St∈S

∑
s∈St

t−1∑
h=m

εsh . (C.2)
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In the general case, the distribution of E is unknown. And while probabilities (C.1) can be
approximated using the simulation techniques presented in Appendix B, the number of combi-
nations involving different periods, demand points and discrete inventory levels is prohibitive
for them to be pre-computed.

Imposing Assumption 2 allows the partial pre-processing of the route failure probabilities.
The distribution of E now only depends on the number of iid error terms εsh summed in
expression (C.2), which is bounded by N = |P |(|T | − 1) as discussed in Section 4.3. Pre-
processing is performed by choosing a sufficiently large number M and for m ∈ {1, . . . ,M}

simulating:

emg =

g∑
t=1

εit, ∀g ∈ {1, . . . ,N}, (C.3)

by drawing εit from the marginal distribution Φ′ for any i ∈ P (see Section 4.3). Using the re-
sult of (C.3), we derive an empirical distribution function Φemp

g of the values {e1g, . . . , eMg }, ∀g ∈
{1, . . . ,N}. Given Assumption 2 and formulation (C.3), ∃g ∈ {1, . . . ,N} s.t. E ∼Φemp

g . These
empirical distribution functions are then used at runtime to calculate the probabilities in
formula (C.1).

D ALNS Extensions

The ALNS used for the numerical experiments in Section 7 applies the parametric configuration
of Markov et al. (2016a). Section D.1 below describes the changes to the solution representation
of the original implementation while Section D.2 lists three new repair operators to handle the
additional routing features.

D.1 Solution Representation

With respect to the deterministic constraints, we consider all six types of feasibility violations
presented in Markov et al. (2016a) plus a violation of the visit period combination constraints
(29). Some of the former are redefined in view of the more general formulation and the repre-
sentative distribution context. The new solution representation also considers the violations
of the probabilistic constraints (49) and (50). Given a solution s and the shorthand notation
(x)+ = max{0, x}, the feasibility violations are summarized as:

1. Vehicle capacity violation VΩ(s) is redefined to capture the more general concept of
trips in the framework, with trips being supply point delimited demand point sequences,
possibly spanning over multiple periods. It is the sum of trip delivery quantities in excess
of vehicle capacities:

VΩ(s) =
∑
k∈K

∑
S∈Sk

∑
t∈T

∑
St∈S

∑
s∈St

qskt −Ωk

+. (D.1)
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2. Time window violation Vµ(s) remains unchanged. It is the sum of the upper time window
bound violations of the visited points.

3. Duration violation VH(s) is redefined to reflect the presence of multiple origin and des-
tination depots. It is the sum of excess tour durations:

VH(s) =
∑
t∈T

∑
k∈K

 ∑
o′′∈O′′kt

So′′kt −
∑
o′∈O′kt

So′kt − H

+. (D.2)

4. Demand point violation Vω(s) is redefined for a distribution context. It is the sum of
negative demand point inventories over T +:

Vω(s) =
∑
t∈T +

∑
i∈P

(−Iit)
+. (D.3)

5. Backorder limit violation V0(s) is also redefined for a distribution context. It is the sum
of negative inventories in period t = 0 of the demand points that are not visited in period
t = 0:

V0(s) =
∑
i∈P

((
1−
∑
k∈K

yik0

)
(−Ii0)

+

)
. (D.4)

6. Accessibility violation Vα(s) remains unchanged. It is the sum of the inaccessible point
visits.

7. Visit period combination violation Vr(s) is the sum of visits performed when not required
or not performed when required by the assigned visit period combinations:

Vr(s) =
∑
t∈T

∑
i∈P

∣∣∣∣∣∣
∑
k∈K

yikt −
∑
r∈Ci

αrtcir

∣∣∣∣∣∣. (D.5)

8. Maximum stock-out probability violation VDP(s) is the sum of stock-out probabilities in
excess of the maximum allowable probability of stock-out:

VDP(s) =
∑
t∈T

∑
i∈P

(
pDP
it − γDP)+. (D.6)

9. Maximum route failure probability violation VRF(s) is the sum of route failure probabi-
lities in excess of the maximum allowable probability of route failure:

VRF(s) =
∑
k∈K

∑
S∈Sk

(
pRF

S ,k − γ
RF)+. (D.7)

With the above violations, the complete solution cost during the search is represented by:

f(s) = z(s) + LΩVΩ(s) + LµVµ(s) + LHVH(s) + LωVω(s) + L0V0(s) + LαVα(s)

+LrVr(s) + LDPVDP(s) + LRFVRF(s),
(D.8)

where parameters LΩ through LRF penalize each type of feasibility violation.
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D.2 Operators

The following three repair operators are added to the original list of repair operators:

1. Replace a destination depot: This operator selects a random tour and replaces its
destination depot with a random destination depot o ∈ O′′

kt, where t ∈ T is the period
in which the tour is performed and k ∈ K is the vehicle performing it. The algorithm
then finds minh > t s.t. Hkh > 0, i.e. the next period h for which vehicle k is available,
and changes the origin depot of the tour that vehicle k executes in period h to o.

2. Change visit period combination: This operator selects a random demand point i ∈ P
and assigns to it a random visit period combination r ∈ Ci.

3. Change inventory level after delivery: This operator selects a random tour executed
in period t and a random demand point i in this tour. It then selects a random level
r ∈ Li s.t. Λit = r`irt > Iit and assigns it to demand point i in period t.
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