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Abstract
This paper presents a novel simulation approach for generating synthetic house-
holds, addressing several literature gaps from the methodological viewpoint. The
generation of hierarchical datasets such as complete households is challenging
since it must guarantee replication of the marginal distributions of each attribute
while maintaining the consistency between the layer of individuals and the layer
of households. Usually, these layers are generated in two sequential processes.
This paper focuses on designing a one-step simulator that simultaneously inte-
grates the relationships within both layers. One of the major advantages is that it
reduces the risk of generating illogical households. In order to deal with the curse
of the dimensionality of the simulation method, we propose a so-called divide-
and-conquer way of modeling, that simplifies the problem by reducing the num-
ber of variables so that we maintain the best trade-off between the accuracy and
efficiency of the generation process. We test our method in a case study based on
the 2015 Swiss census data, where we compare our method with state-of-the-art
approaches. The results suggest that we can achieve twice as fast household gen-
eration by preserving the same accuracy compared to other simulation methods.

Keywords: Population synthesis, Markov Chain Monte Carlo simulation,
Gibbs sampling, Activity-Based models
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1 Introduction
Transportation science today is tasked with predicting the complex mobility needs
of individuals, which necessitates the use of advanced mobility and travel demand
models. The models for predicting activity and travel-related decisions of indi-
viduals are called Activity-Based Models (ABM) (Axhausen, 2000; Castiglione
et al., 2014). The performance of these models strongly relies on the quality of
the data used for calibration. Therefore, it is of paramount importance that we
provide high-quality data that mimics the activity and travel-related decisions.

Highly-sensitive data such as the population census and travel activity infor-
mation are extremely valuable in transportation science as they provide detailed
insights into traveler behavior. Such data are used to either inform decision-
makers or to design accurate simulation models of travelers. Traditional popu-
lation census or travel survey datasets contain personal information about individ-
uals and households. Nevertheless, the datasets made available to researchers and
analysts do not fully represent the whole population, and the unprocessed data are
unavailable due to privacy policies. Often they are either anonymized by remov-
ing characteristics from the dataset or by extracting micro samples that represent
a small subset of the entire data. This is a problem in transportation and travel
activity modeling, as the activity forecasting model’s quality depends on the level
of detail of the model descriptors.

To circumvent privacy and availability issues, synthetically generated data can
be used. Synthetic data have similar statistical properties as the real population of
interest at the aggregated level. However, they do not allow the identification of
individuals (to address the privacy issue) and compile all the necessary data for
scientific analysis or required by the municipalities and other stakeholders who do
not have access to raw data (to address the availability issue).

In the context of synthetic population generation, the synthetic data can be at
the level of individuals or households. The literature shows that synthetic popu-
lation generators mostly support the generation of individual characteristics only,
which consequently affects the existing research efforts in ABM. Individual in-
formation is crucial for analyzing and understanding the travel behavior, but it
should not be deprived of the social context such as the household. Integrating
household data into ABM methodologies would expand the model’s capabilities
to capture multi-individual decisions and understand mobility patterns by taking
into account interactions, constraints and influence of the household (Olde Kalter
and Geurs, 2016; Pougala et al., 2022).

2



The synthesis of households is more complex than the synthesis of individu-
als for multiple reasons. Apart from reproducing the individuals’ characteristics,
these algorithms must correctly capture relationships between household mem-
bers. It is important to note that the improper replication of these multivariate
distributions can yield illogical observations (e.g., households in which the child
is older than the parents). Moreover, generating the complete households requires
replicating more characteristics, which means capturing more correlations. An
increase in complexity may result in a significant efficiency drop, given that the
method’s performance may differ based on the scale of the problem.

In this paper, we develop a one-step simulation framework for generating the
synthetic households. We integrate the process of generating the individuals and
their matching into households into one-step. We refer to it as “one-step”, to
distinguish it from the state-of-the-art (e.g. Casati et al., 2015) “two-step” model
which first generates the household’s attributes and the attributes of the owner, and
then assigns the rest of the individuals to the previously generated observations.
The originality of our approach lies in the fact that we generate the individual and
household characteristics all at the same level while maintaining all the depen-
dencies among them. This way of generation removes the necessity for labeling
the household members based on their roles which makes our one-step method
flexible to produce diverse household structures. Moreover, the existing two-step
method assumes a sequential relationship among the individuals.

By ignoring some of the relationships in the sequential approach it is possible
that some real-world constraints are not satisfied. In order to verify data repre-
sentativity and consistency, it is necessary to provide evidence that the generated
distributions reflect the distributions of the real sample. In this paper, we ana-
lyze, discuss and apply the existing validation methods in order to show that the
model-driven structure allows us to have control over the generation process and
to enforce the realistic relationships between different household members.

Finally, we address one of the main drawbacks of the simulation methods
listed in the literature which is the difficulty to deliver acceptable results in terms
of accuracy and efficiency while working with high-dimensional datasets (Farooq
et al., 2013; Casati et al., 2015). With an increase in the dimensionality, the prob-
ability mass becomes more concentrated in highly correlated areas and sparser in
the low-correlated areas, which leads to longer computational time since the algo-
rithm struggles to explore the distribution effectively. We propose an improvement
of our simulator called the “Divide-and-Conquer” (DAC) one-step method as ex-
plained in Section 3.1. We show how a different way of constructing conditionals
may influence the overall performance of the algorithm. In an attempt to reduce
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dimensionality and simplify the conditionals, we apply expert knowledge and in-
vestigate the correlation rate between different characteristics before starting the
generation process. This way we aim to obtain the same accuracy as if we used
the full conditionals, but in a more efficient manner. In fact, these modifications
can be applied to any generating process using a Gibbs Sampler, which paves the
way for using simulation-based methods in the era of big data.

The remainder of this paper is organized as follows: Section 2 covers a de-
tailed review of the previous research in this field. In Section 3, we introduce
and formally specify the proposed methodology. Finally, in Sections 4 and 5
we present the obtained results, summarize the research contributions and specify
some ideas for future research.

2 Literature review
The existing methodologies for synthetic population generation can be catego-
rized based on several criteria. Firstly, the methods can be individual-centered
(i.e. one-layered population) or household-centered (i.e. two-layered, multi-level,
hierarchical population) depending on the type and structure of the data they gen-
erate. The main difference between these two types of methods stems from the
types of characteristics used to describe the population. The one-layered popula-
tion is described only with individual characteristics such as age, gender, etc. On
the other hand, the two-layered population consists of the household characteris-
tics such as size, type, number of cars, etc. expanded with the set of associated
individuals described by their own set of characteristics.

In Section 2.1, we analyze the state of the research dedicated to synthetic
population generation by giving an overview of existing methodologies for both
levels. Since our approach is founded upon the simulation, in Section 2.2 we
delve into details on existing synthetic population simulation-based techniques.
In Section 2.3, we provide an overview of the most commonly used validation
metrics and describe their limitations in validating hierarchical tabular data.

2.1 Synthetic population generation: from synthetic individu-
als to synthetic households

Over time, an extensive literature has been developed on the analysis and com-
parison of different synthetic population methods. Miranda (2019) has produced
a systematic review covering several decades of synthetic population generation
methods applied to transportation models. Yaméogo et al. (2021) carried out an
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analysis of synthetic population generation focusing only on the synthetic gener-
ators that handle hierarchies such as households.

Based on the findings of these two studies, we can divide synthetic popula-
tion generation methods as presented in Table 1. We separate the methods into
columns based on the characteristics they generate. Most of them were origi-
nally focused on replicating marginal distributions of only individual variables
(Beckman et al., 1996). Soon after, these methods were extended to reproduce
also marginals of household characteristics (Arentze et al., 2007; Choupani and
Mamdoohi, 2016; Auld and Mohammadian, 2010; Farooq et al., 2013; Xu and
Veeramachaneni, 2018; Garrido et al., 2019; Badu-Marfo et al., 2020; Lederrey
et al., 2022). Although they can provide a good fit of marginals for both household
and individual characteristics, they do not maintain the relationships between in-
dividual and household layers. Finally, the third column contains the methods that
simultaneously estimate joint probabilities at the individual and household levels,
thus maintaining the consistency between these two layers (Ye et al., 2009; Casati
et al., 2015).

Different rows represent different groups of methods based on the paradigm
they rely on: synthetic reconstruction, combinatorial optimization and statistical
learning. Statistical learning methods can be further categorized into simulation-
based (i.e. model-based generation) and machine learning (ML) techniques (i.e.
data-driven generation). It is interesting to notice that a significant amount of
research has recently been invested in developing and adapting machine learn-
ing techniques for synthetic generation of individuals. Although ML techniques
might be considered as state-of-the-art for generating individuals, to the best of
our knowledge, no machine learning method has been proposed for successful
generation of complete households.

The first methodology that appeared for generating the synthetic individuals
was based on Iterative Proportional Fitting (IPF) (Beckman et al., 1996). This
approach is also known as the matrix fitting table. The concept behind the IPF is
to take each marginal one at a time and change the sample’s contingency table to
reflect the aggregate property of the population. In the case of IPF, an increase in
the number of characteristics causes exponential growth of the number of cells in
the contingency table. Consequently, many combinations of characteristics with
a low number of individuals lead to empty cells in the contingency table. This
problem is known as the “zero-cell issue” and it has been shown that IPF fails
to converge in some cases due to it (Ben-Akiva and Lerman, 1985). In addition
to the scalability issue, it only produces the deterministic realization of synthetic
population (Farooq et al., 2013).
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Albeit being flawed in different ways, IPF has been used as a foundation for
many works that proposed incremental improvements to handle household struc-
ture (Guo, 2007; Arentze et al., 2007; Choupani and Mamdoohi, 2016; Auld and
Mohammadian, 2010). The problem with these methodologies is that they all re-
quire two separate steps - generation and matching. In other words, the individual
and household characteristics are generated separately, applying different logic to
match the people into households. Even though the marginals of the generated
household characteristics might seem accurate, the separated or sequential way
of generation does not necessarily maintain the relationships between households
and previously generated individuals (Zhu and Ferreira, 2014).

In order to generate a complete household with all the necessary relationships
between household members, the Iterative Proportional Updating (IPU) was de-
veloped (Ye et al., 2009). IPU synthesises the population by matching household
and individual distributions simultaneously (Saadi et al., 2016). However, sev-
eral authors pointed out there is no theoretical proof of convergence for the IPU
method, that it suffers from the same issues as IPF, and requires a disaggregated
initial sample which is rarely available (Lenormand and Deffuant, 2013; Zhu and
Ferreira, 2014).

Another category of methods that appeared for household and individual gen-
eration was based Combinatorial Optimization (CO) (Barthelemy and Toint, 2013;
Abraham et al., 2012). These methods are iterative and can work only with the
available marginals. At the beginning of the process, the initial pool of households
is picked randomly from the sample. In each iteration, the fit of the current sam-
ple is calculated after applying actions such as adding, updating or swapping one
randomly chosen household from the sample. The algorithm stops once it reaches
the desired precision. Compared to the other studies, the CO methods showed
poor efficiency in generating large populations (Yaméogo et al., 2021).

In general, simulation based methods have shown good results in overcoming
the previously mentioned issues related to IPF. Farooq et al. (2013) introduced a
synthesis algorithm based on the Markov Chain Monte Carlo for generating the
individuals (iMCMC). This method implements the Gibbs Sampling algorithm by
drawing from the pre-formed conditional distributions. Compared to the IPF, the
simulation method is stochastic, which helps generating a heterogeneous sample.
Moreover, the simulation method is sample-free, meaning that it does not require
disaggregated data as the input. In order to adapt this methodology in the context
of household generation, Casati et al. (2015) propose an extension of iMCMC,
the so-called “two-step” method which relies on the rule-based assignment of the
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Synthetic
individuals

Synthetic
households

Associated
individuals

Statistical
reconstruction

1996
Beckman et al.
Creating syn-
thetic baseline

populations

2007
Arentze et al.
Creating syn-

thetic household
populations

2009
Ye et al.

Iterative Propor-
tional Updating

Simulation-
based

2015
Casati et al.
Hierarchical

MCMC

Machine
Learning X

2018 Xu et al.
Tabular Generative Adversarial Network

2019 Borysov et al.
Variational Autoencoder

2020 Badu-Marfo et al.
Composite Travel Generative Adversarial

Network
2022 Lederrey et al.

DATGAN: Integrating expert knowladge
into deep learning for synthetic tabular

data

2013
Farooq et al.

Simulation based population synthesis

Table 1: The overview of existing synthetic population methods with selected
publications
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household roles (owner, spouse, children and others). Since we use this method
as a baseline for comparison with our method, we describe it in detail in Sec-
tion 2.2.1.

In Yaméogo et al., 2021, authors compare different synthetic reconstruction
and statistical learning methods for synthetic household generation based on var-
ious criteria as shown in Table 2. There is a counterintuitive phenomena that
despite the fact that IPU has revealed different flaws and is outperformed by
simulation-based methods, it is still the most cited and most frequently used
method. Moreover, most of the publicly available population synthesizers use
IPF as the core algorithm (Templ et al., 2017). Potential reason might be that
implementation of simulation methods is usually not publicly available or tested
only by their designer with a specific dataset making it less general and difficult to
reproduce. This leads to a conclusion that better scalability, better fit of marginals
and good efficiency do not necessarily make one method more desirable than the
other. However, this might impact future users of the generated data, as the out-
puts of the transportation models highly depend on their input data.

IPU hMCMC

Referent Sample disaggregated no constraints

Sample size large small

Number of characteristics few few

“Zero-cell” yes no

Dissemination widely used rarely used

Heterogeneity deterministic stochastic

Table 2: The comparison of existing methods for synthetic household generation

As previously shown in Table 1, ML methods have recently become a popular
tool for generating synthetic individuals mostly because simulation-based meth-
ods typically fail to deliver high-quality data in the context of big data. Nowadays,
the Generative Adversarial Network specialized for tabular data (TGAN) by Xu
and Veeramachaneni (2018) is considered to be the state of the art for generating
synthetic individuals. This approach has shown great success in generating high-
dimensional datasets in an accurate and computationally efficient manner. GANs
implicitly learn the probability distribution of a dataset and may generate samples
from it (Goodfellow et al., 2014). They consist of two neural networks called the
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generator and the discriminator. The generator is trained to learn how to generate
data from random noise to deceive the discriminator. The discriminator is trained
to discriminate between the real and the generated data. However, this approach
is completely data-driven and there is no control over the generation process, so
sometimes it may happen that the generated observations do not satisfy real-world
constraints.

Recently, Lederrey et al., 2022 developed a methodology to incorporate expert
knowledge in ML models in the context of the synthetic data generation process.
Compared to the standard GAN architecture, where the generator is typically a
feedforward neural network that only takes random noise as an input, DATGAN
uses an additional Directed Acyclic Graph (DAG) as an input to specify the rela-
tionships between the variables. The generator’s structure is built following the
provided DAG such that each node corresponds to a Long Short Term Memory
(LSTM) cell and the edges represent the connections between the LSTM cells.
Thus, the idea of adding a DAG aims to add more control to the generation pro-
cess, as the LSTM cells in the generator enable the previous output to influence
the current state of the neural network, which has been shown to improve the qual-
ity of generated data.

To the best of our knowledge, none of the ML techniques is adapted to be
used in the domain of household generation. This might be due to the fact that
it is difficult to impose the relationships between these two layers as it is diffi-
cult to integrate expert knowledge. On the other hand, the simulation approach is
model-driven, allowing us to control the generation process by properly design-
ing conditional distributions. It is also data-independent which comes from the
fact that conditionals can be created by combining data, domain knowledge as-
sumptions, and models (Discrete Choice Model, Machine Learning). However, as
explained in Section 2.2 it is challenging to use simulation methods for generat-
ing the high-dimensional datasets due to the so-called “curse of dimensionality”
phenomena. The fact that Gibbs Sampler is not suitable for generating the big
datasets seems to have pushed the community towards using the ML techniques.

2.2 Simulation methods for synthetic population generation
Synthetic population is composed of vectors X described by both discrete and con-
tinuous random variables that represent individual and households characteristics
denoted as (X1, X2, ..., Xn). We only have partial knowledge of a unique joint dis-
tribution π(X) that these variables form. The goal of Gibbs Sampler is to replicate
this distribution iteratively using conditional distributions. The conditional distri-
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butions are calculated beforehand for each variable and provided to the algorithm
as the input. They can be obtained from different sources: from empirical distribu-
tions extracted from the data, from theoretical models with parameters calibrated
on the data, from distributions reported in the literature, etc. At each iteration, us-
ing the inverse transform, the GS draws a value of one randomly picked variable
from the probability distributions conditional to the fixed values of other variables.

The accuracy of the algorithm is highly influenced by the way in which we
construct the probability vectors that are provided as input. By designing the con-
ditionals, we model the relationships between the attributes and define the rules
to be followed during the generation process. In the literature, the authors usually
use full conditionals, in which one variable is drawn conditional to all others, as-
suming that this is the best way to capture all relationships. The full conditionals
are not always available due to the fact that they might involve a lot of variables
which causes that they cannot be expressed as a known probability distribution
with a finite number of parameters. In order to address the unavailability prob-
lem, the previous authors proposed simplifying the conditionals by removing the
attributes that are less informative according to expert knowledge. However, if the
conditionals are too simple, then there is a possibility that some relationships are
omitted which can result in generating unrealistic observations.

As previously mentioned, GS shows several limitations while dealing with
high-dimensional problems (e.g., households generation) due to the so-called “curse
of dimensionality”. This means that the execution time grows exponentially with
an increase in the number of variables. Due to sparsity and highly correlated areas,
it becomes more difficult for the algorithm to explore the whole space. Because
of this, the algorithm tends to iterate for a long time and requires a lot of draws
to converge to the unique joint distribution. Moreover, in some extreme cases of
total correlation between the two characteristics, it may end up in a degenerative
state and fail to converge. To prevent this, the correlation among variables must
be investigated beforehand. In Section 2.2.1 we explain the adaption of GS in the
context of household generation.

2.2.1 Two-step simulation method for synthetic households generation

The two-step method involves multiple Gibbs samplers (i.e., one per each step) as
shown in Figure 1. In the first step, the household size (Xhs), owner’s age (Xao)
and owner’s gender (Xgo) are generated and fixed for the second step. They are
generated using the full conditionals as follows:

π(Xhs|Xao = xao, Xgo = xgo)
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π(Xao|Xhs = xhs, Xgo = xgo)
π(Xgo|Xhs = xhs, Xao = xao)

Then, in the second step, the sequence of the following individuals described
by age and gender is generated. The structure of the household always follows
the same order of individuals labeled by roles (i.e. spouse, child, and other). For
the generation of each successive individual, only the links with the previously
generated members are considered.

h_size a_owner g_owner First step

spouse child other ... Second step

Figure 1: Two-step methodology

The owner represents the whole household since all the individuals depend on
the owner’s characteristics. Let us define Yi = (Xhsi = xhsi , Xaoi = xaoi , Xgoi

=
xgoi

) as the i-th tuple of fixed attributes generated in the first step. Similarly, let us
define Ysi = (Xasi = xasi , Xgsi

= xgsi
) and Yci = (Xaci = xaci , Xgci

= xgci
) as the i-th

tuple of spouse’s and child’s age and gender, respectively. The characteristics of
the spouse (Xas,Xgs) and child (Xac,Xgc) are conditioned on the characteristics of
all previous individuals as follows:

π(Xas|Yi, Xgs = xgs)
π(Xgs|Yi, Xas = xas)

π(Xac|Yi, Xas = xas, Xgs = xgs, Xgc = xgc)
π(Xgc|Yi, Xas = xas, Xgs = xgs, Xac = xac)
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In order to keep the conditionals simple, the rest of the household members
are characterized by age (Xaot) and gender (Xgot

) are generated only conditional on
the owner’s, spouse’s and child’s characteristics:

π(Xgot
|Yi, Y

s
i , Y

c
i , Xgot

= xgot
)

π(Xaot |Yi, Y
s
i , Y

c
i , Xaot = xaot)

Although this method simultaneously combines household and individual char-
acteristics giving a good approximation of previously mentioned variables, there
are some limitations. Firstly, it is difficult to expand this method since it lacks an
explanation on how to introduce additional relations should we wish to add more
characteristics (e.g., employment, education, marital status) other than age and
gender. It also remains unclear if the addition of such variables would hinder the
algorithm’s performance due to the curse of dimensionality. Secondly, in order to
make this method work, it is mandatory to assign roles in the pre-processing phase
to all individuals based on their age and gender. This limits the method from gen-
erating diverse household types. For instance, it is impossible to generate a single
parent with a child since the second member is always assumed to be a spouse.
In an attempt to solve this problem, in this paper, we aim to use the household
type as an essential variable in all conditionals which allows the generation of any
household structure. Finally, it is computationally heavy to always generate the
whole sequence of individuals in each iteration of the algorithm.

2.3 Validation of the synthetic data
In the transportation field, the most frequently used methodology for assessing the
synthetic tabular data is Standardized Root Mean Squared Error (SRMSE)(Müller
and Axhausen, 2011; Pritchard and Miller, 2012). The existing literature mainly
uses SRMSE to validate the fit of each characteristic separately (i.e. marginals dis-
tributions) or a combination of arbitrarily selected characteristics using the Eq. 1
(Zhu and Ferreira, 2014; Garrido et al., 2019; Badu-Marfo et al., 2020).

SRMSE =

√∑m
i=1 ...

∑n
j=1

(π
synth
i,...,j−π

real
i,...,j)

2

N∑m
i=1 ...

∑n
j=1

πi,...,j
N

(1)

Here, πsynth and πreal represent the frequency count of each unique combina-
tion of attributes (i, ..., j), in the real and synthetic samples, respectively, where
m and n are the numbers of possible categories of these attributes. N denotes
total number of different combinations of values for attributes (i, ..., j). In other
words, one calculates the occurrence of unique values for each combination of
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real and corresponding synthetic columns and compares them. However, the pre-
vious authors state that SRMSE is not reliable for the assessment of all combi-
nations of attributes for high-dimensional datasets (Garrido et al., 2019). The
high-dimensional datasets are usually sparse, which results in an unreasonably
higher value of SRMSE. This is a consequence of the fact thatN increases even if
the count difference does not change (Zhu and Ferreira, 2014). Consequently, to
test the fit of synthetic data, the authors usually report the SRMSE for each char-
acteristic independently or for a combination of arbitrarily chosen characteristics
that are considered the most important. However, while generating hierarchical
structures such as households, with all their constituent individuals, the consid-
eration of all multivariate distributions is crucial to demonstrate that the realism
of the data and the consistency between the layer of individuals and the layer of
households are preserved. By consistency, we refer to verifying that the rules de-
rived from the expert knowledge are respected (e.g. children are not older than
their parents). Realism, on the other hand, implies that the generated individual
who satisfies the real-world constraints is also someone who is a good represen-
tative of the population (e.g., a small percentage of old children living with old
parents). The SRMSE for each synthetic column can indicate a perfect fit (i.e.
equals to zero), while all multivariate distributions might be illogical. Thus, the
comparison of marginals only is not sufficient to validate the plausibility of syn-
thetic households.

Lederrey et al., 2022 address previously mentioned problems by redefining
the SRMSE to systematically test all possible combinations of all variables on
different aggregation levels. With an aggregation level, we specify the number of
columns that are jointly assessed. IfNv is the set of nv columns in the dataset, in-
stead of calculating the one frequency list for arbitrarily chosen subset N ′

v ⊂ Nv,
for a specified aggregation level a ∈ {1, 2, 3}, they calculate SRMSE for

(
nv
a

)
fre-

quency lists. The final result is the average of all previously obtained scores. Note
that this framework also allows calculating other obtained statistics such as Mean
Absolute Error (MAE), Coefficient of determination (R2), and Root Mean Square
Error (RMSE).

3 Methodology
This section presents the one-step divide-and-conquer methodology for generat-
ing complete synthetic households building on the Gibbs sampler proposed by
Farooq et al. (2013). We propose a methodology to generate synthetic households
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composed ofN individuals. A synthetic household is characterized by a sequence
of household-specific variables Z1, ..., ZK (such as household type, total number
of cars, and total number of driving licenses), and N sets of individual-specific
variables Xn1

, ..., Xnl
, where n = 1, ...,N (such as age, gender, marital status,

employment, and driving license). The main idea of the “one-step” approach is
to consider the joint distribution of the K + N · L variables, and to draw from it
directly using Gibbs sampling.

The general concept of Gibbs sampling relies on draws from univariate condi-
tional distributions. In order to obtain a practical implementation of the GS for the
generation of synthetic households, the specification of these conditional distribu-
tions is needed. These distributions can be constructed from contingency tables
generated from the real data set, or from predictive models, estimated from the
real data sets. In both cases, it is not practical to represent a full conditional. In-
deed, in the case of the contingency table, a high-dimensional table contains a lot
of zero cells. And in the case of a predictive model, a high number of variables is
usually associated with poor statistical precision, overfitting, and poor predictive
power.

The key modeling decisions rely therefore on the choice of variables that must
be explicitly involved in the conditional, and the ones that can be omitted. Clearly,
each of these modeling decisions depends on the specific context and data avail-
ability. In order to have a concrete description of the methodology, we focus on
a specific, although reasonably general case, involving the following variables: at
the household level, household type (Zt) and number of cars (Zc) are included;
at the individual level, age (Xna), gender (Xng), marital status (Xnm), employment
status (Xne), and whether having a driving license (Xnl) as shown in Table 3.
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Attribute Values

Household type (Zt) Single, Single with children,
Pairs, Pairs with children,

Non-family

Household size (N) 1-17

Number of cars (Zc) 1, 2, 3, 4, more than 5

Age (Xna)

0-14
14-18
18-24
24-44
44-65

older than 65

Gender (Xng) M, F

Marital status (Xnm)
Single, Married,

Widowed, Divorced, Unmarried

Employment (Xne)
Employed,

Unemployed, Education

Driving license (Xnl) yes = 1, no = 2

Table 3: Data description
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3.1 The investigation of conditionals - divide-and-conquer
The goal of the DAC one-step methodology is to simplify conditionals to find the
best trade-off between accuracy and efficiency while assuring the generation of
realistic observations. To make our modeling decision, we test full and simpli-
fied conditionals for each variable. Full conditionals involve all variables, while
simplified conditionals contain only one variable that is considered as the most
important based on expert knowledge. Additionally, we propose the divide-and-
conquer approach that keeps only the variables that are critical for preserving re-
alism or includes the variables derived based on the existing ones to help simplify
the generation process. For the sake of simplicity, we illustrate an example of gen-
erating three attributes using three different configurations of conditionals: house-
hold type (Zt), number of cars (Zc) and set of variables A = {Xnl |n ∈ {1, ...,N}}
where each variable indicates if the n-th person has a driving license. Although
the household size (N) is not stochastically generated in GS (see Section 3.4.3), it
is still a part of each conditional. Note that we implement assumptions introduced
in Section 3.3 in this example. The list of experiments is shown in Table 4.

Configuration Conditional distribution

Full
π(Zt|N,Zc,A)
π(Zc|N,Zt,A)
π(Xnl|N,Zt, Zc,A \ Xnl)

Simplified
π(Zt|N)
π(Zc|N)
π(Xnl|N)

Divide-and-conquer
π(Zt|N)
π(Zc|N,Ztd)
π(Xnl|N,Zc)

Table 4: The summary of conditional investigation experiments

We explain each of the previously defined terms in an example of generating
the total number of cars. By using full conditionals we include all the variables so
that guarantee that all relationships are included. To simplify, we could assume
that the number of cars is mostly dependent on household size. Indeed, a house-
hold with more members has a higher probability to have more cars. Nevertheless,
by only including the household size in the conditionals, we could generate un-
realistic observations. For instance, for a household consisting only of children
without driving licenses, we would draw multiple cars based solely on household
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size. So the oversimplification of conditionals might cause a loss of accuracy.
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Figure 2: Correlation of household variables in real sample

Instead of including a set of variables A that represents if the n-th person in
the household has a driving license or not, we can derive a new variable at the
household level, called the total number of driving licenses Ztd. The value ztd

of the variable Ztd can be derived as
∑N

n=1 xnl, where xnl is the value of a ran-
dom variable Xnl. As shown in Figure 2, if we add the total number of driving
licenses to the original dataset, we notice that it has a stronger correlation with
the number of cars than all other attributes, which implies that represents a more
informative attribute than the possession of a driving license itself. For instance,
if the household is composed only of children, having zero driving licenses in
households would enforce generating a smaller number of cars. Based on the re-
sults described in Section 4.2, we decide that the divide-and-conquer represents
the best trade-off between accuracy and efficiency. Since generating the complete
households involves K + N · L variables, we could not test full conditionals for
each variable. However, similar to what we did for the total number of cars, we
provide a modeling procedure for each variable described in Section 3.2.

3.2 Modeling conditionals for DAC one-step method
In this section, we explain how the conditional of each characteristic is constructed
in the general case. The list of assumptions is presented in Section 3.3. Note that
the household size is given as an input (see Section 3.4.3), and all conditionals
are created using the contingency tables that are formed based on the subsets of a
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specific household sizeN. This is equivalent to considering every variable condi-
tional on the household size.

Household type: For the household sizes N > 1, let A = {Xna|n ∈ {1, ...,N}}
be a set of random variables, where each represents the age of the n-th person in
the household. Then, the value zt of a discrete random variable Zt is drawn from
the conditional distribution π(Zt|A) for an a priori fixed realisation of the random
variables defined by A, i.e., for Xna = xna, ∀n ∈ {1, ...,N}.

Number of cars: Let xnl be the value of the binary variable Xnl that represents
if the n-th person in the household has a driving license or not. For a household
of size N, we can derive a value zl of a discrete random variable Zl denoting the
total number of driving licenses as

∑N
n=1 xnl. The value zc of a discrete random

variable Zc is drawn from π(Zc|Zl = zl).

Age: For the household sizes N > 1, let A = {Xna|n ∈ {1, ...,N}} be a set of
random variables that represent the age of the every n-th person in household and
zt the value of a discrete random variable Zt that represents the household type.
Then, the value xja of a discrete random variable Xja ∈ A is drawn from the con-
ditional distribution π(Xja|Zt = zt,A \ {Xja}} for an a priori fixed realisation of the
random variables defined by A \ {Xja}, i.e., for Xna = xna, ∀n ∈ {1, ...,N} \ {j}.

Gender: For the household sizes N > 1, let G = {Xng|n ∈ {1, ...,N}} be a set of
random variables that represent the gender of the every n-th person in the house-
hold and zt the value of a discrete random variable Zt that represents the household
type. Then, the value xjg of a discrete random variable Xjg ∈ G is drawn from the
conditional distribution π(Xjg|Zt = zt,G \ {Xjg}} for an a priori fixed realisation of
the random variables defined by G \ {Xjg}, i.e., Xng = xng, ∀n ∈ {1, ...,N} \ {j}.

Marital status: Let A = {Xna|n ∈ {1, ...,N}} be a set of random variables that
represent the age of the n-th person in the household and zt the value of a discrete
random variable Zt that represents the household type. The value xnm of the ran-
dom variable Xnm is drawn from π(Xnm|Zt = zt,A) for an a priori fixed realisation
of the random variables defined by A, i.e., Xna = xna, ∀n ∈ {1, ...,N}.

Employment: Let xna be the value of a discrete random variable Xna that repre-
sents the age of the n-th person in the household. The value xne of the random
variable Xne is drawn from the conditional distribution π(Xne|Xna = xna).

Driving license: Let zc be the value of a discrete variable Zc that represents the
number of cars in the household and xna be the value of a discrete random variable
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Xna that represents the age of the n-th person. The value xnl of the random variable
Xnl is drawn from the conditional distribution π(Xnl|Xna = xna, Zc = zc).

3.3 Assumptions
By investigating correlations before starting the generation process, we try to
isolate the highly correlated areas by deterministic assignment of certain values
which contributes to the improvement of the overall efficiency. The correlation
identification process varies for different problems and it can be applied in differ-
ent ways. We use the Pearson coefficient as shown in Figure 3.
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Figure 3: Correlation investigation of variables involved in Gibbs Sampler from
the real sample

For correlated attributes, there might be some categories that produce most of
the correlation. For example, as shown in Figure 3, there is a correlation between
the age and the employment. This is expected given that people are going to school
or getting retired at a specific age. Thus, if we know that the person is under 14 or
above 65, we can automatically conclude that the employment status is education
or, respectively, retired without taking into account any other information. On one
hand, by assuming the value we sacrifice a bit of accuracy because we do not let a
variable converge stochastically to the exact value (e.g. some retired people could
still work). This might impact the representativity because some outliers might be
omitted, but the realism is still preserved since there is no observation that does
not comply with the expert knowledge constraints. On the other hand, we speed-
up the algorithm since we exclude these categories from probability vectors used
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for stochastic generation. The list of assumptions we make for the variables pre-
sented in Section 3.2 is as follows:

Household type: For a household of size N = 1, the value of zt is set to zt =
single.

Age: For a household of sizeN = 1, there is no need to capture relationships with
other household members, so we can simplify the conditional and draw the value
xja from π(Xja|Zt = single).

Gender: For a household of size N = 1, there is no need to capture relationships
with other household members, so we can simplify the conditional and draw the
value from π(Xjg|Zt = single).

Marital status: If xna < 18, then we set xnm = not married. On the other hand,
for the households size N = 2 and zt = couple, if the value of the variable xjm,
that denotes the marital status of the other household member, is married, then we
also set xnm = married.

Employment: If the age of the chosen person xna is under 14, then xne is set to
education, and if the age of the chosen person xna is above 65, then xne is set to
unemployed.

Driving license: If the age of the chosen person xna is under 18, then xnl is set to
0, which indicates that the person does not have a driving license. If zc > 1, and
no other person has a driving license, then xnl is set to 1.

3.4 Implementation details
3.4.1 Convergence monitoring

For the simulation methods that we introduced, we simulate several chains of
draws simultaneously. After a certain number of iterations, the sequences should
converge to a common target joint distribution noted as π(X). In order to assure
that we draw from the common unique distribution we have to guarantee that all
simulated chains mixed and reached a stationarity state with a defined number
of draws. We monitor the convergence by comparing variation ‘between’ and
‘within’ simulated sequences. The variation of ‘within’ should be almost equal to
the ‘between’ variation. To estimate this, we calculate two metrics: potential scale
reduction factor and the effective sample size proposed by Gelman et al. (2013).
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The potential scale reduction R̂ indicates whether we should stop or continue
the simulation runs, and it is calculated using the following Eq. 2:

R̂ =

√
n−1
n
·W + 1

n
· B

W
(2)

where n is number of simulation draws, W is within-sequence variances, and
B is between-sequence variance. The numerator estimates the marginal posterior
variance for each chain.

Additional to R̂, we calculate effective sample size neff to get an idea of the
simulations precision using Eq. 3:

neff =
m · n

1+ 2 ·
∑∞

t=1 ρt
(3)

where m is number of sequences, and ρt is autocorrelation of each sequence
at lag t. Once we know that each simulated sequence is close to the distribution
of all the sequences mixed together, we can treat the draws as a sample from the
target distribution. Interested readers are referred to Gelman et al. (2013) for a
complete discussion on these indicators. For each simulation method, we test ef-
ficiency by comparing the computational time needed to reach convergence.

3.4.2 Symmetry problem of Gibbs Sampler

In each iteration of the DAC one-step method, either one of the household char-
acteristics or one characteristic of a member is picked and drawn from the corre-
sponding conditionals that we present in Section 3.2. Compared to the two-step
approach we do not label household members based on their roles and we con-
struct the conditionals in a way that all necessary relationships between household
members are captured. In order to avoid the generation of very similar households
we sort individuals in decreasing order of age from the oldest to the youngest.
Without age rank, two households that only differ in the order of the individuals
would be regarded as different households, which could lead to a convergence
problem. The ordering breaks the symmetry in the generated sample and it does
not indicate the importance of the individual. Note that we discretize continuous
age since we identified that there are the same trends for certain ranges of ages.
The discretization of age is based on investigations of all other distributions given
the age. Through this analysis, we identified age points where the life stage of a
person usually changes. For example, children usually do not live alone, they are
not married, they do not work, and do not have a driving license. After turning 18
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people can get married and get a driving license, etc. Discretization of age helps
us to reduce complexity while preserving the same accuracy.

h_type nb_cars h_licenses memberi memberi+1 ...

Figure 4: One-step methodology

3.4.3 Household size

Initially, we tried to involve household size in the generation process using the
full conditionals. The algorithm failed to converge due to the presence of the
total correlation between household size and household type for specific groups
(i.e. one-member-single and two-member-couple) as shown in Table 5. Since
GS is component-wise, if the algorithm picks up the illustrated vectors with total
correlation it reaches a degenerative state since it always draws the same value.

hs = 1 hs = 2 hs ≥ 3
Single 1 0 0

Couple 0 1 0

Couple with children 0 0 1

Table 5: The conditional distributions between household size (hs) and household
type

Based on this analysis, we decide to exclude household size from the stochas-
tic generation. However, since it defines the structure of the household, it must
be involved in conditionals while generating other variables. Using the GS, we
have to specify a desired number of generated draws. This allows us to specify
the exact number of observations that we want to generate for each subset of a
specific household size. The total number of draws per each subset is dictated by
the marginal distribution of household size attribute in the real data sample. Fol-
lowing that, we divide the initial sample into subsets based on the household size
and run several generation processes in parallel. Each subset contains only the ob-
servations of specified household size. At the end of the process, we merge these
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subsets in order to compare the final synthetic sample with the real one. Conse-
quently, the value of household size variable can be assigned to the dataset in the
postprocessing phase. Note that household size and the total number of driving
licenses are attributes in the output data sample, although they are not stochasti-
cally generated.

3.4.4 Marital status

Note that due to data unavailability, the generation of marital status does not fall
under the same modeling procedure as age and gender. In other words, the best
way to generate marital status would be to draw marital status conditional on the
household type and marital status of other members, similarly as we do for age
and gender. Instead of that, we generate marital status conditional on the house-
hold type and age of other members. As mentioned in Section 4.1, this is caused
by the fact that we have information on the age and gender of each member of
households, while for marital status we have information only on one household
member. This is critical, since for some household types the marital status of
one person depends on the marital of another. If we do not involve these inter-
dependencies among individuals, we risk generating unrealistic observations (e.g.
owner being married and the spouse being divorced). Therefore, we rely on as-
sumptions as described in Section 3.3. By using assumptions we deterministically
assign some values based on expert knowledge to make relationships among indi-
viduals realistic. This implies that we do not replicate the distribution of marital
status of one individual that exists in the data, but rather the distribution of marital
status of multiple individuals. Note that in Section 4.4 marital status is excluded
from the comparison, since we do not have a real sample to validate our assump-
tions.

4 Case study
In this section, we want to show that by using our method it is possible to gen-
erate meaningful populations of households. That implies that we want to verify
that we generate realistic relationships between individual and household layers.
To do so, we use a methodology described in Section 2.3. We calculate SRMSE
at three different aggregation levels (i.e. first, second, and third order). The first
order shows a fit of marginal distributions, while the second and third order gives
an insight into the replication of sub-distributions. We report one value that repre-
sents the mean and standard deviation of previously calculated SRMSE for each
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combination of attributes at a specific aggregation level. The lower score indi-
cates a better fit. All calculated values of statistics are confirmed by visualizing
corresponding marginals and sub-distributions.

4.1 Data description and preprocessing
The demographic dataset used in this case study is the Swiss Mobility and Trans-
port micro-census data (MTMC). The disaggregated sample contains information
on 163,844 individuals living in 50,070 different households. In the first dataset,
we have access to household attributes, age, gender, and driving license of each
household member. On the other hand, in the second dataset, we have informa-
tion on marital status and employment status only for one person per household.
Compared to the original dataset, we delete missing values for household type,
number of cars, employment, and driving license. With these changes, we lose
2.4% of data. Individuals below the legal driving age are presumed to not possess
a driving license. For employment, we merge full and part-time workers into the
group ‘employed ’. Each household is characterized by a unique identifier shared
between the household members. This attribute defines a hierarchical structure
between individuals and households. Since there are only 1% of households with
more than 5 cars, we aggregate these categories into “more than 5” category. The
list of possible values for each variable is listed in Table 3. In the following part,
we describe and analyze the experiments conducted based on the processed data.
All the experiments discussed in the following part are coded in Python and run
on a server with Xeon(R) Gold 6140 CPU clocked at 2.30GHz and 36 processors.

4.2 The investigation of conditionals - divide-and-conquer
In this section, we discuss the influence of conditionals constructions on the effi-
ciency and accuracy following the example presented in Section 3.1. The statis-
tical tests illustrated in Table 6 show that the divide-and-conquer approach repre-
sents the best trade-off between accuracy and efficiency.

We see that by using full conditionals we obtain the longest computational
time due to the increased complexity of adding more variables. Interestingly,
the reduced complexity of simplified conditionals does not significantly affect
the algorithm’s convergence time. The potential reason for the slow convergence
might be that we provide insufficient information with poorly constructed simpli-
fied conditionals. As expected, the divide-and-conquer approach has the lowest
computational time. The main idea is to eliminate the variables that add up com-
plexity without increasing the accuracy. This way of modeling speeds up the gen-
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First order Second order Third order Computational time

SRMSE Difference [%] SRMSE Difference [%] SRMSE Difference [%] Seconds

Full conditionals 4.41e-02 ± 6.19e-02 - 1.06e-01 ± 7.85e-02 - 1.84e-01 ± 7.65e-02 - 1011

Simplified conditionals 4.74e-02 ± 5.98e-02 +7.49 2.79e-01 ± 2.22e-01 +163.2 7.13e-01 ± 3.63e-01 +287.5 987 (÷1.02)

Divide-and-conquer 4.43e-02 ± 6.17e-02 +0.45 1.62e-01 ± 6.00e-02 +52.8 3.35e-01 ± 7.38e-02 +82.1 341 (÷2.97)

Table 6: Statistical tests for different conditional configurations

eration process because we decrease the number of variables, yet provide enough
information to the algorithm to achieve a fast convergence to the unique joint dis-
tribution.
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Figure 5: The sub-distribution of derived variable total number of driving licenses
given that household has five cars

We observe that in all scenarios we achieve a good fit of marginals. However,
we notice a more significant accuracy gap between the three scenarios, as we in-
crease the statistical tests aggregation level. This implies that by using simplified
conditionals, the sub-distributions are not well represented. If we oversimplify, we
might omit some essential relationships, which leads to a lack of representativity
and produces unrealistic households. In Figure 5, we illustrate the sub-distribution
of the total number of driving licenses given that there are five cars in the house-
hold. We observe that considering only household size in simplified conditional
is not sufficient for generating driving licenses of household members. For ex-
ample, if the person does not have a driving license, she is less likely to have a
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car. In Figure 5, we see that by using simplified conditionals, we obtain some
categories that do not exist in the real data (e.g. household owning five cars, in
which nobody has a driving license). In the case of applying full conditionals and
a divide-and-conquer approach, it is impossible to generate illogical observations
since we enforce some constraints (such as that the number of driving licenses
cannot be bigger than the number of inhabitants). However, by using the divide-
and-conquer approach we obtain the results of almost the same accuracy as using
full conditionals three times faster.

4.3 Comparison of two-step and DAC one-step method
In this section, we compare two-step and DAC one-step methods. We use our
implementation of a two-step method based on the description provided in Sec-
tion 2.2.1. Based on the data presented in Table 3, in our experiments for the
two-step method, we use only household size at the household level and age and
gender at the individual level. In the DAC one-step method, we generate a full set
of attributes. However, in comparisons, we focus only on comparing these three
attributes. Note that household size is generated in a two-step method, while in
the one-step method is given as an input parameter as explained in Section 3.4.3.

Generating individuals always in a specific order limits the two-step method
since it causes the inability to generate diverse household types. For instance, if
we assume that the second person is always a spouse, producing a single parent
with a child is impossible. However, this household structure should be repro-
duced by algorithm since it exists in reality. In the one-step approach, this prob-
lem is solved by generating individuals conditional to the household type. This
way all individuals are treated the same way without assigning roles, while the
symmetry issue is solved by sorting individuals. As a consequence, in the two-
step method the unrealistic age difference appears between partners in couples as
shown in Figure 6. The age difference is expressed as a difference between age
categories that are formed in pre-processing phase (Section 4.1).

In Figure 7 we show that the one-step method replicates better the age distri-
bution of children. This is because, in the two-step method, the characteristics of
the spouse and child are conditioned on all the previous individuals, whereas the
characteristics of the latter members are not used to construct the conditionals to
keep them simple.

Another assumption of the two-step method is that a spouse is a person with
the minimum age distance from the owner among individuals of the opposite sex.

26



0 1 2 3 4
0

0.2

0.4

0.6

0.8

Fr
eq

ue
nc

y

Original data
One-step synthetic
Two-step synthetic

Figure 6: The distribution of age difference between the partners in household
type “couple without children”
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Figure 7: The marginal age distribution of children

This assumption decreases the probability of creating homosexual couples which
result in under-representing or over-presenting of specific couple types. Since
population trends change over time, the model should reflect the reality described
by the data sample. In one-step, the gender of the spouse is drawn stochastically
conditional to the household type and gender of the partner. However, as shown in
Figure 8 two-step method enforces the generation of heterosexual couples more
than the one-step method.
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Figure 8: The representation of homosexual and heterosexual couples

In the two-step method, the individuals are not always sorted which leads to
the generation of illogical observations with an unreasonable age difference. In
Figure 9 we illustrate the age difference between mother and child in households
labeled as “couples with one child”. The negative age difference indicates that
the two-step method might produce observations where the child is older than
the parent. This behavior is a consequence of the imposed assumption that the
spouse is the opposite gender compared to the owner. We illustrate one example
of this phenomenon in Table 7. Suppose that we can find a homosexual male
couple that adopted a daughter and son in the real dataset. Since the spouse is
assumed to be an opposite gender compared to the owner, the two-step method
labels the daughter as a spouse while the second partner is selected as a child.
This is evidence that the role assignment to the household structures limits the
method to be able to reproduce the new patterns that might appear in data over
time (such as homosexual couples with adopted children).

Using a two-step method, in each iteration, the complete sequence of the indi-
viduals is generated which makes the method computationally heavy. Moreover,
by enforcing the order in the generation process, we do not follow the definition
of a traditional GS where the algorithm always randomly picks one dimension to
draw. However, treating the whole sequence of individuals as one dimension in
a two-step GS is necessary to prevent the generation of unrealistic observations.
This phenomenon is explained through the example shown in Figure 10.

In this example, we are trying to generate the age attribute of the household
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Figure 9: The distribution of age difference between a spouse and a child in “cou-
ples with one child” type of household

Age Gender Role

≥ 65 male owner

[35, 45] male spouse

[18, 25] female child

≤ 18 male child

Age Gender Role

≥ 65 male owner

[18, 25] female spouse

[35, 45] male child

≤ 18 male child

Table 7: The example of illogical synthetic household (right) generated using
referent real sample (left)

composed of two parents and one child. Following the common practice of the
GS, we should randomly pick and draw a value for one dimension in each itera-
tion. In this case, we assume to draw the age of the second person. If we only
use the information of the previous individual, we could draw the person who is
much younger than expected. This would result in households of one parent and
two children instead of two parents and one child. To overcome this issue, in the
two-step, instead of picking the dimension randomly, they generate the whole se-
quence in one iteration. They guarantee that first, the owner’s age is generated,
then the spouse’s age is drawn based on the owner’s age, and finally, the chil-
dren’s age is drawn based on the spouse’s age. In the one-step approach, we treat
each individual equally, with the same importance, without assigning roles. Each
iteration generates one individual by considering the relationships with all other
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Figure 10: Comparison of differences between one-step and two-step approach

individuals. In the case of generating the age of the second person, the age differ-
ence between all the individuals is considered. By capturing all relations between
individuals, we do not have a problem with the generation of unrealistic obser-
vations. The only requirement of the one-step approach is that the sequence of
the individuals is always sorted. The sorting is necessary to prevent the symme-
try issue of GS, which manifests through the generation of too similar households.

Treating all the individuals with the same importance makes the one-step ap-
proach more flexible because we can generate any type of household. Also, the
generation process in a one-step procedure is faster than the two-step, because
instead of creating the complete sequence of individuals per iteration, we only
generate one individual per iteration. With the one-step method, we achieve bet-
ter accuracy according to statistics while we reduce the computational time by
half as shown in Table 8. Note that for the third value, we have only one value
since we test only the combination of three attributes (i.e., household size, age,
and gender).

First order Second order Third order Computational time

DAC one-step 3.77e-02 ± 3.39e-01 2.45e-01 ± 2.46e-01 0.627 2.5h

Two-step 3.50e-01 ± 2.93e-01 6.21e-01 ± 2.26e-01 0.836 5h

Table 8: Statistical tests between DAC one-step and two-step method
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4.4 Comparison of DAC one-step method with state-of-the-art
for the synthetic data generation

We also compare our approach with a state-of-the-art ML method Lederrey et al.,
2022 which is publicly available on Github (https://github.com/glederrey/
SynthPop). DATGAN does not generate hierarchical structures such as associ-
ated individuals and households. However, it can generate one person per house-
hold with a full set of attributes. In order to make these DATGAN comparable
with our method, we randomly pick one individual per household from the syn-
thetic dataset generated by the simulation method.

Based on the gaps between calculated statistics presented in Table 9 DAT-
GAN generates a more representative sample than our method. To investigate
results further, we analyze the marginal distribution of each attribute separately in
Table 10.

First order Second order Third order

DAC one-step 6.36e-02 ± 3.45e-02 1.58e-01 ± 5.91e-02 2.96e-01 ± 8.60e-02

DATGAN 1.21e-02 ± 6.32e-03 3.66e-02 ± 1.23e-02 8.44e-02 ± 2.29e-02

Table 9: Statistical tests between DAC one-step and DATGAN

DAC one-step DATGAN

Housheold type 0.04 0.002
Number of cars 0.05 0.01

Age 0.1 0.01
Gender 0.008 0.01

Employment 0.09 0.01
Driving license 0.07 0.002

Table 10: First order SRMSE per attribute

In order to identify what causes discrepancies between the calculated statistics
of the two methods, we analyze in detail second and third-order sub-distributions.
Second-order analysis implies that we test a marginal distribution of one attribute
given the value of another one. On the other hand, third-order analysis means that
we perform a second-order test on the subset in which we select only attributes
with the specific attribute value. We choose sub-distributions based on the expert
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knowledge rule we want to test. An example of second and third-order visualiza-
tion is shown in Figure 11 and Figure 12, respectively.

In Figure 11 we show the relationship of age with other variables. On the left,
we show the age distribution of workers. We can see that DATGAN generates
children who are classified as workers, which does not appear in reality. The em-
ployment for this age category should be education. On the right, we show the
distribution of marital status of people younger than fourteen. In these examples,
we see that DATGAN generates some observations other than single, which also
does not correspond to reality.
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Figure 11: The second order sub-distribution comparison - (left) age distribution
given the employment = employed, (right) marital distribution of people younger
than fourteen

In Figure 12 we select only single households. On this subset, we analyze the
sub-distribution of the number of cars of people without driving licenses. Since
these people live alone in households, there is no possibility that someone else in
the household has a driving license to drive a car. We would expect that it is less
likely that people without a driving license possess a car. However, with DAT-
GAN we generate more people without driving licenses having cars than exist in
real data. We see that although DATGAN captures better the overall trend in data,
it can generate illogical observations, while DAC one-step simulation does not
generate any illogical observations. This is expected since the main advantage of
our approach is that by designing the conditional distributions properly, we can
enforce the generation of realistic households according to the expert knowledge
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rules. One can argue that number of illogical observations generated by DATGAN
is not significant, hence it could be removed in the postprocessing. In that case,
the difficulty would be to identify all of the rules that should be tested. In the
simulation method, all of these rules are embedded within the algorithm.
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Figure 12: The third order sub-distribution comparison - the distribution of total
number of cars for household type = single and driving license = no

As a result of this study, we can conclude that DATGAN cannot entirely con-
trol the generation process, since it generates some illogical observations. That
means that with DATGAN we obtain a more representative sample, but we cannot
guarantee realism and consistency of it. On the other hand, simulation guaran-
tees realism and consistency, although some modeling assumptions may have an
impact on representativity. It is also worth mentioning that the relevance of the
representativity comparison between simulation and ML is debatable, given that
the simulation method potentially could achieve the same accuracy with a suffi-
ciently large number of draws. Also, the idea of the DAC one-step method is to
generate hierarchies, meaning that normally it captures more relationships than
DATGAN. The random choice of one individual per household in the sample gen-
erated sample might influence the results.
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5 Conclusion
This paper introduces a new simulation-based approach for generating synthetic
households. The approach utilizes modeling strategies to enhance the competitive-
ness of the simulation techniques in the big data era. By uniting the hierarchical
generation process into a one-step procedure, this method offers greater flexibil-
ity and generality compared to other simulation population generation methods.
The flexibility comes from the fact that the DAC one-step method generates the
age attribute in decreasing order eliminating the need for labeling the household
members based on their roles. Additionally, it incorporates household type as
a variable which allows for generating diverse household structures (e.g., single
parent with a child).

The obtained results show that the DAC one-step generates more representa-
tive samples than the two-step method more efficiently. The efficiency improve-
ment stems from not requiring two separate GS to generate households. More-
over, we show that by designing the conditionals precisely, we can find a trade-off
between accuracy and efficiency, which allows us to include more relationships
and attributes in the generation process. The enhanced accuracy may steam from
considering age and gender dependencies among all individuals, which ensures a
better representation of multivariate distributions. Furthermore, by proposing the
decomposition of the generation process based on the household size, we address
the scalability issue of the simulation-based method. The results indicate that us-
ing model-based methods is superior to data-driven approaches in controlling the
generation process. Although ML techniques better capture the correlations, they
still might produce illogical observations.

The future direction is to investigate the possibilities of using the DAC one-
step method to create additional hierarchical structures such as the individuals and
their activity sequence. Research in the field of synthetic generation focuses on
the generation of individuals and their sociodemographic characteristics, but there
are fewer contributions when it comes to the generation to attributes related to
the activities they perform. This lack of information hinders the use of synthetic
populations in activity-travel applications, as it means that further assumptions
must be taken to link activities to individuals. The DAC one-step method is a
promising approach for an integrated multi-hierarchical framework (e.g. synthetic
households with their activity sequence) for the full population generation.
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