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Abstract
We investigate preferences for COVID-19 vaccines using data from a stated choice survey
conducted in the US in March 2021. To analyse the data, we embed the Choquet integral, a
flexible aggregation operator for capturing attribute interactions under monotonicity con-
straints, into a mixed logit model. We find that effectiveness is the most important vaccine
attribute, followed by risk of severe side effects and protection period. The attribute inter-
actions reveal that non-pecuniary vaccine attributes are synergistic. Out-of-pocket costs
are independent of effectiveness, incubation period, and mild side effects but exhibit mod-
erate synergistic interactions with other attributes. Vaccine adoption is significantly more
likely among individuals who identify as male, have obtained a bachelor’s degree or a
higher level of education, have a high household income, support the democratic party,
had COVID-19, got vaccinated against the flu in winter 2020/21, and have an underlying
health condition.

Keywords: COVID-19, vaccines, patient preferences, stated choice, discrete choice.
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1 Introduction
The COVID-19 pandemic continues to pose significant risks to public health. World-
wide, more than 250 million COVID-19 cases have been reported, and more than 5 mil-
lion deaths have been associated with the disease as of 18 November 2021 (Dong et al.,
2020b). In the United States (US), more than 3 million hospital admissions between 1 Au-
gust 2020 and 15 November 2021 were linked to COVID-19 (Centers for Disease Control
and Prevention, 2020). Initial non-pharmaceutical interventions such as lockdowns, so-
cial distancing, and work-from-home orders to slow the spread of the disease have led to
substantial social and economic disruptions.
Pharmaceutical interventions in the form of vaccines are now viewed as the most effective
way out of the pandemic. Several COVID-19 vaccines have been developed and autho-
rised for use at a rapid pace (Basta et al., 2020, Wouters et al., 2021). COVID-19 vaccines
are safe and effectively prevent symptomatic and asymptomatic infections with SARS-
CoV-2, the virus that causes the COVID-19 disease (e.g. Baden et al., 2021, Polack et al.,
2020). Vaccinated individuals are significantly less likely to develop severe symptoms
that require hospitalisation and to die from the disease (Tenforde et al., 2021). Thus, mass
immunisations with COVID-19 vaccines are crucial for ending the pandemic and the as-
sociated public health crisis. To that end, mass vaccination campaigns have been launched
in many countries (Mathieu et al., 2021). The success of these campaigns depends crit-
ically on the decisions of individual members of society to get vaccinated. Aside from
availability factors, the individual decision to get vaccinated is likely influenced by the
attributes of the available vaccines and person-specific characteristics.
Understanding how individual preferences influence the decision to get vaccinated against
COVID-19 is essential for supporting a widespread adoption of COVID-19 vaccines both
during initial roll-outs and booster campaigns. First, insights into preferences for COVID-
19 vaccines can inform targeted information campaigns that emphasise the perceived ben-
efits of the available vaccines in communications with the target group. Second, informa-
tion about preferences for COVID-19 vaccines can support decision-makers in public pro-
curement processes in selecting vaccines that are comparatively more likely to be adopted
by the target group. Third, insights into preferences for COVID-19 vaccines can guide
pharmaceutical companies in developing COVID-19 vaccines with features that maximise
the likelihood of adoption by a target group.
Stated choice methods constitute a powerful framework for eliciting and analysing pref-
erences for vaccines. In that vein, several studies have employed stated choice methods to
investigate preferences for COVID-19 vaccines (Borriello et al., 2021, Dong et al., 2020a,
Eshun-Wilson et al., 2021, Leng et al., 2021, McPhedran and Toombs, 2021). The dis-
crete choice experiments in these studies elicit preferences for various vaccine attributes
such as the effectiveness, the length of the protection period, the risk of developing side
effects, the number of required doses, and the out-of-pocket costs as well as for other
attributes such as the place of administration and social influence. For the analysis of the
stated choice data, the studies employ multinomial, mixed and latent class logit models in
which the systematic utility is specified as linear-in-parameters.
Discrete choice models with linear-in-parameters utility specifications are limited in their
ability to explain preferences for alternatives described by multidimensional attribute vec-
tors. This is because a linear-in-parameters utility specification makes it difficult to repre-
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sent attribute interdependencies while also maintaining interpretability and monotonicity
(Dubey et al., 2021, Tehrani et al., 2012). Interpretability of preferences is a key desider-
atum in stated choice analysis. Monotonicity is a behaviourally meaningful constraint in
discrete choice analysis. Monotonicity implies that all else being equal, an increase in the
level of a desirable attribute does not lower the utility of an alternative, and vice versa,
that a decrease in the level of an undesirable attribute does not increase the utility of an
alternative.
It is easy to see why a linear-in-parameters utility specification is found wanting in these
two regards. In its standard form, a linear-in-parameters utility specification corresponds
to a weighted sum aggregation of the attributes of an alternative. The weighted sum aggre-
gation is simple and easy to interpret, mainly because the marginal effect of an attribute
on the utility is given by its estimated weight in the utility. Yet, the weighted sum aggrega-
tion lacks expressiveness due to its inability to capture dependencies between attributes.
To overcome this limitation, analysts may include second- and higher-order interaction
effects in a linear-in-parameters utility specification. However, utility specifications with
interaction effects are inherently difficult to interpret, since the marginal effect of an at-
tribute depends on the main effect and all interaction effects that include the relevant
attribute (Tehrani et al., 2012). For the same reason, utility specifications with interaction
effects may also violate monotonicity constraints (Tehrani et al., 2012).
In this paper, we aim to advance the understanding of preferences for COVID-19 vaccines
by formulating and applying a discrete choice model in which a component of the sys-
tematic utility is represented using the discrete Choquet integral. The discrete Choquet
integral is a flexible aggregation operator for interacting attributes under monotonicity
constraints. It also provides a quantification of the relative importance of individual at-
tributes and the degree of interaction of attributes (i.e. the Choquet integral identifies to
what extent two or more attributes are independent, synergistic or redundant). We em-
bed the Choquet integral into a normal error components mixed logit formulation. The
resulting model is a useful and behaviourally meaningful decision support tool. First, the
model is easy to interpret because the Choquet integral quantifies both attribute impor-
tance and the degree of interaction of attributes. Second, the Choquet integral ensures
monotonicity. Third, the model preserves the usual benefits of mixed logit. The normal
error components allow us to capture unobserved agent effects and define meaningful
nesting structures that imply realistic substitution patterns.
We apply the proposed model to data from a nationwide stated choice survey (N=1421),
which we conducted in the US in March 2021. The discrete choice experiment in the
survey included two hypothetical COVID-19 vaccines and an opt-out alternative. The
vaccines were described by nine attributes, namely the out-of-pocket costs, the effective-
ness, the protection period, the incubation period, the risk of severe side effects, the risk
of mild side effects, and the number of required doses, whether the vaccine has a booster
against variants, and the origin of the vaccine. The proposed discrete choice model with
a Choquet integral representation of the systematic utility allows us to quantify the im-
portance of the attributes and characterise the interaction of the attributes. In our model
specification, we also include an alternative-specific constant (ASC) for the opt-out alter-
native. Interactions of this ASC with socio-demographic attributes offer insights into the
person-specific attributes that drive vaccine non-adoption.
We organise the remainder of this paper as follows: In the following section, we present
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a review of the pertinent literature. In Section 3, we describe the stated choice data on
preferences for COVID-19 vaccines. In Section 4, we introduce the modelling approach.
In Section 5, we present the results. Finally, we conclude in Section 6.

2 Literature review

2.1 Stated choice analysis of preferences for COVID-19 vaccines
An ever growing number of studies have investigated preferences for COVID-19 vaccines
using stated choice methods.
Borriello et al. (2021) conducted a stated choice survey in Australia in March 2020 and
analysed the collected data using a latent class choice model. The authors find that pref-
erences for vaccine effectiveness, price, mild side effects as well as the mode and lo-
cation of administration are heterogeneous, whereas preferences for severe side effects
and immediacy (i.e. the expected point in time when the vaccine becomes available) are
homogeneous.
Eshun-Wilson et al. (2021) carried out a stated choice survey in the US in March 2021 and
analysed the collected data using mixed and latent class logit models. The authors’ mixed
logit analysis reveals that on average, respondents prefer one vaccine dose as opposed to
two and prefer to be vaccinated a single time rather than annually. The authors’ latent
class analysis identifies four preference segments with the first and largest segment valu-
ing vaccine features (i.e. number of required does and required vaccination frequency)
the most, a second segment being primarily concerned about vaccine administration as-
pects (i.e. wait time and administration at mass site, health centre or at home), a third
segment valuing enforcement and social proof of vaccine safety, and a fourth segment
that is indifferent to vaccine and administration features and is opposed to enforcement.
McPhedran and Toombs (2021) conducted a stated choice survey in the United Kingdom
(UK) in August and September 2020. The authors’ multinomial (conditional) logit anal-
ysis of the collect data reveals that respondents perceive vaccine effectiveness as the most
important attribute and that the sensitivity for high vaccine effectiveness is comparatively
larger of individuals aged 55 years old or older.
Dong et al. (2020a) collected data via a stated choice survey in China in June and July
2020. The authors’ mixed logit analysis finds respondents value vaccines that are highly
effective, offer a long protection period, have a low risk of side effects, and are manufac-
tured overseas.
Leng et al. (2021) also conducted a stated choice survey in China in 2020 and analysed
the collected data using multinomial logit and latent class logit models. The authors find
that high vaccine effectiveness, a low risk of side effects and social influence (i.e. the
proportion of vaccinated acquaintances) are most important to respondents.
Prior to the COVID-19 pandemic, Determann et al. (2014) conducted a discrete choice
experiment to investigate preferences for vaccine attributes in a hypothetical pandemic
outbreak. The choice experiment considered several vaccine attributes, including effec-
tiveness, safety, advice, media coverage and out-of-pocket costs. The hypothetical pan-
demic outbreak was described by two scenario attributes, namely the disease suscepti-
bility and the disease severity. The authors’ latent class logit analysis detects substantial
preference heterogeneity with respect to the considered attributes. Vaccine effectiveness,
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out-of-pocket costs and the nature of the body that advises the vaccine are found to be the
most relevant attributes.
Furthermore, using data from a stated choice survey, de Bekker-Grob et al. (2018) inves-
tigate preferences for attributes of influenza vaccines. The considered attributes include
vaccine effectiveness, risk of mild side effects, risk of severe side effects, the incubation
period and the protection period. The authors analysis finds that both vaccine attributes
and person-specific attributes influence the decision to get vaccinated.

2.2 Discrete choice models and the Choquet integral
The Choquet integral (Choquet, 1954) has found widespread application in operations
research in the context of multi-criteria decision-making (Grabisch, 1996, Grabisch and
Labreuche, 2010). Yet, the Choquet integral has received limited attention in discrete
choice analysis. Aggarwal (2020) incorporate the Choquet integral into a multinomial
logit model. Similarly, Tehrani et al. (2012) formulate a logistic regression model based
on the Choquet integral. Both of these models succumb to the well known weaknesses
of logit (i.e. the inability of logit to capture realistic substitution patterns and correlation
in unobserved factors over time). Dubey et al. (2021) embed the Choquet integral into
a multinomial probit model to accommodate unrestricted substitution patterns. However,
the resulting model is computationally expensive, since the authors employ the GHK sim-
ulator to approximate multinomial probit choice probabilities. The computational burden
of this model would increase even further, if an analyst wished to accommodate agent-
specific effects using error components in a mixed multinomial probit formulation. This
is because the model would require two layers of simulation, one for the agent-specific
effects and another one for the choice probabilities. In this paper, we thus embed the Cho-
quet integral into a normal error components mixed logit formulation to accommodate
unobserved agent effects and realistic substitution patterns in a computationally efficient
manner. Since the choice probabilities of the logit kernel are available in closed-form,
only one layer of simulation is required during model estimation.

3 Data
We conducted a nationwide stated choice survey in the US from 4 to 10 March 2021 to
investigate preferences for COVID-19 vaccines. The survey included a discrete choice
experiment which involved a choice between two hypothetical COVID-19 vaccines and
an opt-out alternative. In total, we collected 1,421 valid responses. Each respondent
completed seven choice scenarios.
The vaccines in the discrete choice experiment were described by nine attributes, namely
the out-of-pocket costs, the effectiveness, the protection period, the incubation period, the
risk of severe side effects, the risk of mild side effects, the number of required doses,
whether the vaccine has a booster against variants, and the origin of the vaccine. An ex-
ample of choice task is shown in Figure 1. Table 1 enumerates the levels of the considered
attributes. The attributes were selected based on a review of the literature and an online fo-
cus group. Five of the nine attributes, namely effectiveness, protection period, incubation
period, risk of severe side effects, risk of mild side effects are taken from de Bekker-Grob
et al. (2018). The attribute out-of-pocket costs was included to facilitate eventual welfare
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calculations. We also included the attribute number of required doses with levels one and
two, since at the time of survey design, vaccines that were approved or awaiting approval
required one or two doses.
The survey also collected information about the respondents’ socio-demographic and
health-related characteristics. Table 2 describes the sample in terms of these characteris-
tics.

Figure 1: Example of a choice task
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Attribute Levels

Out-of-pocket cost [USD] (0, 50, 100, 175)
Effectiveness [%] (60, 80, 95)
Protection period [months] (6, 12)
Incubation period [days] (7, 14, 21)
Risk of severe side effects [out of 106] (1, 10, 100)
Risk of mild side effects [out of 10] (1, 3, 5)
No. required doses (1, 2)
Booster against variants (0, 1)
Origin (China, Russia, USA)

Table 1: Attributes and levels
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Variable Sample proportion [%]

Gender: male 49.8
Cohort: Generation Z 4.2
Cohort: Millenial 28.9
Cohort: Generation X 22.1
Cohort: Baby Boomer 38.2
Cohort: older than Baby Boomer 6.6
Race: Asian or Asian-American 3.0
Race: Black or African-American 16.1
Ethnicity: Hispanic 15.1
Education: BSc 28.5
Education: PostGrad 29.1
Full-time worker 48.3

Household income
less than $40,000 7.5
$40,000 to $74,999 35.7
$75,000 to $99,999 19.6
$100,000 to $124,999 10.8
$125,000 to $149,999 10.0
$150,000 to $199,999 9.2
$200,000 or more 7.2

Political views
Democrat 49.9
Republican 26.0
independent or other 24.1

Has tested positive for COVID-19 17.4
Got vaccinated against flu in winter 2020/21 50.4
Has underlying condition 41.9

Division
Pacific 16.7
Mountain 6.8
North West Central 5.4
West South Central 8.9
East North Central 12.6
East South Central 4.1
Middle Atlantic 18.9
South Atlantic 22.7
New England 3.9

Table 2: Sample description (N=1421)

8



4 Modelling approach

4.1 Set-up
We consider a standard set-up for a random utility model. We analyse a sample of N in-
dividuals indexed by n = 1, . . . ,N. Every individual is observed to choose an alternative
ynt from the set M = {1, . . . , J} in T choice situations indexed by t = 1, . . . , T . Each
alternative is described by a set Xntj = {xntj1, . . . , xntjK} of K attributes. Random utility
theory (McFadden et al., 1973) posits that an individual selects the alternative with the
highest random utility, i.e.

ynt = j iff Untj > Untj ′ ∀ j ′ ∈M \ j, (1)

where
Untj = Vntj(Xntj; θ) + εntj (2)

is the random utility of alternative j ∈M. Untj is composed of a deterministic component
Vntj(Xntj; θ) and a random component εntj. The deterministic utility Vntj(Xntj; θ) is a
score capturing the attractiveness of alternative j as a function of the attributes Xntj and
an unknown parameter vector θ. In general, Vntj(Xntj; θ) is calculated using an operator
H that aggregates the attribute and parameter vectors into a scalar. Thus, we have

Vntj(Xntj; θ) = H(Xntj; θ). (3)

The most common aggregation operator is the weighted sumW, i.e.

Vntj(Xntj; θ = β) =Wβ(Xntj) =

K∑
k=1

βkxntjk (4)

with β = (β1, . . . , βK).

4.2 Choquet integral
In what follows, we outline the key features of the Choquet integral. For detailed dis-
cussions of the properties of the Choquet integral, the reader is directed to the litera-
ture (Grabisch, 1996, Grabisch et al., 2008, Grabisch and Labreuche, 2010, Marichal,
2002, Tehrani et al., 2012). For notational simplicity, we omit the individual- and choice
situation-specific subscripts n and t in the subsequent exposition.
A fuzzy measure on a set of attributes X = {x1, . . . , xK} of cardinality K is a set function
µ : 2K → [0, 1], which satisfies the following two conditions:

µ(∅) = 0, µ(X) = 1, (5)
for any S, T ⊆ X, S ⊆ T ⇒ µ(S) ≤ µ(T). (6)

For any S ⊆ X, µ(S) represents the weight or importance of the coalition S of attributes
in X.
The Choquet integral C is defined as

Cµ(X) =

K∑
k=1

x(k)
[
µ
(
A(k)

)
− µ

(
A(k+1)

)]
, (7)
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where (·) is a permutation operator such that x(1) ≤ . . . ≤ x(K). Furthermore, A(k) =
{xk, . . . , xK} and A(k+1) = ∅. For example, if X = {x1, x2, x3} and x3 ≤ x1 ≤ x2, then

Cµ({x1, x2, x3}, µ) =x3 [µ ({x3, x1, x2}) − µ ({x1, x2})] +

x1 [µ ({x1, x2}) − µ ({x2})] +

x2µ ({x2}) .

(8)

We let FX denote the set of all fuzzy measures on X. Any fuzzy measure µ ∈ FX has an
equivalent Möbius representation. The Möbius transform of a fuzzy measure µ ∈ FX is a
set functionmµ : 2K → R. It is given by

mµ(S) =
∑
T⊆S

(−1)|S|−|T |µ(T), S ⊆ X. (9)

The corresponding inverse transform is

µ(S) =
∑
T⊆S

mµ(T), S ⊆ X. (10)

For µ to be a valid fuzzy measure,mµ must satisfy the following conditions:

m(∅) = ∅,
∑
T⊆X

m(T) = 1, (11)∑
T⊆S|xk∈T

m(T) ≥ 0, ∀ S ⊆ X, ∀ xk ∈ S. (12)

The Möbius transform simplifies the calculation of the Choquet integral. In terms of the
Möbius representationmµ, the Choquet integral can be equivalently expressed as:

Cmµ(X) =
∑
T⊆X

mµ(T)min
i∈T
xi. (13)

The Shapley importance index φµ(xk) of attribute xk on fuzzy measure µ measures the
relative importance of attribute xk. It is defined as

φµ(xk) =
∑

T⊆X\xk

(K− |T |− 1)!|T |!

K!
[µ(T ∪ xk) − µ(T)] . (14)

The Shapley importance index can also be calculated in terms of the Möbius transform
mµ:

φmµ(xk) =
∑

T⊆X\xk

mµ(T ∪ xk)
|T |+ 1

(15)

The Shapley importance index of xk can be viewed as the average marginal contribution
of xk to all coalitions that exclude xk. Shapley importance indices exhibit the properties
0 ≤ φmµ(xk) ≤ 1 and

∑K
k=1φmµ(xk) = 1. Thus, φmµ(xk) <

1
K

implies that xk is less
important than the average, and φmµ(xk) >

1
K

implies that xk is more important than the
average.

10



The interaction index characterises the degree of interaction of two attributes. The inter-
action index κµ ({xk, xl}) of a set of two attributes {xk, xl} with k 6= l on fuzzy measure µ
is

κµ ({xk, xl}) =
∑

T⊆X\{xk,xl}

(K− |T |− 2)!|T |!

(K− 1)!
[µ(T ∪ {xk, xl}) − µ(T ∪ xk) − µ(T ∪ xl) + µ(T)] .

(16)
The interaction index can also be calculated in terms of the Möbius transformmµ:

κmµ ({xk, xl}) =
∑

T⊆X\{xk,xl}

mµ(T ∪ {xk, xl})

|T |+ 1
. (17)

The interaction index of a set of two attributes {xk, xl} can be viewed as the average
marginal interaction between xk and xl. The interaction index is contained within [−1, 1].
A positive interaction index implies that two attributes xk and xl are synergistic, i.e. im-
proving xk and xl jointly gives strictly more than improving either xk or xl. A negative
interaction index implies that two attributes xk and xl are redundant, i.e. it is not neces-
sary to improve xk and xl jointly. An interaction index of zero implies that two attributes
xk and xl are independent.
An application of the Choquet integral requires that the attributes are normalised such
that 0 corresponds to the worst possible levels of an attribute and 1 corresponds to the
best possible value of an attribute. For desirable attributes, i.e. attributes for which more
is better, the required normalisation is

xntjk =
x̃ntjk − min x̃k

max x̃k − min x̃k
, ∀ n, t, j, k, (18)

where x̃ntjk denotes the raw, unnormalised attribute. max x̃k and min x̃k denote the max-
imum and minimum of attribute k in its unnormalised form. For undesirable attributes,
i.e. attributes for which less is better, the required normalisation is

xntjk =
max x̃k − x̃ntjk

max x̃k − min x̃k
, ∀ n, t, j, k (19)

As a consequence of the normalisation and the constraints imposed on the fuzzy measure,
the output of the Choquet integral is constrained between 0 and 1.
In this paper, we exploit the Choquet integral as an aggregation operator for the specifica-
tion of the deterministic utility in a random utility model. With

Vntj = λCmµ(Xntj), (20)

we have
Untj = λCmµ(Xntj) + εntj, (21)

whereby λ > 0 is an unknown precision parameter. We include λ because the output of
the Choquet integral is constrained between 0 and 1 by design. λ sets the scale of the
component of the deterministic utility that is represented by the Choquet integral with
respect to other components of the deterministic utility and the error term.
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4.3 Extensions
The deterministic utility can be constructed using a combination of different aggregation
operators. Let Zntj = {zntj1, . . . , zntjK} denote a second set of L attributes. For example,
we could specify

Vntj = λCmµ(Xntj) +Wβ(Zntj) (22)

such that

Untj = λCmµ(Xntj) +

L∑
l=1

βlzntjl + εntj, (23)

wheremµ and β are unknown parameters.
Furthermore, we can augment the stochastic utility component by adding normal error
components. Suppose that there are B error components indexed by b = 1, . . . , B. Then,
the random utility becomes

Untj = λCmµ(Xntj) +

L∑
l=1

βlzntjl +

B∑
b=1

djbσbξnb + εntj, (24)

where djb is one if error component b is associated with alternative j and zero otherwise.
σb is the scale of error component b, and ξnb is a standard normal random variable.

4.4 Final model
The logit model is obtained under the assumption that the random error terms εntj are in-
dependently and identically distributed according to Gumbel(0, 1). Then, the probability
that individual n selects alternative j in choice situation t conditional on ξn is

P(j|Xntj, Zntj, djb; λ,mµ, β, σ, ξn) =
eVntj∑

j ′∈M e
Vntj ′

, (25)

with

Vntj = λCmµ(Xntj) +

L∑
l=1

βlzntjl +

B∑
b=1

djbσbξnb. (26)

Furthermore, The probability of observing the sequence of choices yn = (yn1, . . . , ynT)
is

P(yn|Xntj, Zntj, djb; λ,mµ, β, σ, ξn) =

T∏
t=1

P(ynt|Xntj, Zntj, djb; λ,mµ, β, σ, ξn). (27)

The unconditional probability is

P(yn|Xntj, Zntj, djb; λ,mµ, β, σ) =

∫
P(yn|Xntj, Zntj, djb; λ,mµ, β, σ, ξn)f(ξn)dξn,

(28)
where f(ξn) is the density of ξn. The integral in (28) is not analytically tractable. There-
fore, it is approximated using R simulation draws denoted by ξnr:

P(yn|Xntj, Zntj, djb; λ,mµ, β, σ) ≈
1

R

R∑
r=1

P(yn|Xntj, Zntj, djb; λ,mµ, β, σ, ξnr). (29)
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Consequently, the simulated log-likelihood is given by

L(θ) =
N∑
n=1

ln

(
1

R

R∑
r=1

P(yn|Xntj, Zntj, djb; λ,mµ, β, σ, ξnr)

)
(30)

with θ = {λ,mµ, β, σ}. The maximum simulated likelihood estimator of θ is then given
by the solution to the following constrained optimisation problem:

θ̂ = arg max
θ

L(θ) (31)

s.t. m(∅) = ∅,
∑
T⊆X

m(T) = 1 (32)∑
T⊆S\xk

m(T ∪ xk) ≥ 0 ∀ S ⊆ X, ∀ xk ∈ S (33)

λ, σ ≥ 0. (34)

We implement the constrained maximum simulated likelihood estimation problem de-
fined in (30)–(34) in Python. The unconditional choice probabilities are simulated using
200 Halton draws (Bhat, 2001) per individual. The constrained maximisation of the sim-
ulated likelihood is performed using the sequential least squares programming provided
in Python’s SciPy library (Virtanen et al., 2020). Standard errors are bootstrapped using
100 resamples.

5 Results

5.1 Model specifications
We estimate two normal error components mixed logit (NECML) models, namely

i) a NECML model in which all alternative-specific attributes are aggregated using
the weighted sum operator (henceforth, WS-NECML), and

ii) a NECML model in which a component of the systematic utility of the vaccine al-
ternatives is represented using the Choquet integral (henceforth, Choquet-NECML).

Both models include an alternative-specific constant (ASC) for the opt-out alternative.
The ASC is interacted with socio-demographic attributes to provide insights into the
person-specific characteristics that are associated with vaccine non-adoption. In both
models, the utility for the opt-out alternative includes a normal error component with
an estimable scale parameter. This error component introduces an agent effect and seg-
regates the alternatives into two nests, one containing the two vaccine alternatives and
another one containing the opt-out alternative. The considered normal error components
specification of the model satisfies the non-trivial identification conditions of NECML
models (see Walker et al., 2007).
In the model labelled Choquet-NECML, seven attributes, namely out-of-pocket costs, ef-
fectiveness, protection period, incubation period, risk of severe side effects, risk of mild
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side effects and the number of required doses, are aggregated using the Choquet integral.
The normalisation of the attributes (see equations (18) and (19)) requires us to identify
which attributes are desirable and which attributes are undesirable. Consistent with com-
mon sense, we treat effectiveness and protection period as desirable attributes, while all
remaining attributes are treated as undesirable. Since the Choquet integral only aggregates
continuous attributes, the origin of the vaccine is included in a weighted sum aggregation.
Specifically, we define a dummy variable indicating whether the vaccine is from the US.
The attribute booster against variants is not included in both model specification, as the
attribute was not found to have statistically significant influence on the utilities of the
vaccine alternatives. In the model labelled WS-NECML, all alternative-specific attributes
(with the exception of booster against variants) are aggregated using a weighted sum. A
normalisation of attributes is not required to estimate WS-NECML.

5.2 Model fit
Table 3 compares the goodness-of-fit of the two models. We observe that Choquet-
NECML provides a substantially better fit than WS-NECML, since the log-likelihood of
Choquet-NECML is more than 100 units higher than the log-likelihood of WS-NECML.
However, the improvement of fit appears to come at the cost added complexity. Whereas
WS-NECML includes 20 unknown parameters, Choquet-NECML includes 140 unknown
parameters.1 Note that WS-NECML is nested within Choquet-NECML. This is because
the simpler model can be obtained from the more complex one by setting all Möbius pa-
rameters that pertain to more than one attribute equal to zero. A likelihood ratio test leads
us to reject the restrictions imposed by the simpler model and to select Choquet-NECML
over WS-NECML (χ̃2 = 216.452, df = 120, p > 0.999).

WS-NECML Choquet-NECML

No. of parameters 20 140
Log-likelihood -7851.8 -7743.6

Table 3: Model fit

5.3 Parameter estimates
In Table 4, we report the parameter estimates for the two models. We omit the estimates
of the Möbius parameters, as we will interpret these parameters in terms of their Shapley
importance and interaction representations (see Section 5.4). Our first observation is that
the estimated signs of the parameters pertaining to alternative-specific attributes in WS-
NECML are consistent with our normalisation assumptions. As expected, the estimates
of parameters pertaining to “desirable” attributes (i.e. effectiveness and protection period)
are positive in WS-NECML, while the estimates of the parameters pertaining to the re-
maining “undesirable” attributes are negative in WS-NECML. Both models indicate that

1The constrained maximum simulated likelihood estimator for the Choquet-NECML model as defined
in (30)–(34) includes 141 parameters. However, due to the boundary constraint (32), one of the Möbius
parameters is identified given the remaining Möbius parameters. Therefore, we consider 140 parameters as
unknown in Choquet-NECML.
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respondents have a positive preference for vaccines that originate from the US. The esti-
mates of the parameters entering the utility of the opt-out alternative have the same signs
in both models. Both models suggest that individuals who identify as male, have obtained
a bachelor’s degree or a higher level of education, have a high household income, support
the democratic party, had COVID-19, got vaccinated against the flu in winter 2020/21,
and have an underlying health condition are significantly less likely to opt out from vac-
cination. Also, higher income significantly increase the propensity to select the opt-out
option. By contrast, individuals who belong to the Baby Boomer generation or an older
generation, and are black or African-American are significantly more likely to opt out.
The scale of the normal error component entering the utility of the opt-out alternative is
estimated to be statistically significantly different from zero in both models. The estimate
of the Choquet precision parameter λ does not carry a substantive meaning.

WS-NECML Choquet-NECML
Variable Est. SE z-val. p-val. Est. SE z-val. p-val.

Out-of-pocket cost [USD] ×10−2 -0.316 0.023 -13.910 0.000
Effectiveness [%] 0.026 0.001 24.878 0.000
Protection period [months] 0.042 0.005 8.808 0.000
Incubation period [days] -0.012 0.003 -4.761 0.000
Severe side effects [out of 106] ×10−2 -0.195 0.036 -5.482 0.000
Mild side effects [out of 10] -0.039 0.009 -4.281 0.000
No. required doses -0.086 0.037 -2.330 0.020
Origin is USA 1.128 0.033 34.101 0.000 1.424 0.065 21.954 0.000

Opt-out 3.216 0.300 10.729 0.000 2.781 0.316 8.810 0.000
Opt-out × male -0.910 0.193 -4.710 0.000 -0.938 0.190 -4.932 0.000
Opt-out × cohort is Baby Boomer or older 1.167 0.215 5.416 0.000 1.209 0.190 6.379 0.000
Opt-out × education bachelor -0.832 0.222 -3.752 0.000 -0.861 0.225 -3.818 0.000
Opt-out × education postgraduate -1.444 0.253 -5.705 0.000 -1.484 0.285 -5.197 0.000
Opt-out × household income [10k USD] -0.053 0.019 -2.754 0.006 -0.054 0.019 -2.912 0.004
Opt-out × black or African-American 0.657 0.261 2.516 0.012 0.715 0.299 2.392 0.017
Opt-out × democrat -1.538 0.193 -7.962 0.000 -1.599 0.228 -7.015 0.000
Opt-out × had COVID-19 -0.616 0.280 -2.198 0.028 -0.600 0.290 -2.067 0.039
Opt-out × received flu shot -1.318 0.201 -6.575 0.000 -1.371 0.207 -6.628 0.000
Opt-out × has underlying condition -0.361 0.195 -1.857 0.063 -0.388 0.209 -1.857 0.063
Opt-out std. dev. 2.808 0.111 25.375 0.000 2.948 0.124 23.768 0.000

Choquet precision λ 7.513 1.210 6.209 0.000

Table 4: Parameter estimates

5.4 Shapley importance and interaction indices
Figures 2 and 3 visualise the estimates of the Shapley importance and the interaction
indices, respectively. Table 5 provides a more detailed tabulation of the estimates of the
interaction indices.
Figure 2 shows the relative importance of the attributes. The dashed vertical line in the
plot indicates average importance. The error bars represent the 95% confidence intervals.
Effectiveness is the most important attribute, followed by severe side effects, and protec-
tion period. Mild side effects is the least important attribute, followed by out-of-pocket
costs, and incubation period. Effectiveness and severe side effects are significantly more
important than the average, whereas mild side effects and incubation period are signifi-
cantly less important than the average. These findings suggest that improving the avail-
ability of highly effective vaccines with minimal severe side effects is the comparatively
most effective way to improve vaccine uptake.
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Figure 3 shows the estimated interaction indices. The estimated values range from −0.01
to 0.19. Table 5 indicates that none of the estimated interaction indices assume a statisti-
cally significant value below zero. Hence, the attributes are either synergistic or mutually
independent.
A careful examination of the estimated interaction indices reveals that the non-pecuniary
vaccine attributes should be well satisfied together, as they are synergistic. Effectiveness,
which is the most important attribute according to Figure 2, interacts strongly with other
attributes. The interactions of the effectiveness attribute are largest with severe side ef-
fects, incubation period, and protection period. The values of the respective interaction
indices are 0.19, 0.17 and 0.16. Thus, to enhance vaccine attractiveness in the most ef-
fective way, efforts to improve vaccine effectiveness should be combined with efforts to
extend the protection period and to reduce the incubation period and the risk of severe
side effects. Also, the risk of severe side effects, the second most important attribute ac-
cording to Figure 2, has pronounced synergies with other attributes. The attribute risk of
severe side effects interacts most strongly with effectiveness, protection period, and the
number of required doses. The values of the respective interaction indices are 0.19, 0.17
and 0.15. Protection period, the third most important attribute according to Figure 2, also
exhibits strong positive interactions with other attributes, in particular with severe side ef-
fects, effectiveness and the number of required doses. Consequently, efforts to extend the
protection period should be combined with efforts to reduce the risk of severe side effects,
improve effectiveness, and lower the number of required doses. Also, the attribute risk of
mild side effects has moderate synergistic interactions with other attributes, which again
underlines that the non-pecuniary vaccine features should be well satisfied together.
By contrast, the attribute out-of-pocket costs interacts comparatively weakly with other
attributes. Out-of-pocket costs are independent of effectiveness, incubation period, and
mild side effects. Consequently, the attractiveness of a vaccine can be effectively in-
creased by lowering out-of-pocket costs in isolation of these three attributes. However,
out-of-pocket costs exhibit moderate synergies with the remaining attributes. For exam-
ple, the synergistic interaction of out-of-pocket costs and protection period suggests that
the two attributes should be well satisfied together.
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Figure 2: Estimated Shapley importance indices. The filled circles represent the point
estimates. The error bars represent the 95% confidence intervals. The dashed vertical
line indicates average importance. (+) indicates a desirable attribute, and (-) indicates an
undesirable attribute.
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Figure 3: Heatmap of estimated interaction indices. The reported values are the point
estimates. (+) indicates a desirable attribute, and (-) indicates an undesirable attribute.
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Attribute 1 Attribute 2 Est. SE [2.5% 97.5%]

Out-of-pocket cost (-) Effectiveness (+) 0.023 0.045 -0.066 0.112
Out-of-pocket cost (-) Protection period (+) 0.083 0.021 0.042 0.123
Out-of-pocket cost (-) Incubation period (-) -0.006 0.024 -0.054 0.041
Out-of-pocket cost (-) Severe side effects (-) 0.069 0.021 0.028 0.110
Out-of-pocket cost (-) Mild side effects (-) 0.005 0.023 -0.040 0.051
Out-of-pocket cost (-) No. of required doses (-) 0.060 0.023 0.016 0.104
Effectiveness (+) Protection period (+) 0.159 0.027 0.107 0.212
Effectiveness (+) Incubation period (-) 0.175 0.025 0.125 0.224
Effectiveness (+) Severe side effects (-) 0.189 0.019 0.152 0.226
Effectiveness (+) Mild side effects (-) 0.109 0.020 0.071 0.148
Effectiveness (+) No. of required doses (-) 0.088 0.046 -0.001 0.178
Protection period (+) Incubation period (-) 0.096 0.023 0.051 0.140
Protection period (+) Severe side effects (-) 0.169 0.021 0.128 0.210
Protection period (+) Mild side effects (-) 0.101 0.017 0.068 0.135
Protection period (+) No. of required doses (-) 0.149 0.025 0.100 0.198
Incubation period (-) Severe side effects (-) 0.085 0.027 0.032 0.138
Incubation period (-) Mild side effects (-) 0.049 0.019 0.012 0.086
Incubation period (-) No. of required doses (-) 0.080 0.026 0.030 0.130
Severe side effects (-) Mild side effects (-) 0.088 0.022 0.044 0.132
Severe side effects (-) No. of required doses (-) 0.147 0.025 0.097 0.197
Mild side effects (-) No. of required doses (-) 0.076 0.025 0.026 0.126

Table 5: Estimated interaction indices

6 Conclusion
Mass immunisations with COVID-19 vaccines are viewed as the most effective way to
end the global COVID-19 pandemic and the associated public health crisis. The success
of mass vaccination campaigns depends critically on the decisions of individuals to get
vaccinated. In this paper, we analyse individual preferences for COVID-19 vaccines us-
ing data from a nationwide stated choice survey (N=1421). The survey featured a discrete
choice experiment consisting of a choice between two hypothetical COVID-19 vaccines
and an opt-out alternative. Several attributes, including effectiveness, protection period,
incubation period, risk of severe side effects, risk of mild side effects, the number of re-
quired doses, and the origin of the vaccine described the vaccine options. For the analysis
of the stated choice data, we formulate and apply a new normal error components mixed
logit (NECML) model in which the Choquet integral replaces the standard weighted sum
operator to represent a component of the systematic utility. The Choquet integral is a flex-
ible aggregation operation which captures interactions between attributes while ensuring
interpretability and monotonicity of preferences. In our analysis, the new proposed model
provides a significantly better goodness-of-fit than a conventional NECML model relying
on a weighted sum aggregation.
Our empirical findings indicate that effectiveness is the most important vaccine attribute,
followed by risk of severe side effects, and protection period. Even though these results
are somewhat expected, our use of the Choquet integral and associated interaction anal-
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ysis reveal that on the one hand the non-pecuniary vaccine attributes are synergistic and
should thus be well satisfied together in order to maximise vaccine attractiveness. On the
other hand, out-of-pocket costs are independent of effectiveness, incubation period, and
mild side effects but exhibit moderate synergies with the remaining attributes. Also, we
estimate that respondents prefer vaccines from the US. Our analysis of preferences for the
opt-out alternative in the discrete choice experiment offers insights into the factors that are
likely associated with vaccine (non-)adoption. We estimate that vaccine adoption is sig-
nificantly more likely among individuals who identify as male, have obtained a bachelor’s
degree or a higher level of education, have a high household income, support the demo-
cratic party, had COVID-19, got vaccinated against the flu in winter 2020/21, and have
an underlying health condition. By contrast, individuals who belong to the Baby Boomer
generation or an older generation, and are black or African-American are significantly
more likely to select the opt-out alternative.
Our analysis suggests that people’s preferences should be considered in the design of in-
formation campaigns, vaccine procurement and the development of new vaccines. For ex-
ample, information campaigns aimed at improving vaccine acceptance should emphasise
vaccine attributes that are perceived as most important by respondents (i.e., effectiveness,
risk of severe side effects, and protection period as elicited in our work by the estimated
Shapley importance indices). Information campaigns should also explicitly target socio-
demographic groups with a lower likelihood of vaccine adoption. In addition, our findings
suggest that the likelihood of widespread vaccine adoption can be increased by improving
the availability of vaccines that satisfy important attributes. Due to the synergistic inter-
actions between vaccine attributes unveiled by the Choquet integral, the most effective
way to maximise vaccine adoption is to improve the availability of vaccines that perform
well across all non-pecuniary vaccine attributes. These insights should be exploited in the
procurement of vaccines and the development of new vaccines.
This research is not devoid of limitations. First, our analysis does not account for sys-
tematic heterogeneity in preferences for attributes that enter the Choquet integral. As a
remedy to this issue, (Dubey et al., 2021) parameterise the normalisation of the attributes
as a function of individual-specific characteristics. Second, growing evidence suggests
that stated choice methods possess a high external validity for explaining and predicting
health-related behaviours (de Bekker-Grob et al., 2020). Nonetheless, stated choice data
may still exhibit a hypothetical bias. One way to circumvent this limitation is to com-
bine stated preference data with revealed preference data, a technique that is exercised in
other application areas of discrete choice analysis (Ben-Akiva et al., 1994). To collect re-
vealed preference data on vaccine preferences, clinical studies in which patients are given
a choice between multiple COVID-19 vaccines could be conducted.
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