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Abstract
Inferences of robust behavioural and statistical models are insensitive to outlying obser-
vations resulting from aberrant behaviour, misreporting and misclassification. Standard
discrete choice models such as logit and probit lack robustness to outliers due to their rigid
kernel error distributions. In this paper, we analyse two robust alternatives to the multi-
nomial probit (MNP) model. The two models belong to the family of robit models whose
kernel error distributions are heavy-tailed t-distributions which moderate the influence of
outlying observations. The first model is the multinomial robit (MNR) model, in which
a generic degrees of freedom parameter controls the heavy-tailedness of the kernel error
distribution. The second model, the generalised multinomial robit (Gen-MNR) model, is
more flexible than MNR, as it allows for distinct heavy-tailedness in each dimension of the
kernel error distribution. For both models, we derive efficient Gibbs sampling schemes,
which also allow for a straightforward inclusion of random parameters. In a simulation
study, we illustrate the excellent finite sample properties of the proposed Bayes estimators
and show that MNR and Gen-MNR produce more exact elasticity estimates if the choice
data contain outliers through the lens of the non-robust MNP model. In a case study on
transport mode choice behaviour, MNR and Gen-MNR outperform MNP by substantial
margins in terms of in-sample fit and out-of-sample predictive accuracy. We also find
that the benefits of the more flexible kernel error distributions underlying MNR and Gen-
MNR are maintained in the presence of random heterogeneity.

Keywords: robustness, probit, robit, Bayesian estimation, discrete choice, outliers
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1 Introduction
Random utility maximisation is by far the most widely adopted decision-making paradigm
in the formulation of discrete choice models. Random utility theory (McFadden, 1981)
posits that a rational decision-maker chooses the option with the highest utility from a
finite set of mutually exclusive alternatives. In principle, the absolute level of utility is
not identifiable, and only differences in utility matter (Train, 2009). Typically, utility dif-
ferences are assumed to be either independent or identically logistically (logit kernel) or
jointly Gaussian distributed (probit kernel).
Logit is particularly popular in practice due to its closed-form choice probabilities. How-
ever, logit suffers from two drawbacks. First, substitution patterns in logit are restricted
by the independence of irrelevant alternatives property, which implies that the odds of
choosing one alternative over another do not depend on a third option. Second, logit
assumes that the random error terms are homoskedastic across alternatives, which im-
plies that the same level of decision uncertainty applies to all alternatives in a choice
set. Probit overcomes the limitations of logit by allowing for the estimation of a full error
covariance, subject to identification restrictions (Train, 2009). Probit can capture any sub-
stitution patterns and accommodates heteroskedasticity across utility differences. Probit
choice probabilities lack closed-form expressions, yet advances in computational power
combined with progress in simulation techniques (Burgette and Nordheim, 2012, Haji-
vassiliou et al., 1996, Imai and Van Dyk, 2005, McCulloch and Rossi, 1994, Train, 2009)
and analytical approximations (Bhat, 2011) make this drawback less and less important.
Both logit and probit are constrained by strong parametric assumptions. Whilst the Gaus-
sian distribution has a symmetric bell shape with light tails, the logistic distribution is also
symmetric and exhibits slightly heavier tails than the Gaussian distribution. As a conse-
quence, logit and probit lack robustness to outliers in the response data (Benoit et al.,
2016, Hausman et al., 1998). In principle, a model is considered robust if its inferences
are insensitive to outlying observations (Gelman et al., 2013). Whereas an outlier in con-
tinuous data is an extreme data point, an outlier in discrete data is an observation that is
unexpected through the lens of a non-robust model (Gelman and Hill, 2006). Outliers
in discrete choice analysis may result from aberrant behaviour as well as misreporting
and misclassification of the response variable. Hausman et al. (1998) show that ignoring
outliers in logit and probit applications can result in biased and inconsistent parameter
estimates.
In this paper, we analyse two robust alternatives to the multinomial probit (MNP) model.
Both alternatives belong to the family of robit models whose kernel error distributions
are heavy-tailed t-distributions which moderate the influence of outlying observations. In
the first model, the multinomial robit (MNR) model, a generic degrees of freedom pa-
rameter controls the heavy-tailedness of the kernel error distribution. The second model,
the generalised multinomial robit (Gen-MNR), is more flexible than MNR, as it allows
for different marginal heavy-tailedness of the kernel error distribution. For both models,
we devise Bayes estimators, which also allow for a straightforward inclusion of random
parameters. We first use simulated data to investigate the properties of the proposed mod-
els and their estimation methods in terms of parameter recovery and elasticity estimates.
Subsequently, we compare MNP, MNR and Gen-MNR as well as their mixed counterparts
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with random parameters in a case study on transport mode choice behaviour in London,
UK.1

The remainder of the paper is organised as follows: First, we give some background on
robustness in discrete choice analysis and develop a motivation for the methodological
innovations presented in this paper (Section 2). Then, we present the mathematical for-
mulations of the MNP, MNR and Gen-MNR models and also explain how random utility
parameters can be incorporated into the models (Section 3). Next, we outline the estima-
tion approaches and succinctly discuss the adopted data augmentation techniques (Section
4). In Sections 5 and 6, we present the simulation and case studies. Finally, we conclude
and identify avenues for future research (Section 7).

2 Background
In discrete choice data, outlying observations may result from aberrant behaviour as well
as misreporting and misclassification of responses. From the analyst’s perspective, outlier
responses are unexpectedly stochastic, i.e. the contribution of the random error term is
exceptionally large. Choice behaviour can be considered aberrant from the analyst’s per-
spective if the analyst possesses little information about the factors influencing choices or
if the postulated decision-making paradigm (such as random utility maximisation) does
not accurately represent the decision protocols governing some of the observed choices.
Misreporting frequently occurs in survey data collections, when a respondent intention-
ally or unintentionally selects an incorrect option (Hausman et al., 1998, Paleti and Balan,
2019). Similarly, misclassification occurs when a multinomial response variable is in-
correctly labelled because of measurement error or ambiguity about the exact nature
of the chosen alternative. For example, misclassification is encountered in automated
smartphone-based travel surveys, when a chosen transport mode is labelled as a different
alternative than it should be (Liang et al., 2019, Vij and Shankari, 2015).
Even though misreporting and misclassification are well-known problems in discrete
choice analysis (Hausman et al., 1998), the formulation of robust discrete choice mod-
els based on flexible kernel error distributions has received limited attention. Also, efforts
to capture aberrant choice behaviour in logit mixtures through scale heterogeneity have
proven futile, as scale and correlation in logit mixtures are not separately identifiable
(Hess and Rose, 2012, Hess and Train, 2017).
Robust models can be formulated on the basis of heavy-tailed distributions which moder-
ate the influence outlying data points. Lange et al. (1989) advocate the use of the heavy-
tailed t-distribution as a means to increase robustness in regression models. Compared
to the Gaussian distribution, the t-distribution has one more parameter which controls
the heavy-tailedness of the distribution. In the context of generalised linear models, Liu
(2004) proposes the binary robit model, which is built on a t-distribution with unknown
degrees of freedom (DOF), as a robust alternative to logistic and probit regression mod-
els. Furthermore, Ding (2014) constructs a robust Heckman selection model using the
t-distribution as kernel error distribution. Jiang and Ding (2016) formulate Heckman

1In what follows, we restrict our empirical analysis of MNR and Gen-MNR to comparisons with MNP,
as MNP is quite general compared to popular multinomial choice models based on the generalised extreme
value family of distributions (Train, 2009). As explained above, MNP can capture any substitution patterns
and also accommodates heteroskedasticity across alternatives.

2



selection and multivariate robit models based on t-distributions with different marginal
DOF.
Researchers have proposed various departures from standard kernel error distributions
for discrete choice models (also see Paleti, 2019, for a review), including generalised
extreme value (McFadden, 1978), heteroskedastic extreme value (Bhat, 1995), negative
exponential (Alptekinoğlu and Semple, 2016, Daganzo, 1979), negative Weibull (Castillo
et al., 2008), generalised exponential (Fosgerau and Bierlaire, 2009) and q-generalised
reverse Gumbel (Chikaraishi and Nakayama, 2016) kernel error distributions, additive
combinations of Gumbel and exponential error terms (Del Castillo, 2016), a class of
asymmetric distributions (Brathwaite and Walker, 2018), copulas with Gumbel marginals
(Del Castillo, 2020). However, these advancements do not aim at jointly enhancing ro-
bustness, admitting flexible substitution patterns and accommodating heteroskedasticity.
We are aware of three studies which formulate robust discrete choice models based on
heavy-tailed kernel error distributions. Dubey et al. (2020) present the first multinomial
robit (MNR) model, i.e. a multinomial choice model defined through a t-distributed ker-
nel error with an estimable DOF. Dubey et al. (2020) make a strong empirical case to
adopt the MNR model over the multinomial probit (MNP) model. First, the estimates
of the MNP model are inconsistent, if the kernel errors in the data generating process
are heavy-tailed. Second, the robustness of MNR results in superior in-sample fit and
out-of-sample predictive ability for class-imbalanced datasets. In another study, Peyhardi
(2020) formulates a MNR model in the context of generalised linear models and shows
that MNR can help in identifying artificial aspects in the design of stated preference ex-
periments. Furthermore, Benoit et al. (2016) devise a multinomial choice model, in which
utility differences follow a symmetric and heavy-tailed multivariate Laplace distribution.
Using simulated and real data, Benoit et al. (2016) show that estimates of their proposed
model are less sensitive to outlying observations than MNP estimates.
We identify two research gaps in the formulation and estimation of robust multinomial
choice models. First, the kernel error distributions of existing models lack flexibility.
Dubey et al. (2020) and Peyhardi (2020) constrain the flexibility of the kernel error distri-
bution by assuming that a single, generic DOF parameter controls the heavy-tailedness of
the kernel error distribution. This modelling assumption implies that all utility differences
exhibit the same level of aberrance. Unlike the t-distribution, the Laplace distribution un-
derlying the formulation of the multinomial choice model proposed by Benoit et al. (2016)
cannot exhibit varying levels of heavy-tailedness, since the Laplace distribution does not
have a third parameter controlling the heavy-tailedness of the distribution. Second, the es-
timation approaches employed in the studies by Dubey et al. (2020) and Peyhardi (2020)
are not scalable. Dubey et al. (2020) are unable to derive analytical gradients of the MNR
model and thus rely on computationally-expensive numerical gradient approximations
during the maximisation of the simulated log-likelihood of the model. Peyhardi (2020)
estimates the DOF parameter by performing a grid search, which requires the model to
be estimated at multiple values of the DOF parameter and suffers from the curse of di-
mensionality if the underlying kernel distribution had multiple DOF parameters. Besides,
incorporating representations of unobserved heterogeneity is computationally expensive
in both studies, as it necessitates an additional layer of simulation in the computation of
the log-likelihood.
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In this paper, we address the first limitation of existing robust multinomial choice mod-
els (i.e. lack of flexibility) by formulating a generalised multinomial robit (Gen-MNR)
model, in which each dimension of the kernel error distribution has its own DOF pa-
rameter. To that end, we adopt the non-elliptically contoured t-distribution (Jiang and
Ding, 2016) as kernel error distribution in the formulation of a multinomial choice model.
To tackle the second limitation (i.e. computationally-expensive estimation), we develop
optimisation-free Bayes estimators for both MNR and Gen-MNR.2 In the construction
of the estimators, we exploit the hierarchical normal mixture representation of the t-
distribution. To bypass complex likelihood computations in the estimation of MNR and
Gen-MNR, we employ a combination of Bayesian data augmentation techniques used in
the estimation of MNP models (Albert and Chib, 1993, McCulloch and Rossi, 1994) as
well as of non-multinomial robit models (Ding, 2014, Jiang and Ding, 2016). Bayesian
estimation also allows for a straightforward inclusion of random utility parameters.
For completeness, we also discuss the possibility to formulate robust multinomial choice
models within an error components mixed logit (EC-MXL) framework (Walker et al.,
2007). Typically, EC-MXL models are formulated using independent normal error com-
ponents. In theory, it is possible to replace these independent normal error components
with error components which are jointly distributed according to a heavy-tailed distri-
bution or a flexible non-parametric distribution. However, it is not obvious how such a
model could be estimated. First, identification in EC-MXL models is not trivial, even with
independent normal error components (Walker et al., 2007). Second, it is well known that
logit mixtures with non-normally distributed random parameters estimated via standard
methods such as maximum simulated likelihood are plagued by convergence issues (see
Bhat, 2011, and the literature referenced therein). Furthermore, non-parametric mixing
distributions (see Bansal et al., 2018, Vij and Krueger, 2017, for reviews) suffer from the
curse of dimensionality and require many more parameters to be estimated than MNR and
Gen-MNR.
In principle, it is also possible to formulate a mixed probit model with error components
distributed according to a heavy-tailed distribution within the framework presented by
Bhat and Lavieri (2018). However, introducing error components which follow a heavy-
tailed distribution into mixed probit would require the estimation of a large number of
parameters, including a full covariance matrix for the Gaussian kernel error distribution
as well as scale and shape parameters for the heavy-tailed error component distributions.
It is likely that theoretical and empirical identification in such a model would prove prob-
lematic, especially with cross-sectional data.3

In sum, unlike possible extensions of logit and probit mixtures with error components,
MNR and Gen-MNR are parsimonious, tractable and computationally efficient methods

2In spite of advances in computational hardware, computational efficiency remains an important issue in
the estimation of behavioural and statistical models. In fact, computational efficiency takes on heightened
importance, as datasets contain increasingly larger numbers of observations, alternatives and predictors. It
should also be kept in mind that the ability of estimate complex discrete choice models is not solely due to
advances in computational hardware but rather due to carefully crafted estimation algorithms, which take
advantage of modern technology.

3A similar argumentation holds for possible extensions of mixed probit with error components dis-
tributed according to a flexible semi-parametric distribution such the power series transformation distribu-
tion presented in Fosgerau and Mabit (2013). Such a model would include many more parameters than
MNR and Gen-MNR, and identification is likely to prove difficult, especially with cross-sectional data.
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for the robust analysis of multinomial choice data. Compared to MNP, MNR has one more
parameter controlling the heavy-tailedness of the kernel error distribution. In Gen-MNR,
the number of additional parameters compared to MNP is strictly less than the number of
alternatives.

3 Model formulations
In this section, we first present the formulations of the MNP, MNR and Gen-MNR mod-
els. Then, we explain how the models can be extended to accommodate random taste
heterogeneity.

3.1 Multinomial probit (MNP)
We consider a standard random utility model in which an agent i = 1, . . . ,N chooses
from a set of J mutually exclusive alternatives. In principle, utility is not identified at an
absolute level. Therefore, the MNP model is defined through a J−1-dimensional Gaussian
latent variable vectorwi = {wij, . . . , wi,J−1} (McCulloch and Rossi, 1994). The elements
of wi correspond to the utility differences with respect to the base alternative J. The
observed choice yi ∈ {1, . . . , J} is assumed to arise from

yi(wi) =

{
j if max(wi) = wij > 0

J if max(wi) < 0,
for i = 1, . . . ,N. (1)

The latent variablewi is represented as

wi = Xiβ+ εi with εi ∼ N(0,Σ), for i = 1, . . . ,N. (2)

Here, Xi is a (J − 1) × K matrix of differenced predictors, i.e. Xi =

 Xi1...
Xi,J−1

 =

 X
obs
i1 − Xobs

iJ
...

Xobs
i,J−1 − X

obs
iJ

, where Xobs
ij is the observed attribute vector of alternative j for agent

i. β is a K vector of taste parameters. Σ is a (J − 1) × (J − 1) covariance matrix. The
latent variable representation (2) is not identified, because wi can be multiplied by any
positive scalar c without changing the likelihood (1), i.e. yi(wi) = yi(cwi).4 Therefore,
we must set the scale of the model. Following Burgette and Nordheim (2012), we impose
a trace restriction on Σ with tr(Σ) = J − 1. We implement the trace restriction using
a constrained inverse Wishart prior (Imai and Van Dyk, 2005, Burgette and Nordheim,
2012), which has the following nonstandard form:

P(Σ) ∝ |Λ|−(ρ+J)/2
[
tr(ΛΣ−1)

]−ρ(J−1)/2 1{tr(Σ) = J− 1}, (3)

4For a treatment of the identification issue in the context of MNP estimation, the reader is also directed
to Bunch (1991).
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where 1{·} is an indicator returning one if the condition inside the braces is true and zero
otherwise.
To construct the constrained inverse Wishart prior, we introduce the working parameter
α, which is not identified given the observed data y, but is identified given {y,w}. We
transform w̃i = αwi for i = 1, . . . ,N so that w̃i ∼ N(Xiβ̃, Σ̃) with β̃ = αβ and
Σ̃ = α2Σ. We put an inverse Wishart prior on the intermediate, unidentified quantity Σ̃
so that Σ̃ ∼ IW(ρ, Λ̃). After the transformation Σ = Σ̃/α2 with α2 = tr(Σ̃)/(J − 1), the
implied prior on the tuple {Σ, α2} is

P(Σ, α2) ∝ |Λ|−(ρ+J)/2e−
α20
2α2

tr(ΛΣ−1)(α2)−ρ(J−1)/2+11{tr(Σ) = J− 1}, (4)

where α0 is some positive constant such that Λ̃ = α0Λ. The Jacobian of the transforma-
tion adds a factor proportional to αJ(J−1)−2. The conditional distribution of α2 is

P(α2|Σ) ∝ α20tr(ΛΣ
−1)/χ2ρ(J−1). (5)

Integrating (4) over (5) yields (3).
To complete the specification of the MNP model, we specify the prior β ∼ N(0,B−1

0 ).
It is known that predictions under the Bayesian formulation of the MNP model can be
sensitive to the selection of the base alternative J (Burgette and Nordheim, 2012).

3.2 Multinomial robit (MNR)
The MNR model assumes a t-distributed kernel error for the latent variablewi, i.e.

wi = Xiβ+ εi with εi ∼ t(0,Σ, ν), for i = 1, . . . ,N, (6)

where Σ is a (J−1)× (J−1) covariance matrix and ν is scalar degree of freedom (DOF).
The t-distribution has the following normal mixture representation (Ding, 2014):

εi ∼ N(0,Σ/qi) with qi ∼ χ2ν/ν, for i = 1, . . . ,N. (7)

The latent variables q = {q1, . . . , qN} allow for heavy-tailedness in the distribution of
the kernel error by increasing the variability of εi across different i. Figure 1 illustrates
the relationship between the χ2-distribution (which controls the distribution of q) and a
t-distribution (which controls the distribution of ε) with unit variance for different DOF
ν. For small ν < 30, the t-distribution exhibits heavy tails. As ν approaches ∞, the
t-distribution converges to the normal distribution. We use the same priors for β and Σ
as in MNP and also introduce the working parameter α. In addition, we put a Gamma
prior on ν with ν ∼ Gamma(α0, β0). Predictions under the Bayesian formulation of the
MNR model can be sensitive to the selection of the base alternative in the same way as
predictions under the Bayesian formulation of the MNP model.
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Figure 1: Relationship between χ2- and t-distributions for different degrees of freedom ν

3.3 Generalised multinomial robit (Gen-MNR)
We generalise MNR by allowing for different marginal heavy-tailedness in the distribution
of the latent variable wi. The Gen-MNR model assumes that the kernel error of wi is
drawn from a non-elliptically contoured t-distribution (NECT; Jiang and Ding, 2016).
We have

wi = Xiβ+ εi with εi ∼ NECTp(0,Σ,ν), for i = 1, . . . ,N, (8)

whereΣ is a (J−1)×(J−1) covariance matrix andν = {ν1, . . . , νM} is aM vector of DOF
with 1 < M ≤ J − 1. p = {p1, . . . , pM} is a M vector giving the number of dimensions
that are associated with each DOF νm. We have pm ∈ N \ {0} and

∑M
m=1 pm = J − 1.

The NECT distribution has the following normal mixture representation (Jiang and Ding,
2016):

εi = Q
−1/2
i Σ1/2Zi, Zi ∼ N(0, IJ−1), for i = 1, . . . ,N, (9)

whereQi = diag(qi1Ip1 , . . . , qiMIpM} is a (J − 1)× (J − 1) block-diagonal matrix with
qim ∼ χ2νm/νm for m = 1, . . . ,M. Il is a l × l identity matrix. Each marginal compo-
nent of a NECT-distributed random variable follows a univariate t-distribution with the
respective DOF, i.e. if ε ∼ NECTp(0,Σ,ν), then εj ∼ t(0, Σjj, νm(j)), where m(j) maps
dimension j onto its associated DOF. In the rest of this work, we assume that M = J − 1
without loss of generality. The Gen-MNR model uses the same prior distributions as the
MNR model and also includes the working parameter α. We let νj ∼ Gamma(α0, β0) for
j = 1, . . . , J − 1. Predictions of the Gen-MNR model can be sensitive to the selection of
the base alternative in the same way as predictions of the MNP and MNR models.

3.4 Extension: Random taste parameters
MNP, MNR and Gen-MNR can be extended hierarchically to accommodate random taste
heterogeneity. We refer to the resulting models as mixed MNP, MNR and Gen-MNR
(henceforth, M-MNP, M-MNR, M-Gen-MNR). In M-MNP, the latent utility differences
are represented as

wi = Fiβ+Diγi + εi with εi ∼ N(0,Σ), for i = 1, . . . ,N. (10)
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Here, Fi and Di are matrices of differenced predictors pertaining to fixed, generic taste
parameters β and distributed, individual-specific taste parameters γi, respectively. Fi
and Di are (J − 1) × K and (J − 1) × L matrices, respectively. β and γi are K and L
vectors, respectively. We assume that γi ∼ N(η,Ω) with Ω = diag(ω1, . . . ,ωL) for
i = 1, . . . ,N. We let η ∼ N(0,C0) and ωl ∼ IG

(
κ
2
, κλl

)
with λl ∼ Gamma

(
1
2
, 1
δ2l

)
for

l = 1, . . . , L. IG denotes an inverse Gamma distribution, and λl is a nuisance parameter.
The induced prior on ωl is a weakly-informative half-t prior (Gelman et al., 2006, Wand
et al., 2011). The formulations of M-MNR and M-Gen-MNR are developed analogously.5

4 Inference and implementation details
For the estimation of the MNP, MNR and Gen-MNR models as well as their mixed coun-
terparts, we employ Markov chain Monte Carlo methods in the form of Gibbs sampling
(Robert and Casella, 2013). The sampling schemes for MNP, MNR and Gen-MNR are
presented in Algorithms 1, 2 and 3, respectively. Algorithm 1 is based on the Gibbs
samplers proposed by Burgette and Nordheim (2012) and Imai and Van Dyk (2005). Al-
gorithms 2 and 3 are extensions of Algorithm 1. Whereas Algorithm 2 incorporates ele-
ments of the Gibbs sampler proposed by Ding (2014) for the robust Heckman selection
model, Algorithm 3 incorporates elements of the Gibbs sampler proposed by Jiang and
Ding (2016) for the multivariate robit model. Algorithm 4 describes a Gibbs sampler for
the mixed MNP model. The algorithm is a straightforward extension of Algorithm 1. The
estimation algorithms of mixed MNR and mixed Gen-MNR are developed analogously.6

All samplers involve data augmentation (Tanner and Wong, 1987) to facilitate their con-
struction. The central idea of Bayesian data augmentation is to treat latent variables as
unknown model parameters, which are imputed in additional sampling steps. Each of the
samplers uses the data augmentation scheme developed by Albert and Chib (1993) and
McCulloch and Rossi (1994) to impute the latent variable w (see Appendix A.1 for de-
tails). The samplers for the MNR and Gen-MNR models additionally incorporate the data
augmentation schemes devised by Ding (2014) and Jiang and Ding (2016), respectively,
to impute the latent variable q. Data augmentation circumvents complex likelihood cal-
culations in the estimation of the MNP, MNR and Gen-MNR models. This is because
conditional on w and q (if applicable), the models reduce to standard Bayesian linear
models.
Following Imai and Van Dyk (2005), we leverage marginal data augmentation (MDA;
Van Dyk and Meng, 2001, Van Dyk, 2010) to increase the rate of convergence of the
MCMC algorithms. The central idea of MDA is to marginalise out the working pa-
rameter α, which is not identified given the observed data y, but is identified given the
augmented data {y,w}, in some of the conditional updates of the model parameters in
order to improve mixing of the Markov chains. Imai and Van Dyk (2005) argue that

5In this paper, we restrict our attention to normal representations of unobserved heterogeneity. As MNP,
MNR and Gen-MNR are embedded into a Bayesian inferential framework, more flexible semiparametric
representations of unobserved heterogeneity can be incorporated into the models using the methods dis-
cussed in Krueger et al. (2020).

6To reduce the notational burden in the description of Algorithm 4, we assume that there is exactly one
observation per individual. However, in our subsequent applications, we account for the panel structure of
the data.
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because α2 is assigned a distribution with positive variance in (5), the marginal model∫
P(y,w|θ, α)p(α|θ)dα is more diffuse and thus mixes faster than the conditional model
P(y,w|θ, α).
The full conditional distribution of ν in the MNR model as well as the full conditional
distributions of νj and qij in the Gen-MNR model are nonstandard. To draw from these
intricate distributions, we use Metropolised Independence samplers (Liu, 2008) with ap-
proximate Gamma proposals, as devised by Ding (2014) and Jiang and Ding (2016) (see
Appendices A.2 and A.3 for details).
We implement the MCMC algorithms for all models considered in this paper in Julia
(Bezanson et al., 2017).7 Draws from the univariate truncated normal distribution are
generated using a combination of inverse transform sampling and rejection sampling with
a Rayleigh proposal (Botev and l’Ecuyer, 2016).
In the subsequent applications, the Gibbs samplers are executed with a single chain con-
sisting of 100,000 draws including a warm-up period of 50,000 draws. A thinning factor
of 10 is applied to the post warm-up draws. Convergence is assessed with the help of the
potential scale reduction factor (Gelman et al., 1992).
Predictive choice distributions can be obtained via simulation at the estimated posterior
means of the model parameters. For MNP and M-MNP, choice probabilities are calculated
using the GHK simulator (Hajivassiliou et al., 1996, Train, 2009). For all other models,
choice probabilities are obtained using frequency simulators (Lerman and Manski, 1981,
Geweke et al., 1994).

5 Simulation study
We conduct a simulation study consisting of two examples to investigate the properties of
the proposed models and their estimation methods. The simulation study has two specific
objectives. First, we aim to assess the ability of the proposed Gibbs samplers to recover
model parameters in finite samples. Second, we aim to quantify the effects of ignoring
non-normality and different marginal heavy-tailedness of the kernel error distribution on
fit and elasticity estimates.

5.1 Example I: Data generated according to MNR model
In the first example, data are generated according to the MNR model. We letN = 10, 000

and J = 4. Furthermore, we set β = (−1, 1,−1, 1,−1)>, Σ =

1.0 0.3 0.0

0.3 1.0 0.3

0.0 0.3 1.0

 and

ν = 2. Here, the first three predictors are alternative-specific constants. The remaining
predictors are alternative-specific attributes. We draw Xobs

ijk ∼ U(0, 5) for i = 1, . . . ,N,
j = 1, . . . , J and k = 4, 5. The fourth alternative is set as reference alternative in data
generation and model estimation. For the sake of simplicity, we do not perform a search
over the specification of the reference alternative.
The goal of Bayesian estimation is to infer the posterior distribution of the model param-
eters. The posterior distribution captures the knowledge and uncertainty about the dis-

7The estimation code is available at https://github.com/RicoKrueger/robit.
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Algorithm 1 Gibbs sampler for the MNP model
Step 0: Initialise parametersw, β, Σ, α.
for t = 1, . . . , T do

Step 1: Updatew, α2.
for i = 1, . . . ,N do

for j = 1, . . . , J− 1 do
Draw wij|wi,−j, · as explained in Appendix A.1.

end for
end for
Draw α2|· ∼ tr(ΛΣ−1)/χ2ρ(J−1).
Set w̃ = αw.
Step 2: Update β̃, α2.

Set B̂ =
(∑N

i=1X
>
i Σ

−1Xi + B0

)−1
.

Set β̂ = B̂
(∑N

i=1X
>
i Σ

−1w̃i

)
.

Drawα2|· ∼
(∑N

i=1(w̃i − Xiβ̂)
>Σ−1(w̃i − Xiβ̂) + β̂

>
B0β̂+ tr(ΛΣ−1)

)
/χ2(N+ρ)(J−1).

Draw β̃|· ∼ N(β̂, α2B̂).
Step 3: Update Σ̃.
Set z̃i = w̃i − Xiβ̃.
Draw Σ̃|· ∼ IW

(
ρ+N, Λ̃+

∑N
i=1 z̃iz̃

>
i

)
.

Set α2 = tr(Σ̃)/(J− 1).
Set Σ = Σ̃/α2,w = w̃/α, β = β̃/α.

end for
return β, Σ

tribution of the model parameters, conditional on the evidence provided by the observed
data. Figure 2 shows the marginal posterior distribution of the DOF parameter ν of the
MNR model along with the corresponding true parameter value used in the generation of
the data. It can be seen that Algorithm 2 performs well at recovering the DOF parameter
of the MNR model, because the true parameter value is well contained within the 95%
central credible interval (i.e. the region in which the unknown parameter falls with 95%
probability).8 From Figures 4 and 5 in Appendix B.1, we conclude that Algorithm 2 also
does an excellent job at recovering the remaining parameters β and Σ.
Table 1 compares the in-sample fit of the MNP, MNR and Gen-MNR models in terms of
the quadratic loss (QL), which is defined as QL =

∑N
i=1

∑J
j=1 (pnj − p̂nj)

2, where pnj is
the true choice probability simulated at the true parameter values, and where p̂nj is the cor-
responding fitted choice probability. MNR offers the best fit to the data, closely followed
by Gen-MNR. A possible explanation for the inability of Gen-MNR to perform exactly
as well as MNR is that the estimation of multiple DOF parameters incurs a greater simu-
lation error. Nonetheless, both MNR and Gen-MNR outperform the MNP by substantial
margins.

8The bounds of the 95% central credible interval are given by the 2.5%- and 97.5%-quantiles of the
posterior.
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Finally, we contrast the elasticity estimates of the three models in several scenarios. In
Table 2, we enumerate the aggregate arc elasticity estimates of the three models along
with the corresponding true aggregate arc elasticities for those two scenarios in which we
observe the most pronounced differences between the three models. In the first scenario
reported in Table 2, we increase the first alternative-specific attribute of the first alternative
by 10%. MNR and Gen-MNR produce direct aggregate arc elasticity estimates, which
are closer to the truth than the direct aggregate arc elasticity estimates of MNP. In the
considered scenario, the true direct aggregate arc elasticity is 1.68. While both MNR
and Gen-MNR produce direct elasticity estimates of 1.70, MNP model a lower direct
elasticity estimate of 1.60. In the second scenario reported in Table 2, we increase the first
alternative-specific attribute of the third alternative by 10%. Again, we find that MNR and
Gen-MNR produce less biased elasticity estimates than MNP. The true direct aggregate
arc elasticity in the considered scenario is 1.67. While both MNR and Gen-MNR produce
direct elasticity estimates of 1.65, MNP yields a lower direct elasticity estimate of 1.56.

1.8 2.0 2.2 2.4
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Truth
Posterior mean

95% credible interval bounds
Posterior

Figure 2: Estimated posterior distribution and true value of the degree of freedom param-
eter ν for the MNR model in simulation example I

Model Loss

MNP 70.1
MNR 2.2
Gen-MNR 4.2

Table 1: Quadratic loss in simulation example I
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Scenario Model Alt. 1 Alt. 2 Alt. 3 Alt. 4

xobs
1 for j = 1 increased by 10% Truth 1.68 -0.29 -0.31 -0.35

MNP 1.60 -0.26 -0.29 -0.33
MNR 1.70 -0.28 -0.30 -0.34
Gen-MNR 1.70 -0.28 -0.31 -0.34

xobs
1 for j = 3 increased by 10% Truth -0.30 -0.28 1.67 -0.33

MNP -0.29 -0.26 1.56 -0.31
MNR -0.31 -0.28 1.65 -0.33
Gen-MNR -0.32 -0.28 1.65 -0.33

Table 2: Aggregate arc elasticities in simulation example I

5.2 Example II: Data generated according to Gen-MNR
In the second example, data are generated according to the Gen-MNR model. The data
generating process is essentially same as in Example I, with the only difference we allow
for different marginal heavy-tailedness by setting ν = (5, 3, 1)>.
Figure 3 shows the marginal posterior distributions of the DOF parameters ν1, ν2 and
ν3 along with their corresponding true parameter values. It can be seen that Algorithm 3
performs well at recovering the DOF parameters of Gen-MNR, because the true parameter
values are contained within the 95% central credible intervals. From Figures 6 and 7
in Appendix B.2, we further conclude that Algorithm 3 also does an excellent job at
recovering β and Σ.
Table 3 compares the in-sample fit of MNP, MNR and Gen-MNR in terms of the quadratic
loss between the predicted and the true choice probabilities. As expected, Gen-MNR
provides the best fit to the data, followed by MNR. Both MNR and Gen-MNR outperform
MNP by substantial margins.
Again, we compare the elasticity estimates of the three models in several scenarios. In Ta-
ble 4, we enumerate the aggregate arc elasticity estimates of the three models along with
the corresponding true aggregate arc elasticities for those two scenarios in which we ob-
serve the most pronounced differences between the three models. Unsurprisingly, the two
selected scenarios involve modifications to attributes of the third alternative, because the
heavy-tailedness of the kernel error distribution underlying the considered data generating
process is most pronounced in the dimension pertaining to the utility differences between
the third alternative and the base alternative. In the first scenario reported in Table 4,
we increase the first alternative-specific attribute of the third alternative by 10%. MNR
and Gen-MNR yield direct aggregate arc elasticity estimates, which are much closer to
the truth than the direct aggregate arc elasticity estimates of MNP. In the considered sce-
nario, the true direct aggregate arc elasticity is 1.25. While MNR and Gen-MNR produce
direct elasticity estimates of 1.22 and 1.24, MNP gives a considerably lower direct elas-
ticity estimate of 1.08. In the second scenario reported in Table 4, we increase the second
alternative-specific attribute of the third alternative by 10%. In this scenario, only Gen-
MNR is able to produce an unbiased direct aggregate arc elasticity estimate. Gen-MNR
gives a direct aggregate arc elasticity estimate −0.65, which is identical to the ground
truth. By contrast, both MNP and MNR produce biased direct aggregate arc elasticity
estimates of −0.70.
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Figure 3: Estimated posterior distributions and true values of the degree of freedom pa-
rameters ν1, ν2 and ν3 for Gen-MNR in simulation example II

Model Loss

MNP 79.4
MNR 16.0
Gen-MNR 2.5

Table 3: Quadratic loss in simulation example II

Scenario Model Alt. 1 Alt. 2 Alt. 3 Alt. 4

xobs
1 for j = 3 increased by 10% Truth -0.34 -0.29 1.25 -0.34

MNP -0.31 -0.26 1.08 -0.30
MNR -0.34 -0.28 1.22 -0.33
Gen-MNR -0.35 -0.29 1.24 -0.35

xobs
2 for j = 3 increased by 10% Truth 0.18 0.15 -0.65 0.18

MNP 0.21 0.17 -0.70 0.20
MNR 0.20 0.16 -0.70 0.19
Gen-MNR 0.19 0.15 -0.65 0.18

Table 4: Aggregate arc elasticities in simulation example II

6 Case study
In this section, we apply MNP, MNR and Gen-MNR as well as their mixed counterparts
M-MNP, M-MNR and M-Gen-MNR in a case study on transport mode choice behaviour.

6.1 Data and utility specification
Revealed preference data for the case study are sourced from the London Passenger Mode
Choice (LPMC) dataset, which was compiled by Hillel et al. (2018). The LPMC dataset
consists of trip records from the London Travel Demand Survey, which was conducted
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from 2012 to 2015. For each trip record, Hillel et al. (2018) imputed tailored choice
sets including the attributes of the chosen and the non-chosen alternatives using an online
directions application programming interface. For more information about the LPMC
dataset, the reader is directed to Hillel et al. (2018). As the LPMC dataset is a revealed
preference mode choice dataset based on a household travel survey, we conjecture that
the data contain outlying observations due to aberrant behaviour, misreporting and mis-
classification.
In this case study, we restrict our analysis to home-based trips reported by individuals
who are at least 12 years old. The original dataset contains 58,584 of such observations
from 26,904 individuals. For our analysis, we consider 9,658 observations from 4,000
randomly selected individuals for model training. In addition, we randomly select one
observation each from an additional set of 1,000 randomly selected individuals for out-
of-sample validation. There are four mode choice alternatives, namely walking, cycling,
transit and driving. In the training data, the observed market shares are 15.7%, 3.5%,
37.7% and 43.2%, respectively. In the test data, the observed market shares are 15.2%,
3.4%, 40.0% and 41.5%, respectively.
The considered specifications of the systematic utilities are shown in Table 5. The variable
“traffic variability” is a measure of the driving travel time uncertainty for the given origin-
destination pair. It is defined as the difference between the travel times in a pessimistic
traffic scenario and in an optimistic one divided by the travel time in a typical, best-guess
traffic scenario (see Hillel et al., 2018).
In the mixed models, tastes with respect to in-vehicle travel time and traffic variabil-
ity are assumed to be normally distributed. We performed a specification search with a
primary focus on tractability to determine which taste parameters to treat as randomly dis-
tributed. Our main goal in this case study is to demonstrate that random parameters can
be straightforwardly included in MNR and Gen-MNR. We do not seek to find a definitive
utility specification for M-MNP, M-MNR and M-Gen-MNR.
The drive alternative is set as reference alternative in the estimation of all models. We
performed a search over the specification of the reference alternative but found no sub-
stantive differences in parameter estimates, in-sample fit and out-of-sample predictive
accuracy for different specifications of the reference alternative.
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Variable Walk Cycle Transit Drive

Alternative-specific constants βasc, cycle βasc, transit βasc, drive

Alternative-specific attributes
Cost [GBP] βcost βcost
Out-of-vehicle time (ovtt) [hours] βovtt βovtt βovtt

In-vehicle travel time (ivtt) [hours] β
(∗)
ivtt β

(∗)
ivtt

No. of transfers βtransfers

Traffic variability (tv) β
(∗)
tv

Individual- and context-specific attributes
Female traveller βfemale, cycle βfemale, transit βfemale, drive
Traveller age < 18 years βage<18 years, transit βage<18 years, drive
Traveller age ≥ 65 years βage≥65 years, transit βage≥65 years, drive
Travel during winter period (Nov–Mar) βwinter, cycle
No. of household cars βcars, drive

(∗) Parameter assumed to be normally distributed in mixed models.

Table 5: Utility specifications considered in case study

6.2 Results
6.2.1 In-sample fit and out-of-sample predictive ability

Table 6 compares the in-sample fit and the out-of-sample predictive accuracy of the MNP,
MNR and Gen-MNR models as well as their mixed counterparts in terms of the log-
likelihood evaluated at the posterior means of the model parameters and the Akaike infor-
mation criterion (AIC).
First, we consider the performance of MNP, MNR and Gen-MNR. Both MNR and Gen-
MNR produce substantially higher log-likelihood values on the training data than MNP.
Whereas MNP returns a log-likelihood of −8295.6, MNR and Gen-MNR give log-likelihood
values of −8099.7 and −8090.0, respectively, on the training data. Remarkably, with just
one more parameter, MNR outperforms MNP by nearly 200 log-likelihood points on the
training data. Both the log-likelihood values and AIC indicate that MNR and Gen-MNR
also exhibit better out-of-sample predictive than MNP. Having two more parameters than
MNR, Gen-MNR produces marginally better log-likelihood values on the training and test
data than MNR. Compared to MNR, Gen-MNR gives a lower AIC value on the training
data and a negligibly higher AIC value on the training data. In other words, Gen-MNR is
able to offset its higher complexity with superior in-sample fit.
Next, we consider the performance of M-MNP, M-MNR and M-Gen-MNR. M-MNR and
M-Gen-MNR markedly outperform M-MNP in terms of in-sample fit and also exhibit
superior out-of-sample predictive accuracy. With just one additional parameter, M-MNR
outperforms M-MNP by more than 100 log-likelihood points on the training data. M-Gen-
MNR exhibits better in-sample fit and out-of-sample predictive accuracy than M-MNR
due to its more flexible kernel error distribution. Therefore, we conclude that the benefits
of the more flexible kernel error distributions underlying the formulations of MNR and
Gen-MNR are maintained in the presence of random heterogeneity.
Unsurprisingly, the mixed models produce higher log-likelihood values on the training
data than their non-mixed counterparts, since the former account for the serial correla-
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tion across choices made by the same individual. However, the log-likelihood values on
test data indicate that the mixed models overfit the training data. The observation that
the use of mixed random utility models can result in overfitting in applications to panel
data is consistent with Cherchi and Cirillo (2010) and Zhao et al. (2020). Similarly, in
cross-sectional settings, Wang et al. (2021) find that mixed random utility models offer
poorer predictive performance than non-mixed random utility model. The poor predictive
performance of the mixed models could be due to the normal heterogeneity distribution.
However, recent research suggests that more flexible heterogeneity distributions may not
result in substantial gains in predictive accuracy (Krueger et al., 2020).

No. of Log-lik. AIC
Model parameters Train Test Train Test

MNP 23 -8295.6 -962.0 16637.2 1970.1
MNR 24 -8099.7 -955.6 16247.4 1959.2
Gen-MNR 26 -8090.0 -954.3 16232.0 1960.6

M-MNP 25 -7099.4 -1055.3 14248.8 2160.6
M-MNR 26 -6982.2 -1028.1 14016.3 2108.2
M-Gen-MNR 28 -6970.3 -1027.2 13996.6 2110.3

Table 6: In-sample fit and out-of-sample predictive ability in case study

6.2.2 Parameter estimates

Table 7 presents the estimates of the parameters of the MNP, MNR and Gen-MNR models.
For each parameter, we report the posterior mean, the posterior standard deviation and the
bounds of the 95% credible interval. The parameter estimates for M-MNP, M-MNR and
M-Gen-MNR are reported in Appendix C.
First, we examine the estimates of the DOF parameters in MNR and Gen-MNR. For
both models, we find evidence of heavy-tailedness in the kernel error distribution. For
instance, the posterior mean of the generic DOF parameter ν of MNR is 2.230, which
is indicative of substantial heavy-tailedness in comparison with a Gaussian kernel error
distribution (see Figure 1). We detect pronounced and distinct marginal heavy-tailedness
in Gen-MNR. Heavy-tailedness is most substantial for the utility differences involving
the under-represented walking and cycling alternatives. The posterior mean of the utility
differences associated with the walking and driving is 4.677, while the posterior mean
of the utility differences associated with the cycling and driving is 1.192. By contrast,
tails are only moderately heavy for the utility differences between the transit and the
drive alternatives, since the posterior mean of the associated DOF parameter is 18.496.
The credible intervals of the three DOF parameters of Gen-MNR also do not overlap,
which indicates that heavy-tailedness in each dimension of the kernel error distribution is
statistically different.
Next, we compare the estimates of the taste parameters β. Since the scale of β is not nec-
essarily the same in each of the three models, we contrast the sensitivities to alternative-
specific attributes in terms of their implied willingness to pay (WTP). WTP indicators
are scale-free and allow for a money-metric representation of sensitivities. We obtain the
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posterior distribution of each WTP indicator by taking the ratio of the non-price coeffi-
cient of interest and the price coefficient at every posterior sample. Table 8 summarises
the posterior distributions of the WTP indicators. We observe that the mean WTP for
reductions in out-of-vehicle and in-vehicle time is slightly larger in MNR and Gen-MNR
than in MNP. To be precise, the mean WTP values for reductions in out-of-vehicle time
is 32.70 GBP/h, 37.03 GBP/h and 36.17 GBP/h, and the mean WTP value for reductions
in in-vehicle time is 19.26 GBP/h, 22.14 GBP/h, 21.54 GBP/h in MNP, MNR and Gen-
MNR, respectively. However, the locations of the credible intervals of the WTP indicators
suggest that the posterior distributions of the WTP indicators overlap substantially, which
in turn implies that the three models do not produce significantly different valuations of
in-vehicle and out-of-vehicle travel time.9 Also, the posterior distributions of the WTP
indicators for reductions in transfers and traffic variability resemble each other closely,
which suggests that the three models do not produce significantly different valuations of
transfers and traffic variability.10

The models also provide insights into the influence of individual and context-specific
attributes on mode choice propensities. For example, all models suggest that female trav-
ellers are relatively less likely to cycle and relatively more likely to use transit, compared
to walking. Whereas MNP indicates a statistically significant relationship between female
gender and the propensity to use the driving mode over walking, MNR and Gen-MNR do
not suggest that this relationship is statistically significant, because the 95% central cred-
ible intervals of the respective parameters include zero. In all models, old age increases
the propensities to use transit and the driving mode over walking. In addition, all models
indicate that travel during the winter months reduces the propensity to cycle, compared to
walking. According to all models, higher levels of car ownership increase the propensity
to select the driving mode over walking.

9The WTP estimates for reductions in-vehicle travel time appear somewhat high compared to recom-
mended appraisal values for the UK. According to Batley et al. (2019), the recommended appraisal values
of the value of travel time is 11.21 GBP/h for commute trips, 5.12 GBP/h for all other non-work trips, and
18.23 GBP/h for employees’ business trips. However, the values reported in Batley et al. (2019) are derived
from an entirely different dataset than ours.

10As explained in Section 6.1, the attribute traffic variability is a measure of the travel time uncertainty
for a given origin-destination pair. Travel time uncertainty is a fundamental determinant of travel behaviour
and a pivotal quantity in the economic appraisal of transport projects (Carrion and Levinson, 2012). A
traffic variability of zero indicates perfectly dependable travel times, and any value above zero indicates that
travel times vary from day to day. For a given best-guess travel time, a higher traffic variability indicates
less reliable travel times for the given origin-destination pair. Consequently, WTP for reductions in traffic
variability can be interpreted as WTP for improvements in travel time dependability. For example, the Gen-
MNR model suggests that on average, travellers are willing to pay 2.12 GBP for a 10% reduction in traffic
variability.
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Algorithm 2 Gibbs sampler for the MNR model
Step 0: Initialise parametersw, q, β, Σ, ν.
for t = 1, . . . , T do

Step 1: Update q.
for i = 1, . . . ,N do

Set zi = wi − Xiβ.
Draw qi|· ∼ χ2ν+J−1/

(
z>i Σ

−1zi
)
.

end for
Step 2: Update ν.
Calculate α∗, β∗ as explained in Appendix A.2.
Draw proposal ν ′ ∼ Gamma(α∗, β∗).
Accept the proposal with probability min {1, exp (l(ν ′) − h(ν ′) − l(ν) + h(ν))},

where l(ν) and h(ν) are defined in (13) and (14), respectively.
Step 3: Updatew, α2.
for i = 1, . . . ,N do

for j = 1, . . . , J− 1 do
Draw wij|wi,−j, · ∼ TN(µij, τ

2
ij) as explained in Appendix A.1.

end for
end for
Draw α2|· ∼ tr(ΛΣ−1)/χ2ρ(J−1).
Set w̃ = αw.
Step 4: Update β̃, α2.

Set B̂ =
(∑N

i=1 qiX
>
i Σ

−1Xi + B0

)−1
.

Set β̂ = B̂
(∑N

i=1 qiX
>
i Σ

−1w̃i

)
.

Drawα2|· ∼
(∑N

i=1 qi(w̃i − Xiβ̂)
>Σ−1(w̃i − Xiβ̂) + β̂

>
B0β̂+ tr(ΛΣ−1)

)
/χ2(N+ρ)(J−1).

Draw β̃|· ∼ N(β̂, α2B̂).
Step 5: Update Σ̃.
Set z̃i = w̃i − Xiβ̃.
Draw Σ̃|· ∼ IW

(
ρ+N, Λ̃+

∑N
i=1 qiziz

>
i

)
.

Set α2 = tr(Σ̃)/(J− 1).
Set Σ = Σ̃/α2,w = w̃/α, β = β̃/α.

end for
return β, Σ, ν
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Algorithm 3 Gibbs sampler for the Gen-MNR model
Step 0: Initialise parametersw, q, β, Σ, α, ν.
for t = 1, . . . , T do

Step 1: Update q.
for i = 1, . . . ,N do

for j = 1, . . . , J− 1 do
Calculate α∗, β∗ as explained in Appendix A.3.
Draw proposal q ′ij ∼ Gamma(α∗, β∗).
Accept the proposal with probability

min
{
1, exp

(
f(q ′ij) − g(q

′
ij) − f(qij) + g(qij)

)}
, where f(qij) and g(qij) are de-

fined in (19) and (20), respectively.
end for

end for
Step 2: Update ν.
for j = 1, . . . , J− 1 do

Calculate α∗, β∗ as explained in Appendix A.2.
Draw proposal ν ′j ∼ Gamma(α∗, β∗).
Accept the proposal with probability min

{
1, exp

(
l(ν ′j) − h(ν

′
j) − l(νj) + h(νj)

)}
,

where l(νj) and h(νj) are defined in (13) and (14), respectively.
end for
Step 3: Updatew, α2.
for i = 1, . . . ,N do

for j = 1, . . . , J− 1 do
Draw wij|wi,−j, · ∼ TN(µij, τ

2
ij) as explained in Appendix A.1.

end for
end for
Draw α2|· ∼ tr(ΛΣ−1)/χ2ρ(J−1).
Set w̃ = αw.
Step 4: Update β̃, α2.
SetQi = diag(qi).

Set B̂ =
(∑N

i=1X
>
i Q

1/2
i Σ

−1Q
1/2
i Xi + B0

)−1
.

Set β̂ = B̂
(∑N

i=1X
>
i Q

1/2
i Σ

−1Q
1/2
i w̃i

)
.

Drawα2|· ∼
(∑N

i=1(w̃i − Xiβ̂)
>Q

1/2
i Σ

−1Q
1/2
i (w̃i − Xiβ̂) + β̂

>
B0β̂+ tr(ΛΣ−1)

)
/χ2(N+ρ)(J−1).

Draw β̃|· ∼ N(β̂, α2B̂).
Step 5: Update Σ̃.
Set z̃i = w̃i − Xiβ̃.
Draw Σ̃|· ∼ IW

(
ρ+N, Λ̃+

∑N
i=1Q

1/2
i ziz

>
i Q

1/2
i

)
.

Set α2 = tr(Σ̃)/(J− 1).
Set Σ = Σ̃/α2,w = w̃/α, β = β̃/α.

end for
return β, Σ, ν
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Algorithm 4 Gibbs sampler for the mixed MNP model
Step 0: Initialise parametersw, β, γ, η,Ω, λ, Σ, α.
for t = 1, . . . , T do

Step 1: Updatew, α2.
for i = 1, . . . ,N do

for j = 1, . . . , J− 1 do
Draw wij|wi,−j, · ∼ TN(µij, τ

2
ij) as explained in Appendix A.1.

end for
end for
Draw α2|· ∼ tr(ΛΣ−1)/χ2ρ(J−1).
Set w̃ = αw, γ̃ = αγ, η̃ = αη.
Step 2: Update β̃, α2.
Set z̃i = w̃i −Diγ̃i.

Set B̂ =
(∑N

i=1 F
>
i Σ

−1Fi + B0

)−1
.

Set β̂ = B̂
(∑N

i=1 F
>
i Σ

−1z̃i

)
.

Drawα2|· ∼
(∑N

i=1(z̃i − Fiβ̂)
>Σ−1(z̃i − Fiβ̂) + β̂

>
B0β̂+ tr(ΛΣ−1)

)
/χ2(N+ρ)(J−1).

Draw β̃|· ∼ N(β̂, α2B̂).
Step 3: Update γ̃, α2.
Set z̃i = w̃i − Fiβ̃.
Set Ĉi = (D>i Σ

−1Di +Ω
−1)−1.

Set γ̂i = Ĉ(D
>
i Σ

−1z̃i +Ω
−1η̃).

Drawα2|· ∼
(∑N

i=1

(
(z̃i −Diγ̂i)

>Σ−1(z̃i −Diγ̂i) + (γ̂i − η̃)
>Ω−1(γ̂i − η̃)

)
+ tr(ΛΣ−1)

)
/χ2(N+ρ)(J−1).

for i = 1, . . . ,N do
Draw γ̃i|· ∼ N(γ̂i, α

2Ĉi).
end for
Set γ = γ̃/α.
Step 4: Update η.
Set Ê = (NΩ−1 +C0)

−1.
Set η̂ = Ê

(∑N
i=1Ω

−1γi

)
.

Draw η|· ∼ N(η̂, Ê).
Step 5: UpdateΩ.
for l = 1, . . . , L do

Drawωl|· ∼ IG
(
κ+N
2
, κλl +

1
2

∑N
i=1(γil − ηl)

2
)

end for
SetΩ = diag ((ω1, . . . ,ωL)).
Step 6: Update λ.
for l = 1, . . . , L do

Draw λl|· ∼ Gamma
(
κ+1
2
, 1
δ2l

+ κ
ωl

)
.

end for
Step 7: Update Σ̃.
Set z̃i = w̃i − Fiβ̃−Diγ̃i.
Draw Σ̃|· ∼ IW

(
ρ+N,Λ+

∑N
i=1 z̃iz̃

>
i

)
.

Set α2 = tr(Σ̃)/(J− 1).
Set Σ = Σ̃/α2,w = w̃/α, β = β̃/α, γ = γ̃/α.

end for
return β, η,Ω, Σ
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Attribute Model Mean Std. dev. [0.025% 0.975%]

Out-of-vehicle travel time [GBP/h] MNP 32.70 4.58 25.34 43.75
MNR 37.03 5.43 28.60 49.42
Gen-MNR 36.17 5.30 27.85 48.62

In-vehicle travel time [GBP/h] MNP 19.26 2.80 14.73 25.68
MNR 22.14 3.26 17.07 29.36
Gen-MNR 21.54 3.26 16.35 29.19

Transfers [GBP/interchange] MNP 1.40 0.40 0.75 2.30
MNR 1.36 0.41 0.66 2.26
Gen-MNR 1.41 0.40 0.76 2.34

Traffic variability [GBP] MNP 22.19 3.35 16.76 30.03
MNR 21.41 3.38 16.13 29.11
Gen-MNR 21.16 3.29 15.97 28.46

Table 8: Willingness-to-pay in case study

6.2.3 Elasticity estimates

Table 9 enumerates the aggregate arc elasticity estimates of MNP, MNR and Gen-MNR
for various policy-relevant scenarios. In what follows, we highlight several noteworthy
differences in the elasticity estimates produced by each of the three models. For example,
the demand for walking is estimated to be more elastic to variations in walking time in
MNR and Gen-MNR than in MNP. The aggregate arc elasticity of walking demand for a
10% reduction in walking time is −1.77 and −1.78 in MNR and Gen-MNR, respectively,
but is only −1.57 in MNP. Innovations such as fast-moving walkways (e.g. Scarinci et al.,
2017) offer widespread reductions in walking times. A policy to support such walkways is
more compelling under the elasticity estimates of MNR and Gen-MNR. The three models
also produce different elasticity estimates for changes in cycling travel times. Whereas
MNP and Gen-MNR give elasticity estimates of −0.97 and −0.86, MNR suggests a con-
siderably higher elasticity estimate of −0.68. For instance, the construction of cycling
superhighways (e.g. Rayaprolu et al., 2020) and stimulation of e-bike uptake (e.g. Dill
and Rose, 2012) can result in widespread decreases in cycling travel times. Compared
to MNP, Gen-MNR suggests a more moderate effect of such interventions on cycling
demand. Likewise, Gen-MNR indicates a weaker effect than MNP but a stronger effect
than MNR of changes in transit out-of-vehicle and in-vehicle travel times on cycling de-
mand. In sum, the elasticity estimates reveal interesting differences in how MNP, MNR
and Gen-MNR capture demand sensitivities. Our analysis of the elasticity estimates aims
to illustrate how different kernel error distribution can produce different and potentially
erroneous policy recommendations.
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Scenario Model Walk Cycle Transit Drive

Cycling out-of-vehicle travel time decreased by 10% MNP 0.00 -0.97 0.06 0.02
MNR 0.00 -0.68 0.02 0.03
Gen-MNR 0.01 -0.86 0.04 0.02

Walking out-of-vehicle travel time decreased by 10% MNP -1.57 0.03 0.52 0.16
MNR -1.77 0.04 0.58 0.16
Gen-MNR -1.78 0.16 0.58 0.16

Driving cost increased by 10% MNP 0.01 0.02 0.05 -0.05
MNR 0.01 0.02 0.05 -0.04
Gen-MNR 0.01 0.03 0.05 -0.05

Driving in-vehicle travel time increased by 10% MNP 0.06 0.12 0.30 -0.30
MNR 0.07 0.21 0.34 -0.33
Gen-MNR 0.07 0.15 0.33 -0.33

Driving traffic variability decreased by 10% MNP 0.14 0.19 0.38 -0.40
MNR 0.13 0.29 0.36 -0.38
Gen-MNR 0.13 0.19 0.35 -0.38

Transit fares increased by 10% MNP 0.08 0.10 -0.13 0.08
MNR 0.08 0.03 -0.12 0.08
Gen-MNR 0.09 0.07 -0.13 0.07

Transit in-vehicle travel time decreased by 10% MNP 0.19 0.29 -0.40 0.26
MNR 0.21 0.10 -0.43 0.29
Gen-MNR 0.21 0.19 -0.43 0.29

Transit out-of-vehicle travel time decreased by 10% MNP 0.34 0.34 -0.45 0.24
MNR 0.43 0.10 -0.49 0.26
Gen-MNR 0.43 0.21 -0.50 0.26

Table 9: Aggregate arc elasticities for MNP, MNR and Gen-MNR in case study

7 Conclusion
Models which are robust to the influence of outlying observations due to aberrant be-
haviour, misreporting and misclassification have received limited attention in discrete
choice analysis. In this paper, we present Bayesian formulations of two robust alternatives
to the multinomial probit (MNP) model. Both alternative models belong to the family of
robit whose kernel error distributions are heavy-tailed t-distributions that moderate the in-
fluence of outlying observations. The first model is the multinomial robit (MNR) model,
in which a single, generic degrees of freedom parameter controls the heavy-tailedness of
the kernel error distribution. The second model, the generalised multinomial robit (Gen-
MNR) model, is based on the non-elliptically contoured multivariate t distribution, which
allows for distinct heavy-tailedness in each dimension of the kernel error distribution. For
both models, we devise gradient- and optimisation-free Gibbs samplers, which also allow
for a straightforward inclusion of random taste parameters.
We contrast MNP, MNR and Gen-MNR as well as their mixed counterparts with random
parameters, M-MNP, M-MNR and M-Gen-MNR, in a simulation study and a case study
on transport mode choice behaviour. The simulation study illustrates the excellent finite-
sample properties of the proposed Bayes estimators. We also show that MNR and Gen-
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MNR produce more exact elasticity estimates if the kernel error distribution underlying
the data generating process is heavy-tailed, i.e. if the choice data contain outliers through
the lens of a non-robust MNP model. In the case study, we demonstrate that both MNR
and Gen-MNR outperform MNP by considerable margins in terms of in-sample fit and
out-of-sample predictive accuracy. Gen-MNR delivers the best in-sample fit and out-of-
sample predictive accuracy due to its more flexible kernel error distribution. We also find
that M-MNR and M-Gen-MNR offer substantially better in-sample fit and out-of-sample
predictive accuracy than M-MNP. In other words, the benefits of the more flexible kernel
error distributions underlying MNR and Gen-MNR persist in the presence of random
heterogeneity.
On the whole, our analysis suggests that Gen-MNR is a useful addition to the choice
modeller’s toolbox due to its robustness properties. In general, Gen-MNR should be
preferred over the previously-studied MNR model because of its more flexible kernel error
distribution. In practice, the non-elliptical contoured t-distribution used in the formulation
of Gen-MNR can also be specified in a way such that one DOF parameter controls the
heavy-tailedness of more than one marginal of the kernel error distribution. Analysts can
exploit this feature of Gen-MNR to achieve more parsimonious model specifications.
Our analysis suggests several directions for future research. First, advances in Bayesian
machine learning can be leveraged to improve the explanatory and predictive powers of
MNR and Gen-MNR. For example, Dirichlet process mixtures can be used to accom-
modate flexible semi-parametric parametric representations of unobserved heterogeneity
(Krueger et al., 2020). Similarly, the horseshoe prior (Carvalho et al., 2010) can be em-
ployed to perform variable selection in large predictor spaces. Furthermore, the system-
atic parts of the latent utility differences could be represented using Bayesian additive
regression trees (BART), which automatically partition large predictor spaces to capture
interaction effects and nonlinearities (Chipman et al., 2010, Kindo et al., 2016). As these
extensions are rooted in the Bayesian inferential paradigm, they can be incorporated into
MNR and Gen-MNR with relative ease. A second direction for future research is to use
Bayesian modelling to automate aspects of the specification of MNR and Gen-MNR. For
example, Burgette et al. (2020) propose a symmetric prior, which obviates the specifica-
tion of a base alternative, for MNP kernel error covariances. Such symmetric priors can
also be developed for MNR and Gen-MNR. Similarly, more diffuse prior formulations for
the covariance of kernel error distributions of MNP, MNR and Gen-MNR can be investi-
gated along the lines of Huang et al. (2013). In addition, a prior can be designed for Gen-
MNR to automatically infer a parsimonious mapping of degrees of freedom parameters
onto utility differences. Finally, a third direction for future research is to formulate robust
discrete choice models based on skew-t-distributions, which can also capture asymmetric
kernel error distributions (Kim et al., 2008, Lee and Mclachlan, 2014).
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A Gibbs sampling details

A.1 Samplingw
To update w, we iteratively sample from univariate truncated normal distributions. We
have

wij ∼ TN(µij, τ
2
ij), for i = 1, . . . ,N, j = 1, . . . , J− 1. (11)

For MNP, µij = X>ijβ+ Σj,−jΣ
−1
−j,−j(wi,−j − Xi,−jβ) and τ2ij = Σjj − Σj,−jΣ

−1
−j,−jΣ−j,j. For

MNR, µij = X>ijβ + Σj,−jΣ
−1
−j,−j(wi,−j − Xi,−jβ) and τ2ij = (Σjj − Σj,−jΣ

−1
−j,−jΣ−j,j)/qi.

For Gen-MNR, µij = X>ijβ +Q
−1/2
ijj Σj,−jΣ

−1
−j,−jQ

1/2
i,−j,−j(wi,−j − Xi,−jβ) and τ2ij = (Σjj −

Σj,−jΣ
−1
−j,−jΣ−j,j)/qij. Here, the index −l denotes the vector without the lth element. For

all models, the constraint on wij is wij ≥ max{0,wi,−j}, if yij = j; wij < 0, if yij = J;
wij ≤ max{0,wij ′}, if yij = j ′ 6= j.

A.2 Sampling ν
The full conditional distribution of ν is nonstandard. Ding (2014) shows that

p(ν|·) ∝ exp
{
Nν

2
log
(ν
2

)
−N log Γ

(ν
2

)
+ (α0 − 1) logν− ξν

}
, (12)

where ξ = β0 +
1
2

∑N
i=1 qi −

1
2

∑N
i=1 logqi. Γ(x) denotes the Gamma function. Ding

(2014) proposes to sample from (12) using a Metropolised Independence sampler (Liu,
2008) with an approximate Gamma proposal. The shape parameter α∗ and the rate pa-
rameter β∗ of the proposal density are obtained as follows. The log conditional density of
ν up to an additive constant is

l(ν) =
Nν

2
log
(ν
2

)
−N log Γ

(ν
2

)
+ (α0 − 1) logν− ξν. (13)

The log density of the Gamma proposal is

h(ν) = (α∗ − 1) logν− β∗ν. (14)

The first and second derivates of l(ν) and h(ν) are

l ′(ν) =
N

2

[
log
(ν
2

)
+ 1−ψ

(ν
2

)]
+
α0 − 1

ν
− ξ, h ′(ν) =

α∗ − 1

ν
− β∗, (15)

l ′′(ν) =
N

2

[
1

ν
−
1

2
ψ ′
(ν
2

)]
+
α0 − 1

ν2
, h ′′(ν) = −

α∗ − 1

ν2
, (16)

where ψ(x) and ψ ′(x) are the di- and trigamma functions, respectively. The mode of
h(ν) is α∗−1

β∗
and the corresponding curvature is (β∗)2

α∗−1
. We numerically find the mode ν∗

of l(ν) and its corresponding curvature l∗ = l ′′(ν∗). Ultimately, we match the modes and
the corresponding curvatures of l(ν) and h(ν) to obtain

α∗ = 1− (ν∗)2l∗, β∗ = −ν∗l∗. (17)
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A.3 Sampling qij
The full conditional distribution of qij is nonstandard. Jiang and Ding (2016) show that

p(qij|·) ∝ exp
{
−
qijuij

2
−
√
qijcij +

νj − 1

2
logqij

}
, (18)

whereuij = νj+(Σ−1)jj(wij−X
>
ijβ)

2 and cij = (wij−X
>
ijβ)
∑

j ′ 6=j

(√
qij ′(Σ

−1)jj ′(wij − X
>
ijβ)

)
.

Jiang and Ding (2016) propose to sample from (18) using a Metropolised Independence
sampler (Liu, 2008) with an approximate Gamma proposal. The shape parameter α∗ and
the rate parameter β∗ of the proposal density are obtained as follows. For νj ≤ 1, we
set α∗ = 1 and β∗ =

uij
2

. For νj > 1, α∗ and β∗ are obtained through matching the
modes and the corresponding curvatures of the target and the proposal densities. The log
conditional density of qij up to an additive constant is

f(qij) = −
qijuij

2
−
√
qijcij +

νj − 1

2
logqij. (19)

The log density of the Gamma proposal is

g(qij) = (α∗ − 1) logqij − β∗qij. (20)

The mode of (20) and its corresponding curvature are α∗−1
β∗

= m∗ij and (β∗)2

α∗−1
= l∗ij, respec-

tively. The first and second derivatives of (19) are

f ′(qij) = −
uij

2
−

cij

2
√
qij

+
νj − 1

2qij
, f ′′(qij) =

cij

4
√
q3ij

−
νj − 1

2q2ij
. (21)

The mode of (19) is m∗ij =

 cij
2
+

√
(
cij
2 )

2
+uij(νj−1)

νj−1

−2

, and the corresponding curvature

is l∗ij = f
′′(m∗ij). After matching the modes and corresponding curvatures of the log target

and the log proposal densities, we obtain

α∗ = 1− (m∗ij)
2l∗ij, β∗ = −m∗ijl

∗
ij. (22)
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B Additional results for the simulation study

B.1 Example I

0.9 1.0 1.1
4

0

2

4

6

8

10

1.1 1.0 0.9
5

0

2

4

6

8

10

Truth
Posterior mean

95% credible interval bounds
Posterior

Figure 4: Estimated posterior distribution and true values of the taste parameters {β4, β5}
for MNR in simulation example I
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Figure 5: Estimated posterior distribution and true values of the unique elements of the
covariance matrix Σ for MNR in simulation example I

B.2 Example II
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Figure 6: Estimated posterior distribution and true values of the taste parameters {β4, β5}
for the Gen-MNR model in simulation example II
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Figure 7: Estimated posterior distribution and true values of the unique elements of the
covariance matrix Σ for the Gen-MNR model in simulation example II

C Parameters estimates of M-MNP, M-MNR and M-Gen-
MNR in case study
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