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Abstract
This paper presents a novel activity-based demand model that combines an optimisation
framework for continuous temporal scheduling decisions (i.e. activity timings and du-
rations) with traditional discrete choice models for non-temporal choice dimensions (i.e.
activity participation, number and type of tours, and destinations). The central concept of
our approach is that individuals resolve time conflicts that arise from overlapping activi-
ties, e.g. needing to work and desiring to shop at the same time, in order to maximise their
daily utility. Flexibility parameters indicate behavioural preferences to penalise deviations
from desired timings. This framework has three advantages over existing activity-based
modelling approaches: (i) the time conflicts between different temporal scheduling deci-
sions including the activity sequence are treated jointly; (ii) flexibility parameters follow
an utility-maximisation approach; and (iii) the framework can be used to estimate and
simulate a city-scale case study in reasonable time. We introduce an estimation routine
that allows flexibility parameters to be calibrated using real-world observations, as well as
a simulation routine to efficiently resolve temporal conflicts using an optimisation model.
The framework is applied to the full-time workers of a synthetic population for the city
of Lausanne, Switzerland. We validate the model results against reported schedules. The
results demonstrate the capabilities of our approach to reproduce empirical observations
in a real-world case study.

Keywords: activity-based model; discrete choice; mathematical optimisation; maximum
likelihood estimation; mixed-integer linear program
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1 Introduction
Planning for future transport infrastructure and efficient service concepts in light of pos-
sible changes in population (e.g. demographic shifts), policy or technology relies on
quantitative forecasts of travel demand. To that end, simulation models which aim to
closely represent mobility behaviour are applied. The majority of models used in practice
adopt an aggregated (i.e. macroscopic) approach. In macroscopic models, mobility is
simulated as a set of trips or tours that are not connected within daily activity schedules.
Furthermore, behaviour is typically clustered into segments without considering hetero-
geneous individual preferences (Boyce and Williams, 2015). The time distribution over
the day is usually divided into broad categorical groups, e.g. peak hours and off-peak
hours. Individual preferences and spatial-temporal constraints of travel are hence largely
ignored.
Activity-based (i.e. microscopic) travel models treat mobility as individual decisions
across many interwoven choice dimensions. These models afford a higher resolution
representation of travel behaviour than traditional macroscopic models because they sim-
ulate each traveller as an autonomous decision-making unit and consider full consistency
in time and space over a time period (e.g. a 24h-day) for each individual (Rasouli and
Timmermans, 2014). In most activity-based models, the different choice dimensions –
e.g. activity participation, destinations, activity duration or start times – are simulated
sequentially (Castiglione et al., 2015, Davidson et al., 2011). Different modelling ap-
proaches can be used for each choice dimension. For example, activity participation and
destination choice is well suited to discrete choice models, whilst other dimensions like
activity duration and start time typically use rule-based or data-driven approaches (Scherr
et al., 2020b). Sequential and rule-based approaches to generate activity-based schedules
can be improved to model major system disruptions since they only partially consider
behavioural preferences and feedback between choice dimensions.
In this paper, we apply a novel activity-based scheduling model for the city of Lausanne,
Switzerland, in which temporal scheduling decisions (i.e. activity timings and durations)
and travel times are considered jointly. The model targets to resolve activity-scheduling
conflicts for each individual that arise from overlapping activities. In the case of a schedul-
ing conflict, flexibility parameters indicate the behavioural preferences to shift timings of
certain activity types compared to others. We adapt the framework introduced by Pougala
et al. (2021a) that simulates desired choice dimensions simultaneously using a mixed-
integer linear program (MILP) and that identifies behavioural flexibility preferences based
on maximum likelihood estimation. The framework proposed by Pougala et al. has two
major advantages: (i) it allows for interaction between multiple choice dimensions; and
(ii) conflicts in time and space among different activities are resolved based on behavioural
preferences. In this work, we introduce another contribution to the framework by imple-
menting a computationally efficient version to demonstrate the application capabilities to
a synthetic population for a city-scale case-study, with a detailed calibration and valida-
tion against empirically available observations. This is achieved by simulating the non-
temporal choice dimensions (i.e. activity participation, number of tours, and considered
locations) using existing discrete choice models prior to the optimisation model to reduce
complexity within the MILP. The output of the framework is a realistic daily schedule
containing a sequence of activities for each simulated individual. Each activity in this
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schedule has a certain type, start time, duration, location as well as a mode to travel to the
following activity. These schedules are an essential input for a traffic assignment – e.g.
using the software MATSim (Horni et al., 2016) – which can be used to derive network
loads to support decisions about future transport infrastructure investments.
The paper is structured as follows: First, a brief review of recent advances in activity-
based demand modelling is provided. Next, the framework is introduced, including the
parameter estimation routine and the MILP. This framework is then applied to the group
of full-time workers of a synthetic population in the case study for the city of Lausanne,
Switzerland. Finally, the results are presented, validated against empirical data from a
survey and discussed.

2 Background
Early activity-based approach to travel demand modelling were proposed in the 1990s
(Axhausen and Gärling, 1992). The main motivation driving the transition from tradi-
tional aggregated models to activity-based models is the lack of behavioural realism in the
traditional approach, which does not allow for forecasting new policies such as congesting
pricing, teleworking and ride-sharing incentives (Rasouli and Timmermans, 2014). For a
more detailed overview of the development of the activity-based approach, we direct the
reader to reviews provided by Bowman (2009) and Castiglione et al. (2015).
The first microscopic activity-based models were developed for several Northern Amer-
ican cities (Bowman and Ben-Akiva, 2001, Vovsha et al., 2005, Bhat et al., 2004). They
follow an econometric, utility-maximising approach to simulate the choice behaviours of
households and individuals. Typically, the activity schedules are built using a set of dis-
crete choice models for mode ownership, tour bundling, activity selection, mode choice,
and location choice. Multinomial and nested logit models are the most commonly applied
model forms used in practice to represent the interactions of the various dimensions and
to link the separate model steps. As Bhat et al. (2004) highlight, several important struc-
tural issues are not addressed within these early models, one of them being the relation of
the time-of-day decision to the mode and destination choices.
Other early implementations of activity-based models use a rule-based approach. For
example, the ALBATROSS framework (Arentze and Timmermans, 2004) uses decision
trees to represent choice heuristics of individuals and derive these heuristics from activity
travel data. Other rule-based frameworks that use decision trees for the scheduling pro-
cedure are FEATHERS (Bellemans et al., 2010) and TASHA (Miller and Roorda, 2003,
Roorda et al., 2008). As stated in Auld et al. (2009), the issue with rule-based models is
that they cannot predict modification choices, i.e. if an activity is modified, is it moved or
shortened and by how much.
In Europe, the development of activity-based models was arguably driven by the increas-
ingly popular agent-based transport simulation software MATSim (Horni et al., 2016).
Most activity-based models are developed to generate schedules which are then fed into
the dynamic traffic assignment of MATSim. The software MATSim itself provides a
well-elaborated network simulation and route searching algorithms. However, the stan-
dard version of MATSim does not provide the functionality to generate activity-based
demand including the choice dimensions of activity participation, sequence, locations
and initial timings. For this purpose, Ziemke et al. (2015) use the econometric framework
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CEMDAP (Bhat et al., 2004) to couple an existing activity-based model with MATSim.
They take the original discrete choice parameters as estimated for Los Angeles, and apply
them to a synthetic population of Berlin. Hilgert et al. (2017) propose the framework
mobiTopp that covers the time period of one week. It is also inspired by the approach
of Bowman and Ben-Akiva (2001) and applies a set of discrete choice models. Activity
durations and start times are simulated as combination of discrete choice of an aggregated
category and a weighted random draws within the chosen category. The resulting activity-
based schedules of the mobiTopp model are then integrated into MATSim (Briem et al.,
2019). A very similar approach is presented in Scherr et al. (2020b). They show a com-
prehensively validated microscopic model called SIMBA MOBi in which agents react to
transport supply across all mobility choices. For the choices in the temporal dimension,
it uses a rule-based approach that is based on weighted random draws from empirical
distributions. Moeckel et al. (2020) propose a framework called MITO containing a sim-
plified activity-based model. Destination choice is influenced by a travel time budget for
every household, i.e. people who spent a lot of time commuting are less likely to do much
other travel. A recent study from Hörl and Balac (2021) introduces a standardised process
for generating activity-based travel demand based on open data and open software that is
fully replicable by any user. Their approach is predominantly data-driven and does not fo-
cus on behavioural parameters. Drchal et al. (2019) implement another fully data-driven
approach.
A newer generation of activity-based model tries to solve the scheduling problem with
techniques like Hidden Markov Models or Bayesian Networks. Both Liu et al. (2015) and
Saadi et al. (2016) introduce a Hidden Markov Model. The advantage of this method is
that it considers trends of their activity sequencing from a temporal perspective. However,
Saadi et al. (2016) point out that the approach presents a limitation at the time dimension.
Joubert and De Waal (2020) present a Bayesian Network approach and highlight the ben-
efits of a behaviourally rich travel demand model which allows for causal interpretation.
This method can also account for temporal variables like activity duration.
There have been few attempts to combine activity-based modelling and mathematical op-
timisation techniques reported in the literature. An early study by Recker (2001) presents
a theoretical mathematical formulation targeting to facilitate the practicality of activity-
based modelling approaches. It unifies the complex interactions among the scheduling
conflicts solved by households in performing their daily activities, while preserving the
utility-maximising principles. Building from this work, Recker et al. (2008) introduce an
estimation procedure for this optimisation framework. They estimate the relative impor-
tance of factors associated with spatial and temporal interactions among the activities in a
schedule, however they conclude that the formulation for the time sequence is rather sim-
plistic. Another framework called ADAPTS is demonstrated by Javanmardi et al. (2016),
which implements a flexible non-linear optimisation model. The model is applied to a
synthetic population for the Chicago region. The objective function aims to minimise the
amount of changes in timing and duration of involved activities in a conflict situation.
The weights used to account for individual activity preferences are constant weights for
all activity types. Rizopoulos and Esztergár-Kiss (2020) develop an optimisation model
for the interaction of activity scheduling and charging electric vehicles. For this purpose,
the authors use a Genetic Algorithm that considers temporal flexibility which is defined
based on heuristic rules and priority labels per activity. Esztergár-Kiss et al. (2020) sug-

4



gest an activity-based schedule optimisation method that includes temporal and spatial
flexibility of the activities using a modified version of the Traveling Salesman Problem
with Time Window constraints. Similar to Rizopoulos and Esztergár-Kiss (2020), they
define heuristic flexibility priorities. Also, they focus on the travel episodes with a rather
simple utility specification. Ballis and Dimitriou (2020) aim to convert multi-period and
purpose-dependant origin-destination matrices into sets of activity schedules. They show
a comprehensively validated framework that is mainly established on advanced graph-
theoretical and combinatorial optimisation concepts. However, they only use simplified
activity types and the activity schedules are not accompanied by socio-demographic in-
formation.
Many of the discussed issues are addressed by the activity-scheduling framework pro-
posed by Pougala et al. (2021a). They provide a theoretical framework that combines
multiple choice dimensions (activity participation, location, start time, duration and mode
choice) into a single optimisation problem and that captures the complex trade-offs be-
tween scheduling decisions for multiple activities. The framework is based on the be-
havioural principle that individuals maximise their overall schedule utility according to
their preferences and constraints for performing desired activities during one day. It rep-
resents all choices in the time dimension as continuous variables. The utility formulation
is modular and preferences can be specified for each individual activity. The optimisa-
tion model is implemented as a MILP that can easily be extended by additional custom
constraints. In their work, Pougala et al. take flexibility parameters from the literature
without further calibration. Also, they demonstrate the framework for small samples of
individuals only and do not proof the applicability in the large-scale context with a de-
tailed validation against empirical observations.
This work builds on the theoretical framework of Pougala et al. and focuses on resolving
scheduling conflicts in the temporal dimension, on calibrating the individual flexibility
parameters and on computational efficiency to scale the model to a real-world large-scale
simulation. The temporal dimension of the scheduling problem remains under-explored
in literature compared to other dimensions such as location and mode choice, which have
been demonstrated to be well calibrated in a microscopic models for various applications
(Hörl et al., 2019, Scherr et al., 2020a). We aim at identifying a well calibrated utility
specification based on empirically reported observations for temporal scheduling deci-
sions, including the choices of activity start times and durations, while considering trip
travel times between them. Also, the work aims to apply the optimisation framework to a
synthetic population and reproduce observations as reported in the survey.
Stated succinctly, the contributions of our work are as follows:

• Flexibility parameters: An estimation routine is demonstrated that considers the
temporal decision within the scheduling problem as a whole. In contrast to exist-
ing approaches (Bowman and Ben-Akiva, 2001, Bhat et al., 2004, Hilgert et al.,
2017, Scherr et al., 2020b) which consider trip- or tour-based parameters, this ap-
proach estimates schedule-based parameters (total daily utility). Our formulation
considers time as a continuous variable and the resulting flexibility parameters are
based on behavioural principles. In the literature, time has either been modelled as
a discrete variable in combination with utility-based principles (Bowman and Ben-
Akiva, 2001, Castiglione et al., 2015) or as a continuous variable in combination
with heuristic flexibility parameters (Javanmardi et al., 2016, Esztergár-Kiss et al.,
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2020, Pougala et al., 2021a).

• Real-world Application: The implemented approach of coupling traditional dis-
crete choice models with an optimisation model to reduce the number of decision
variables targets to proof the applicability of the framework in a real-world large-
scale case study, which is not done in Pougala et al. (2021a). This work applies
the scheduling model to all 50’000 full-time workers of a synthetic population of
Lausanne, Switzerland. The size is comparable to studies in the literature, which
mostly simulate a certain percentage (e.g. 10 %) of the synthetic population for
bigger cities (Ziemke et al., 2015, Briem et al., 2019).

3 Methodology
The presented work implements an approach that makes usage of existing traditional
discrete choice models and combines them with an adapted version of the mathemati-
cal model as proposed by Pougala et al. (2021a). This approach targets to reduce the
complexity of the problem and puts focus on parameter calibration and real-world appli-
cation. To calibrate the individual flexibility parameters for a case study, we introduce
an estimation routine that quantifies preferences based on empirically reported schedules
in the Swiss mobility and transport microcensus (MTMC, BfS and ARE (2017)). The
choice set for the estimation routine is generated using existing sequential discrete choice
models (Scherr et al., 2020b). Based on the flexibility parameters, an optimisation model
solves all temporal scheduling decisions (start times and durations of each activity) simul-
taneously while considering travel times. The non-temporal elements of the scheduling
problem (i.e. activity participation, number and type of tours, and considered destina-
tions) are simulated using the traditional discrete choice models as introduced by Scherr
et al. (2020b) outside of the optimisation. They are fed as static activity sets into the opti-
misation framework. The proposed framework can be summarised with the two following
streams, as illustrated in Figure 1:

1. Parameter estimation: The first stream (top row in Figure 1) aims to estimate in-
dividual preferences for a specific person group based on schedules reported in the
MTMC (BfS and ARE, 2017). In this work, we focus on the group of full-time
workers. Individual preferences are flexibility parameters that express the loss of
utility when either deviating from a desired starting time or duration for each given
activity type. The procedure is described in more detail in Section 3.2.

2. Schedule simulation: The second stream (bottom row) optimises the utility of the
daily activity schedule for each individual in the synthetic population. The method-
ology to generate a synthetic population is provided in Bodenmann et al. (2019)
and goes beyond the scope of this paper. Each individual is assumed to choose an
activity set that they are going to perform during a 24h-period. Based on the esti-
mated flexibility parameters, the optimisation approach then resolves time conflicts
that arise from overlapping desired timings in the activity set. More insights into
the methodology are given in Section 3.3.
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Figure 1: The two streams of the scheduling framework: calibration (top row) and simu-
lation (bottom row).

3.1 General definitions
The following definitions are important in the context of this work:

Activity: Each a ∈ A is defined by a specific type, a desired start time x∗, a desired
duration τ∗, and a set considered locations L. Also, each activity is assigned to a
tour type and an activity can be defined to be a sub-tour activity.

Activity set: An activity setA contains all activities an individual needs or wishes to
perform during a time period (e.g. a 24-hour day) in no sequential order. It can con-
tain multiple instances of activities of the same type (e.g. two leisure activities). An
example for an activity set isA = {dawn, dusk, home, work, leisure_1, leisure_2}.
In this case, leisure_1 and leisure_2 are both leisure activities, but may have dif-
ferent desired start times, desired durations and considered location sets. We differ
between three subsets ofA:

Home activity set: The set H ⊆ A contains the number of home activities
an individual is going to perform. It includes activity types home, dusk and
dawn. H must contain exactly one dawn and one dusk activity, whereas the
number home activities is not constraint. We assume that each person wants to
spend a fraction of their daily time budget at home. Therefore, we define τ∗

H

as the desired home time budget, which is the sum of the durations of all in-
home activities:

∑
a∈H τa = τH . Each h ∈ H take place at the same location

(|L| = 1), which is given in the synthetic population data.

Primary activity set: The set P ⊂ A includes activity types work and educa-
tion. Primary activities are defined as activities that take place at one long-term
location (e.g. at the workplace). We assume that individuals are required to
undertake primary activities for a total daily duration τ∗

P
, such that the sum of

the duration of each scheduled primary activity is equal to the primary time
budget:

∑
a∈P τa = τP. The set P may be empty, if an individual does not

need to spend time on any primary activity (i.e. τ∗
P
=0).

Secondary activity set: The set S ⊂ A includes activity types leisure, shop-
ping, escort, business, further training and other. Secondary activities are
defined as activities with flexible locations. Hence, they may contain multiple
considered locations, one of which is chosen in the optimisation model. In
contrast to primary activities, the durations of secondary activities are treated
individually rather than their daily sum. This comes with the assumptions that
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people have individual activity duration budgets for secondary activity, but
see the duration of primary activities as one daily objective. The set S may be
empty, if an individual does not does not desire to take part at any secondary
activity.

Schedule: Each schedule consists of a set of activitiesA. To form a daily schedule,
the activities must be in a ordered sequence without overlapping in time, including
travel episodes. For this purpose, an individual needs to make the decision about
a realised start time x, a realised duration τ, as well as a chosen location l for
each a ∈ A. Locations and sequence of activities result in travel episodes with a
mode µ and a corresponding travel time tt. Activities of the same type must not
take place consecutively if there is no travel episode in between (i.e. both are at
the same location). A schedule always starts with a dawn activity at midnight and
ends with a dusk activity at the defined time period. An example for a schedule is
dawn → work → leisure_2 → home → leisure_1 → dusk. We consider two
types of schedules:

Realised schedule: In the choice set of the parameter estimation, it is the re-
ported schedule as reported in a survey. In the optimisation context, it is the
output of the optimisation model.

Feasible schedule: Any possible deviation from a realised schedule can be
feasible as long as it fits into the time period constraint and does not contain
overlapping activities.

Tours: The set of tours T contains all out-of-home tours in the daily schedule of an
individual. Each tour t ∈ T is defined to contain the subset of activities that take
place between two home activities (e.g. home → work → shopping → home).
The number of tours in a schedule hence equals the number of home activities in
minus one (|T | = |H | − 1). T includes tour types work, education and secondary.
Work and education tours include at least one and at most two primary activities of
this type. Tours that include secondary activities only are referred to as secondary
tours. The tour type is a static input in the optimisation context of this work.

Sub-tours: A sub-tour is a sequence of secondary activities between two primary
activities without any home activity in between (e.g. work – lunch – work).

3.2 Estimation of individual flexibility preferences
This section explains the estimation of activity-specific flexibility parameters. Section
3.2.1 gives an insight into the methodology that is used to generate a competitive choice
set. The model estimation uses the utility specification as given in Section 3.2.2 and is
described in Section 3.2.3.

3.2.1 Choice set generation

In discrete choice modelling, individuals evaluate, compare and select alternatives from a
choice set of mutually exclusive alternatives (Manski, 1977). In many applications, it is
assumed that choice sets are fully known by the decision-makers and are fully or partially
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observed by the modellers. This assumption is unrealistic for applications in which the
choice set is large such as location or route modelling.
The way we define the choice sets in this paper is similar to the definition proposed by
Shocker et al. (1991) in the context of marketing. We model the temporal dimension
in the activity-scheduling process as the discrete choice between different combinations
of activity timings and durations while also considering travel times between them. We
assume that the decision-maker only possesses a partial knowledge of the available op-
portunities. The set of all available combinations is the feasible schedule set. This sample
is finite but potentially very large. In addition, the sample of alternatives that the individ-
ual actually considers may neither be fully known by the modeller nor readily accessible
from traditional data sources.
The utility-based framework described in Pougala et al. (2021a) requires the estimation
of the parameters of the utility function, namely the penalties for schedule deviations
from desired activity start times and durations, and the cost for travelling. The estimation
requires a sample of alternatives with a formal description of the sampling protocol. Given
the difficulty of this task in this context, we propose a heuristic approach in which choice
sets are generated using a combination of the following two methods:

1. Random alternatives: We start with generating random schedule alternatives by
randomly modifying the activity start times and durations in a given set of activities
A as observed in the realised schedule of the MTMC. As the outcomes are random
and not based on any empirical distribution, many alternatives are likely to have
low levels of utility compared to the observed schedule. Relatively low levels of
utility imply that the generated alternatives differ substantially from the observed
schedule.

2. Likely considered alternatives: We generate activity schedules with variations of
activity start times, durations and travel times that are likely to be considered by
the decision-maker and hence biased towards high probability schedules. By likely
considered activities we mean schedules that are observed by other individuals with
similar characteristics (e.g. employment rate, age, urban home, etc.). For this
purpose, the sequential activity-based demand model MOBi.plans as presented in
Scherr et al. (2020b) is applied to draw distributions from the activities sets in the
schedules as reported in the MTMC.

3.2.2 Utility specification

As the adapted version of the scheduling framework in this paper focuses on temporal
scheduling decisions, it only uses the temporal components of the comprehensive utility
specification as proposed in Pougala et al. (2021a) including travel times that arise from
travelling between activities. In our work, the intrinsic attraction of an activity is not mod-
elled with a constant inside the optimisation, but as a discrete choice based on the utilities
of all available alternatives prior to the optimisation (see Section 3.3.1). Specifically, we
include the utility terms relating to schedule deviations from timing and duration prefer-
ences for each activity a and the travel times between a and the consecutive activity in our
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optimisation model for the utility specification of schedule alternative i:

Ui =
∑
a∈Ai

Utiming(xa) +
∑
a∈Si

Uduration(τa) +
∑

O∈{Pi,Hi}

Uduration(
∑

a∈O τa) +
∑

a∈Ai\{dusk}

Utt,a(tta)

(1)
The components and the associated assumptions are defined as follows:

• Utiming(xa) indicates the impact for deviating from desired timings for each activity
a ∈ Ai. The desired start time is defined as x∗a and xa is the start time of activity a as
stated in the choice set for alternative i. We introduce the two flexibility parameters
β

early
a and βlate

a which penalise the difference |x∗a − xa|.

Utiming(xa) = β
early
a max (0; x∗a − xa) + βlate

a max (0; xa − x∗a) (2)

• Uduration(τa) captures the impact of deviating from desired durations. In the case of
desired duration budgets, we differentiate between home, primary and secondary
activities (see definitions in Section 3.1). For primary activities a ∈ P, we compare
the sum of all scheduled primary activities (i.e. τa =

∑
p∈P τp) to the desired daily

duration, or primary time budget (τ∗a = τ∗
P

). The same assumption applies to home
activities. For secondary activities a ∈ S, we use the individual desired durations
(i.e., τ∗a , τ∗b∀a, b ∈ S, a , b). βshort

s and β
long
s represent the loss in utility for

deviating from a desired duration.

Uduration(τa) = βshort
a max (0; τ∗a − τa) + β

long
a max (0; τa − τ∗a) (3)

• Utt,a(tta) is a disutility for the time spent travelling. Since the focus of this work lies
on finding flexibility parameters, we fix βtravel to be -1. Different travel times for
different alternatives are generated using an existing destination and mode choice
model (Scherr et al., 2020b).

Utt,a(tta) = βtravel tta (4)

3.2.3 Model estimation

Given the proposed utility specification, there are six types of parameters for each activ-
ity a to be estimated: (i) the desired start time x∗a; (ii) the desired duration τ∗a; and the four
penalty terms for deviations from the desired start time and duration (iii) βearly

a , (iv) βlate
a ,

(v) βshort
a , and (vi) βlong

a .
We use two different approaches to determine the parameter values for these parameters:

1. For the desired start times and durations (x∗a and τ∗a), we use the mean values from
empirical distributions for the activity types as found historic data as found in the
MTMC. All activity types are grouped to have uni-modal distributions. Since per-
sons in the MTMC only report on realised start times and durations (xa and τa), this
requires the assumption that the desired timings can be approached by the empirical
mean of the realised timings.
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2. Once the desired start times and durations are defined, the penalty terms (βearly
a , βlate

a ,
βshort

a , and βlong
a ) are estimated from historic schedules using maximum likelihood

estimation.

3.3 Schedule optimisation
Having defined the activity-specific flexibility parameters, we now introduce the optimi-
sation model that targets to solve scheduling conflicts in the temporal dimension. Section
3.3.1 gives an overview over the generated activity sets that are treated as static inputs in
the optimisation model. Then, Section 3.3.2 and Section 3.3.3 explain the implementation
of the MILP.

3.3.1 Activity set generation

The optimisation framework used in this work takes as an input an activity set A for
each individual as part of a synthetic population (Figure 1). This activity set A contains
the long-term decisions (i.e. primary locations) and non-temporal decisions (i.e. activity
participation, number and type of tours, and considered destinations). This requires the
assumption that an individual knows the number and type of the activities it desires or
needs to participate during the day prior to the time-conflict resolution. In this work, we
apply the following sequence of discrete choice models1 with the parameters as intro-
duced and explained in more detail in Scherr et al. (2020b):

1. Long-term decisions about primary locations such as a work or school place, which
depend on the choice of possessing a mobility tool such as a driving license and
public transport subscription (Hillel et al., 2020).

2. Choice of number and type of primary out-of-home tours (i.e. work and educa-
tion tours) depending on the long-term decisions as well as number and type of
secondary activities within the primary tours. Also, the number and type sub-tour
activities are generated during this choice step.

3. Decision about number of secondary tours as well as the number and type of sec-
ondary activities within each secondary tour.

4. Generation of a set of considered locations for each secondary activity based on
draws from given distributions.

Table 1 gives an example of an activity set A. The cells with sets in italic letters mean
that these decisions are made in the optimisation model. Under consideration of these
possible choice options, the activity sequence will be optimised as well. All other cells
are static input for the optimisation model. It contains four home activities, which equals
three possible out-of-home tours. One tour is primary, including one sub-tour activity.
Since the sub-tour activity is static, this lunch activity must always take place between
the two work activities. However, the two work activities can still swap their sequential
order. Also, it is not decided if the accompany activity takes place before or after the

1The discrete choice models include socio-demographic attributes as well as level of service indicators
(e.g. accessibility or parking costs).
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work activity at this point. Three activities take place within secondary tours and cannot
be moved to the work tour since the tour type is static. Their sequence is flexible, one
shopping activity might end up in the same tour as the leisure activity if it fits best into
in time and space preferences. Also, some of them have multiple considered locations,
which will be decided later in the optimisation model.

Table 1: Example for an activity setA with the possible decision options.

Activity Tour number Tour type Primary activity Sub-tour activity Considered locations

dawn {1, 2, 3} {work, secondary} false false home place
work 1 work true {true, false} office
lunch 1 work false true office
work 1 work true {true, false} office
escort 1 work false false kindergarten
home {1, 2, 3} {work, secondary} false false home place
shopping {2, 3} secondary false false {shop 1, shop 2}
shopping {2, 3} secondary false false {shop 3, shop 4}
home {1, 2, 3} {work, secondary} false false home place
leisure {2, 3} secondary false false gym
dusk {1, 2, 3} {work, secondary} false false home place

The generation of the desired start times and durations for each activity in the context of
this case study will be explained later in Section 4.2.

3.3.2 Optimisation model

This section summarises our adapted implementation of the MILP which is based on
the framework introduced by Pougala et al. (2021a). For each schedule alternative i, an
individual has a predefined set of activities Ai containing all activities a that are wished
or needed to be performed by that individual within a bounded time period ξ (e.g. a 24-h
day). In order to maximise the total schedule utility for each alternative i, each individual
makes the decisions for each activity a ∈ Ai about: (i) the duration τa and the start time xa,
which implies the activity sequence; (ii) the tour number ϑa; (iii) the location λa; (iv) the
mode µa; and (v) the travel time tta, which is an implication of the sequence, location and
mode.
The objective for each individual is to maximise its total schedule utility which is defined
in Equation (1):

Ω = max Ui(x, τ, tt)

To this end, we introduce the following decision variables of the optimisation model:

xa ∈ R+ ∀a ∈ Ai

τa ∈ R+ ∀a ∈ Ai

tta ∈ R+ ∀a ∈ Ai

(5)

where xa and τa represent start time and duration of activity a, respectively, and tta repre-
sents the travel time from a to the following activity.
Another important set of decisions variables are the activity sequence indicators:

zab ∈ {0, 1} ∀a, b ∈ Ai (6)
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where zab = 1 is equal to one if activity a takes place right before b. The travel time from
a to b heavily depends on both trip origin and destination locations as well as the mode
used for this trip. For this purpose, we introduce the location and mode choice variables:

λal ∈ {0, 1} ∀a ∈ Ai ∀l ∈ {1, . . . , |La|} C La

µam ∈ {0, 1} ∀a ∈ Ai ∀m ∈ {1, . . . , |M|} CM
(7)

whereLa is the set of all considered locations for activity a and M is the set of all available
modes. The location and mode choice variables have a direct impact on the travel times.
The travel time variable can now be set as follows:

tta =
∑

b∈A, la∈La, lb∈Lb, m∈M

Θ(la, lb,m) zabλalaλblbµabm ∀a ∈ Ai (8)

where the travel time matrix Θ is exogenous and contains the travel times for all possible
combinations of locations and modes within

⋃
a∈Ai
La andM. In the implementation of

the optimisation model, we use a linearised form of this multiplication by introducing
auxiliary variables.
The optimisation problem implemented in this work is now subject to the constraints:∑

a,b∈Ai

(τa + zabtta) = ξ (9)

δ ≤ τa ≤ ξ ∀a ∈ Ai (10)
zab + zba ≤ 1 ∀a, b ∈ Ai (11)

za,dawn = zdusk,a = zaa = 0 ∀a ∈ Ai (12)
zab = 0 ∀a, b ∈ Pi orHi (13)∑

b,a

zab = 1 ∀a ∈ Ai \ {dusk} (14)∑
b,a

zba = 1 ∀a ∈ Ai \ {dawn} (15)∑
l∈La

λal =
∑
m∈M

µam = 1 ∀a ∈ Ai (16)

(zab − 1)ξ ≤ xa + τa + zabtta − xb ≤ (1− zab)ξ ∀a, b ∈ Ai (17)
γ−a ≤ xa ≤ γ+a − τa ∀a ∈ Ai (18)

Constraint (9) ensures that the total sum of all activity durations and travel times is exactly
equal to the predefined time period ξ the schedule should fill out. The next constraint (10)
guarantees that each activity’s duration is between the minimal duration δ and maximal
duration ξ. Constraint (11) imposes that an activity takes place either before or after
another activity, possibly neither but never both. The bundled constraint (12) assures
that no activity takes place before dawn or after dusk and that an activity cannot follow
itself. Constraint (13) enforces that two primary activities or home activities cannot take
place consecutively since this would break the general schedule structure as described in
Section 3.1. The two constraints (14) and (15) ensure that every activity is preceded by
another activity (except for dawn) and is also followed by some other activity (except for
dusk). To ensure that only one location and mode is chosen per activity, constraint (16)
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is set in place. Constraint (17) makes sure that if activity b follows activity a then a’s
start time plus duration plus the travel time from a to b is exactly equal to the start time
of b. The last constraint (18) guarantees that every activity can only take place within its
designated feasible time window.

3.3.3 Tour-based indicators and constraints

We extend the optimisation model by several indicator variables and constraints that cap-
ture a general schedule structure (e.g. number of primary activities per tour). These
indicator variables are later used to constrain the decision options for certain variables
such as tour type or sub-tour activity to the sets as introduced in Table 1.
The first introduced tour-related variable is a tour indicator:

ϑat ∈ {0, 1} ∀a ∈ Ai ∀t ∈ Ti (19)

where Ti is the set of all possible out-of-home tours that can occur in a given schedule
alternative i. If activity a takes place in tour t, ϑat equals one. The corresponding tour
constraints are:

ϑat ≤ ϑbt − zab + 1 ∀a ∈ Ai \ {dusk} ∀b ∈ Ai \Hi ∀t ∈ Ti

ϑat ≥ ϑbt + zab − 1 ∀a ∈ Ai \ {dusk} ∀b ∈ Ai \Hi ∀t ∈ Ti
(20)

where Hi is the set of all home activities. If zab = 1, the two constraints make sure that
ϑat = ϑbt. Or in other words, if activities a and b are executed in sequence, both must be
in the same tour. An exception is made for home activities, as these functions are break
points between out-of-home tours. The break points make sure that the tour indicator ϑat

always changes at a home activity h.
We use this tour-indicator variable to assign a tour type to every tour, which is either work,
education or secondary (see Section 3.1). The type of the tour depends on the presence of
a primary activity of a certain type within that tour. For the scope of this work, we keep
the tour type fixed for each activity. Therefore, we add constraints that ensure that every
activity a takes place in a tour with a type corresponding to the predefined activity tour
type: ∑

t∈Ti(a)

ϑat ≥ 1 ∀a ∈ Ai (21)

where Ti(a) is the set of tours with type equal to the tour type of activity a. With this
constraint, it is ensured that a takes place in at least one tour, and this tour has the type as
defined in the activity setAi.
Furthermore, we use the tour indicator to fix the number of primary activities per tour.
This is achieved with the following constraint:∑

a∈Pi

ϑat = pt ∀t ∈ Ti (22)

where pt is the number of primary activities in tour t as predefined in the activity setAi.
To add additional modelling capability depending on the position of activity a in the
schedule, we next introduce a variable that functions as a sub-tour indicator:

ψa ∈ {0, 1} ∀a ∈ Ai (23)
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together with the following constraints

ψa ≤ ψb − zab + 1 ∀a ∈ Ai ∀b ∈ Ai \ Pi

ψa ≥ ψb + zab − 1 ∀a ∈ Ai ∀b ∈ Ai \ Pi
(24)

where Pi is the set of all primary activities. Per definition, a sub-tour is not allowed to
start or end at home. For this reason, we fix the sub-tour indicator for activities in the set
Hi to be zero:

ψa = 0 ∀a ∈ Hi (25)

Sub-tours are constructed in a way that the first instance of the primary activity is part of
the sub-tour. The second instance after the sub-tour is not part of the sub-tour anymore,
since the following trip is going home-wards (possibly with another activity in between).
We use the information about the number of primary activities in a tour pt as given in
constraint (22) to introduce a minimum a amount of sub-tour activities:

pt ≤
∑

a∈Pt
ψa + 1 ∀t ∈ Ti (26)

which means that ψa has to be at least one for primary activities in tour t if two primary
activities are present (pt = 2). This will always be the first instance of the primary
activities since the second instance is directed towards a home activity at some point and
hence forced to be zero because of constraint (25). Lastly, at least one secondary sub-tour
activity must happen between them since the two primary activities are not allowed to
take place directly after each other (13).

4 Case study
This section shows the application of the proposed framework to the full-time workers
in a synthetic population on a city-scale for Lausanne, Switzerland. Section 4.1 gives
a general overview of the case study with the external inputs and general assumptions.
Section 4.2 defines the desired timings and durations for all activity types which are used
for both parameter estimation and schedule optimisation based on empirical data. In
Section 4.3, the estimation of the flexibility parameters is demonstrated and discussed.
Finally, Section 4.4 gives an overview over the implementation of the optimisation model
and shows the results of applying the flexibility parameters to a synthetic population using
the proposed mathematical framework.

4.1 Overview
The proposed framework is applied to the full-time workers living in the city of Lausanne,
Switzerland. With more than 140’000 inhabitants (as of 2017), it is one of the biggest
cities in Switzerland. Since behaviour depends on specific person attributes – for example,
a student is likely to have a different behaviour compared to a full-time worker –, the
population must be divided into different groups and the flexibility parameters calibrated
separately for each group. For demonstration purposes in this work, we focus on the
calibration of the parameters for full-time workers (employment rate higher than 80 %
and not primarly in education). As shown in Figure 1, the framework needs two static
inputs:
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1. Reported schedules: We use the reported schedules from the Swiss MTMC (BfS
and ARE, 2017). The computer-assisted telephone survey takes place every 5 years,
most recently in 2015. It contains a sample of 57’090 persons from all over Switzer-
land. Each person reports on their conducted mobility schedule for a full day. A
cleaning procedure is applied to remove persons who have a reporting date on the
weekend and persons with non-valid schedules. Non-valid schedules include sched-
ules that are not fully reported and schedules which do not comply with the con-
straints of the model (e.g. a person must always return home in the evening or
primary and home activities must not take place consecutively). After the clean-
ing procedure, around 40’000 reported schedules remain in the observation set. For
full-time workers in the whole country of Switzerland, the cleaned set in the MTMC
contains 10’110 reported schedules.

2. Synthetic population: The nation-wide synthetic population of Switzerland for the
year 2017 is generated by Bodenmann et al. (2019). It contains a very detailed
person database with attributes such as age, employment rate, etc. as well as house-
hold structures and residences. In the synthetic population, almost 50’000 full-time
workers are present in the city of Lausanne.

An additional third input for the model are travel times between different locations for all
modes (see Section 3.3.2). We use static travel times which are derived from a network
assignment using MATSim (Horni et al., 2016) and the Switzerland scenario from Scherr
et al. (2020a). As a simplified assumption, we use constant travel times over the day.
The public transport travel times are averaged over one hour (i.e. 7:00-8:00 h). Since
the service frequency and the travel times of public transport in Switzerland are fairly
constant throughout the day, constant travel times over the day are assumed to be valid.
Car travel times are defined as the maximum between the congested state of the morning
peak and the evening peak, which is a rather pessimistic assumption for car traffic. Travel
times for the modes walk and bike are calculated based on the beeline distance between
two locations, a detour factor and an average speed.
For both choice set generation and schedule optimisation, the following model steps are
generated based on existing discrete choice models (see Section 3.3.1) as proposed by
Scherr et al. (2020b) and assumed to be given in this case study: (i) The set of tours T ;
(ii) the tour type of each activity ϑat ∀t ∈ T ∀a ∈ A; (iii) the number of home activities
|H | = |T | + 1; (iv) the set of primary activities P with a type and a number of primary
activities per tour pt; (v) the set of secondary activities S with a given activity type;
(vi) the set of secondary sub-tour activities ψa = 1; and (vii) the considered destinations
La ∀a ∈ A.

4.2 Definition of a desired timing and duration per activity type based
on empirical distributions

A crucial element of the proposed framework is the definition of activity types for a spe-
cific person group with corresponding desired timings x∗a and durations τ∗a for each a ∈ A.
As these terms are defined in the utility specification in Equation (1), they are a com-
mon requirement for both parameter estimation and schedule optimisation. We use the
main activity types for home, primary and secondary activities as defined in Section 3.1.
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However, the flexibility of activity start times and durations might vary throughout the
day (e.g. the flexibility of starting with a work activity might be different in the morn-
ing compared to starting with the afternoon work activity after lunch). Therefore, we
split the main activity types into different behaviourally homogeneous sub-activities. By
behaviourally homogeneous, we mean activities that have uni-modal distributions in the
dimensions of both x∗a and τ∗a in the reported schedules. This is based on the assumption
that activities with reported uni-modal distributions actually belong together and have the
same meaning in terms of flexibility for specific desired timings and durations across all
the individuals in a specific person group. As explained in Section 3.2.3, x∗a and τ∗a are
then defined based on the mean values from empirical distributions in the MTMC. To
find uni-modal distributions, the available information in the activity set A is used (e.g.
number of primary activities or the number and type of tours).
Table 2 shows the empirical analysis of the activity types as observed in the MTMC.
We divide activities into sub-activities by applying a manual cluster analysis based on
visually observing the distributions for activity timings and durations. Our goal is to find
uni-modal distributions while not splitting the activity type into too small clusters. In
this work, all observations are assumed to be normally distributed. For each sub-activity
distribution, we calculate the mean and the standard deviation for both x∗a and τ∗a.
A straightforward example is the activity type work in Table 2. It is divided into the
two clusters of the first occurrence in the activity set A and – if present – following
occurrences of work activities inA. Our analysis shows thatA contains at least one work
activity in 80 % of the schedules (average occurrence 0.80). This means that on an average
work day in Switzerland, 80 % of all full-time workers go to their work place at least once.
In that case, workers are observed to begin their work activity with a mean timing of about
7:30 h. The observed distribution has a standard deviation of 0.9. The average occurrence
of having more than one work activity in the activity set is 0.31, meaning that 31 % of
the all individuals participate in at least one activity between the two work activities (e.g.
returning home, or going out for lunch). The average desired timing x∗a for returning back
to the work place is at 13:15 h and follows more pronounced peak (standard deviation of
0.3). The total duration budget τ∗a (sum over all work activity durations inA) for full-time
workers is distributed around a mean 9.5 h as observed in the survey.
Another notable example is the activity home. In the case of two work tours (|Twork| =
2), exactly one home activity must take place between the two out-of-home tours per
definition. This home activity between two work tours has a mean start time at 12:00 h
and shows a very strong peak. Additionally, full-time works are returning back home in
average between 17:00 and 18:00 h in the case of at least one work activity in A. The
observed total home duration budget is distributed around a mean of around 13 h (sum
over all home activity durations inA), meaning that the group of the full-time workers in
average spends more than half of the day at home.
The only exception from the assumption of uni-modal peaks is the activity escort. It
has two pronounced peaks which cannot be split into sub-activities with uni-modal peaks
based on the information available in A. Both morning and evening peak are equally
likely and hence, we take a random draw from this set to assign a desired start time to an
escort activity.
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Table 2: Empirical analysis of activity types for full-time workers in the MTMC. Total
number of observed schedules is 10’110.

Activity Sub-activity Description Avg. occurrence Des. timing x∗ [h] Des. duration τ∗ [h]
indicator per schedule mean std mean std

work
p1 first in set 0.80 7.4 0.9
p2, ..., pn following 0.31 13.2 0.3∑

a∈P τa duration budget 9.5 0.5

leisure

ψ = 1 lunch 0.10 12.1 0.1 0.9 0.1
ϑwork = 1 work tour 0.11 18.0 0.5 0.8 0.3
ϑsecondary = 1 secondary tour 0.17 19.2 0.8 1.8 0.6
|P| = 0 no primary activity 0.16 13.0 4.0 1.5 0.7

shopping
ψ = 1 between work 0.06 12.1 0.1 0.4 0.2
ϑwork = 1 work tour 0.16 17.2 0.5 0.4 0.2
ϑsecondary = 1 secondary tour 0.22 14.0 1.5 0.4 0.2

escort all day 0.16 {7.5, 18.0} 0.3 0.3 0.1

business all day 0.03 10.0 1.0 4.0 2.0

education all day 0.02 18.0 2.0 3.5 0.5

other all day 0.19 10.0 1.0 4.0 2.0

dawn 1.00 0.0

dusk
|T | > 1 multi tours 0.41 15.4 1.0
|Twork | = 1 one work tour 0.12 18.0 0.5
|Tsecondary| = 1 one secondary tour 0.47 16.4 0.7

home

h1 ∧ |Twork | = 2 lunch 0.14 12.0 0.1
|Twork | > 0 work tour present 0.25 17.2 0.2
|Twork | = 0 no work tour 0.10 17.3 0.4∑

a∈H τa duration budget 12.9 2.0

4.3 Flexibility parameter calibration
Besides the desired timings x∗a and duration τ∗a for each activity type, the estimation of
flexibility parameters relies on strategic choice sets containing alternatives that decision-
makers are likely to consider, as explained in Section 3.2.1. In this case study, a choice
set is generated consisting of the realised schedule as well as a sample of 100 random
alternatives and 100 likely considered alternatives. The alternative schedules are gener-
ated based on the realised schedules as reported in the MTMC of all full-time workers
under consideration of the general schedule structure as explained in Section 3.3.1. The
choice set size has been chosen such that computational time of both choice generation
and parameter estimation remain manageable (i.e. under one day). A sensitivity analysis
to investigate the impact of the size must be conducted in future work.
Having generated a choice set and defined the desired timings x∗a and durations τ∗a for
each activity type (see Table 2), we can now apply Equation (1) to each alternative in the
choice set to estimate the flexibility parameters βearly

a , βlate
a , βshort

a , and βlong
a . The aim of the

flexibility parameters is to express behavioural preferences when it comes to resolving
time conflicts between different types of activities. The parameters penalise deviations
from desired timings and duration for each activity a ∈ A depending on the type of the
activity. The higher the penalty compared to another activity, the less flexible or the more
rigid the individual is when deviating from its desired timing or duration and the more
likely it tries to reschedule another activity in the case of a conflict. To calibrate these
parameters, we apply the estimation routine as explained in Section 3.2.3 and use the
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software Biogeme (Bierlaire, 2020).
Table 3 shows the resulting flexibility parameters after applying the proposed estimation
routine to the generated choice set. Empty cells mean that these parameters are not part
of the utility specification. Cells with a β that equals 0 are not significant at a 5.0 % level.
In terms of being earlier or later than the desired timing x∗, the lunch activities (either at
home or in a restaurant) show the highest penalties (or loss in utility). This means that
people are less willing to deviate from the desired timing for lunch activities compared to
other activity types and try to move other activity types in the case of a conflict. Therefore,
the desired timing for lunch activities (around 12:00 h as shown in Table 2) is a rigid point
in time in the daily schedule of a full-time worker. The parameter for being early (βearly)
at lunch is penalised by a factor of around two compared to being late (βlate) at lunch. This
means that full-time workers weight – in terms of utility – being early at lunch by 5 min
equal to being late by 10 min.
Another interesting result is that full-time workers get a relatively high penalty if they
do not start their first work activity at the desired time (around 7:30 h). This means that
they are not flexible with starting the first work activity, which highly affects the timing
when people leave their homes in the morning. The home activity shows a high penalty
for being late in the case of a work activity being present in the activity set. This means
that workers are also not flexible with returning back home in the evening when they
have to work on that day. Being more rigid with both starting and ending work activities
compared to other activity types like leisure results in a constraint time frame for work
activities between the desired timing of the first work activity and the desired timing of
the returning-home activity. The secondary activities show in general low penalties (like
leisure and escort) and are more likely to deviate from the desired timing, with some
exceptions of activity types like the activity types other or also shopping that show higher
penalties and therefore have more rigid timings.
In terms of deviating from the desired duration τ∗ of an activity, some activity types show
strong penalties βlate and βshort. For example, the full-time workers get a high penalty
βshort for a short lunch activity. This means the they are not willing to take a lunch break
shorter than the average desired duration (0.9 h, see Table 2). Also, it is an interesting
result that full-time workers do only apply a small penalisation to a short work duration
and do not penalise a long work duration. A possible interpretation is that they are in
general flexible with their work duration, but the duration is determined by other factors
like specific office hours. The flexibility parameter for a longer total time spent at home
compared to the desired duration (12.9 h) indicates that the group of the full-time workers
penalise being too long at home during the day. This means that they actively have the
need or the desire to participate in activities outside of the home for a certain time (around
half) of the day.

4.4 Optimised schedules
For the simulation of the schedules in this case study, we implement the MILP as de-
scribed in Sections 3.3.2 and 3.3.3 in the framework OR-Tools2 for Python. This general-
purpose library allows for applying multiple solvers. To forestall the license burden for
practitioners, the non-commercial SCIP-solver (Achterberg et al., 2008) is applied. Addi-

2https://developers.google.com/optimization, last accessed: 29.08.2021
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Table 3: Flexibility parameter values and summary statistics for full-time workers. All
parameters are significant at 5.0 % level.

Activity type Parameter values
β

early
a βlate

a βshort
a β

long
a

work:first in set -0.615 -0.436
work:following -0.406 0
work:duration budget -0.022 0

leisure:lunch -1.610 -0.821 -7.550 -1.360
leisure:work tour -0.195 0 0 0
leisure:secondary tour -0.076 0 -3.060 -0.692
leisure:no primary activity -0.053 0 0 -0.588

shopping:between work -0.545 -0.531 0 -2.240
shopping:work tour -0.150 -0.316 0 -0.362
shopping:secondary tour -0.239 -0.486 -5.910 -0.721

escort:all day -0.175 0 0 -2.120

business:all day -0.135 -0.267 -0.361 -0.863

education:all day -0.246 -0.376 -0.376 -0.939

other:all day -0.712 -0.548 0 0

dawn 0 0

dusk:multi tours -0.662 0
dusk:one work tour 0 0
dusk:one secondary tour 0 0

home:lunch -2.040 -0.929
home:work tour present -0.073 -0.596
home:no work tour 0 -0.198
home:duration budget 0 -0.354

Summary statistics

Number of parameters 64
Sample size 10’110
Initial log-likelihood -57’295.58
Final log-likelihood -47’847.37
ρ̄2 0.165
Estimation time (h) 13.00

tionally, the Ray3 library is implemented to provide an efficient way for parallel comput-
ing. It reduces the computation time linearly by the amount of cores.
With this implementation of the optimisation model as well as all the inputs including

3https://ray.io/, last accessed: 29.08.2021
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flexibility parameters from Table 3, the framework is applied to each full-time worker as
of the synthetic population of Lausanne, Switzerland. Firstly, we generate an activity set
A for each individual, as described in Section 3.3.1. For each activity a ∈ A, we then
take a random draw from a normal distribution to assign a desired timing x∗a and duration
τ∗a based on its activity type as well as the corresponding mean and standard deviation
as given in Table 2. The output of the optimisation model is a realised schedule with a
final choice for each decision variable as given in Section 3.3.2 for the individual of the
synthetic population.
A minority of the full-time workers (around 7 %) make the decision of not participating
in any activity outside of the home during the day (|A| = 0). After removing them from
the optimisation model, around 45k schedules are simulated. We set the optimality gap
in the MILP solver to be 0%, which guarantees that the found solution is optimal. In
the optimisation model, the individuals may choose among the transport modes walk,
bike, public transport (buses, trains, and all other means) and car as a passenger. If the
individual owns a driving license and there is a car available in the household, the mode
alternative car as a driver is also listed in the set of modesM. The mode has to remain
the same throughout an out-of-home tour. The time period ξ is 24 hours, meaning that
every person must be back home at midnight. The feasible time window γ−a and γ+a for
each activity type is 4:00 h to 23:00 h, respectively. The only exception is the activity
type leisure, with a γ+a of 23:50 h.
Figure 2 depicts the final aggregated results of the application of the proposed framework
to each full-time worker in Lausanne. It shows the relative frequency of individuals who
are participating at certain activity type at a given time of the day (i.e. activity profiles).
The figure compares the results of the framework (left Figure 2a) to the observed activity
profiles in the MTMC (right Figure 2b). Overall, the results of our framework fit the
curve of the MTMC nicely. Everyone starts the day at home (light grey area). Between
7:00 h and 17:00 h, the work activity (red) is dominating. The work shows a steep peak
in the morning and at 10:00 h, between 60 and 80 % of all full-time workers are staying
at their work place. At 12:00 h, there is a sudden discontinuity, when people are going to
have lunch. This is also indicated by an increasing participation in lunch/leisure (green)
and home activities. In the evening, the end time of work activities follows a less steep
distribution compared to the morning. After 19:00 h, the dominated activity (besides
home) is leisure, which typically ends at between 21:00 h and 22:00 h. Only few persons
in MTMC are participating at leisure activities after 24:00 h, which is not captured by the
model since we constrain the time period to be 24 hours.
In general, travelling (dark grey) consumes a small percentage of the day of a full-time
worker. But steep transitions from one activity type to another mean that a lot of persons
are travelling during that time period, which causes the traffic peaks. Compared to the
profile in the MTMC, the model tends to underestimate the travel episodes. This can
be explained by the simplified assumption of a constant travel penalty βtravel = −1 (see
Section 3.2.3) across all modes of transport. Due to this assumption, the individuals are
just minimising travel time in the optimisation model and do not consider import mode
choice aspects such as costs or personal preferences.
Another aim of the proposed framework is to capture the interactions in the temporal
dimension. The temporal dimension mainly includes the choices of activity start times
and durations. Travel episodes play a minor role in average as shown in Figure 2. Figure
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Figure 2: Simulated activity profiles of the simulation compared to the Swiss microcen-
sus.

3 demonstrates the correlation of start times and durations for work and leisure activities.
The darker the area, the higher the number of observations that are made within this time
frame. The figure compares the realised schedules of the optimisation model (left) to the
observed schedules in the MTMC (right). Again, there is an excellent fit between the
simulation and the empirical observation. Work activities (Figures 3a and 3b) show two
different types of behaviour: (i) the work activities which are starting early in the morning
and take place for around 9 hours; and (ii) the ones which are divided into two separate
activities starting in the morning for 4 hours and than starting again in the afternoon for
another 4 hours. The model slightly overestimates the number of persons who are working
for the full 9 hours.
The leisure activities (Figures 3c and 3d) are also captured well by the model. The dis-
tribution shows a peak at lunch time for 30 to 60 minutes. In the evening, both short
and longer leisure activities are taking place, and both types of leisure activities are well
represented in the model. During the day, the model underestimates the participation at
leisure activities of short duration (i.e. under 30 minutes).

5 Conclusion and future work
In this work, we demonstrate the capabilities of the presented framework to solve the
activity-based scheduling problem and to reproduce empirical observations from the Swiss
MTMC (BfS and ARE, 2017). Methodologically, this is accomplished by applying two
modelling streams: (i) an estimation routine to quantify individual flexibility parameters
based on maximum likelihood estimation; and (ii) a simulation approach that uses the
flexibility parameters to resolve temporal conflicts (i.e. activity timings and durations) in
order to maximise the schedule utility for each individual as part of a synthetic popula-
tion. The simulation of the temporal choice dimensions is implemented as a MILP and
builds on the work of Pougala et al. (2021a). For the non-temporal choice dimensions (i.e.
activity participation, number and type of tours, and considered locations), we simulate a
sequence of traditional discrete choice models as introduced by Scherr et al. (2020b).
Modelling time as a continuous variable with estimated flexibility parameters overcomes
limitations of earlier approaches in the literature which either represent time as a dis-
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Figure 3: Simulated correlation between start times and durations for selected activity
types compared to the Swiss microcensus.

crete variable (Bowman and Ben-Akiva, 2001, Castiglione et al., 2015) or as a continu-
ous variable in combination with heuristic flexibility parameters (Javanmardi et al., 2016,
Esztergár-Kiss et al., 2020, Pougala et al., 2021a). By treating all temporal scheduling
decisions simultaneously, our framework captures interactions between activity timings
and durations in contrast to earlier work, e.g. Scherr et al. (2020b) who simulate activity
timings as a sequential modelling step using fixed activity durations. Also, it goes beyond
the theoretical framework of Pougala et al. (2021a) by proving the applicability of the
framework in a real-world city-scale case study.
Our proposed method provides a holistic representation of the scheduling process and
uses continuous temporal variables within a utility-maximisation framework. It allows
for behavioural realism especially in the temporal dimension, which is often modelled
based on simplified assumptions in the literature (Bhat et al., 2004, Auld et al., 2009,
Saadi et al., 2016). The method is demonstrated to estimate flexibility parameters that
produce close-to-reality results in a real-world application on a city level.
We identify the following paths for future work:

• Utility specification: All flexibility parameters in this work are defined to be linear
penalties. Balać et al. (2018) suggest a non-linear utility function to score the activ-
ities in a schedule. It would be interesting to investigate if non-linear (or piece-wise
linear) penalties are able to improve the model statistics.
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• Choice set generation: We introduce the heuristic method of combining an existing
activity-based model with a random alternative generator. This relies on already
having a fully operational activity-based model. Since this is often not the case, a
choice set needs to be generated from scratch containing alternatives that a decision-
maker is likely to have considered for a reported schedule. A possible direction
to design a choice set from scratch is to apply a Metropolis Hastings algorithm
(Pougala et al., 2021b, Yamamoto et al., 2001).

• Parameter estimation: Our approach uses fixed desired activity timings and dura-
tions, which are found by manual and visual investigation of the empirically re-
ported schedules. In the future, a possible enhancement of the estimation routine is
implementing a mixed logit model (Ben-Akiva et al., 2001) to estimate distributed
values for the desired timings and durations.

• Mode choice utilities and travel times: The focus of this work lies on activity tim-
ings and not on calibrating a mode choice model. A mode choice model would
require an extension of the estimation routine to find mode choice parameters to
express behavioural preferences and to quantify the influence of level of service in-
dicators (e.g. parking costs, travel time or service frequency). Also, constant travel
times are assumed over a 24h-day for all modes of transportation. Particularly the
car travel times are depending on the time of the day as travel times differ a lot be-
tween peak and off-peak times. For this reason, time-of-day dependent travel times
would be an enhancement of this framework when focusing on mode choice.

• Coupling with traffic assignment: The proposed framework cannot predict network
loads, e.g. the number of rail passengers boarding a train at a certain time. For
this purpose, the optimised schedules must be fed into a traffic assignment, e.g.
using the software MATSim. The results of the traffic assignment can help transport
planners to assess policy studies based on network loads.

• Real-world policy study: Based in this work, time-of-day relevant studies can be
conducted. One example is the ongoing global COVID-19 pandemic, which is as-
sumed to cause a higher prevalence in working from home. The increased flexibil-
ity in work scheduling decisions likely influence the ways in which people organise
their day. It would be interesting to investigate how sensitive the proposed frame-
work responds to questions such as (i) do people extend the time spent at home?
(ii) do they travel longer distances to the work place? (iii) do they extend the dura-
tion of their leisure activities?
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