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Abstract

Mixed logit models with unobserved inter- and intra-individual heterogeneity hier-
archically extend standard mixed logit models by allowing tastes to vary randomly
both across individuals and across choice situations encountered by the same indi-
vidual. Recent work advocates using these models in choice-based recommender
systems under the premise that mixed logit models with unobserved inter- and
intra-individual heterogeneity afford personalised preference estimation and pre-
diction. In this study, we evaluate the ability of mixed logit with unobserved
inter- and intra-individual heterogeneity to produce accurate individual-level pre-
dictions of choice behaviour. Using simulated and real data, we show that mixed
logit models with unobserved inter- and intra-individual heterogeneity do not pro-
vide significant improvements in choice prediction accuracy over standard mixed
logit models, which only account for inter-individual taste variation. We make
these observations even in scenarios with high levels of intra-individual taste vari-
ation and when the number of choice situations per decision-maker is large. Also,
the estimation of mixed logit with unobserved inter- and intra-individual hetero-
geneity requires at least seven times as much computation time as the estimation
of standard mixed logit. Drawing from recent advances in machine learning and
econometrics, we discuss alternative modelling approaches that can capture richer
dependencies between decision-makers, alternatives and attributes.

Keywords: mixed logit; unobserved heterogeneity; recommender systems.
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1 Introduction

Mixed random utility models such as mixed logit (McFadden and Train, 2000)
provide a powerful framework to account for unobserved taste heterogeneity in
discrete choice models. When longitudinal choice data are analysed using mixed
random utility models, it is standard practice to assume that tastes vary randomly
across decision-makers but not across choice situations encountered by the same
individual (Revelt and Train, 1998). The implicit assumption underlying this
treatment of unobserved heterogeneity is that an individual’s tastes are unique
and stable (Stigler and Becker, 1977). However, contrasting views of preference
formation postulate that preferences are constructed in an ad-hoc manner at the
moment of choice (Bettman et al., 1998) or learnt and discovered through experi-
ence (Kivetz et al., 2008).
From a behavioural perspective, these alternative views of preference formation
justify accounting for both inter- and intra-individual random heterogeneity in dis-
crete choice models (also see Hess and Giergiczny, 2015). A straightforward way
to accommodate unobserved inter- and intra-individual heterogeneity in mixed
random utility models is to augment a normal mixing distribution in a hierar-
chical fashion such that case-specific taste parameters are generated as normal
perturbations around individual-specific taste parameters (see Becker et al., 2018,
Ben-Akiva et al., 2019, Bhat and Castelar, 2002, Bhat and Sardesai, 2006, Bhat
and Sidharthan, 2011, Danaf et al., 2019, Hess and Giergiczny, 2015, Hess and
Rose, 2009, Hess and Train, 2011, Xie et al., 2020, Yáñez et al., 2011).
Originally, mixed logit models with unobserved inter- and intra-individual het-
erogeneity were primarily used as variance decomposition techniques in order to
separate unobserved taste variation into inter- and intra-individual terms. Yet,
recent work advocates using these methods in choice-based recommender systems
under the premise that mixed logit models with unobserved inter- and intra-
individual heterogeneity afford personalised preference estimation and prediction
(Danaf et al., 2019, Xie et al., 2020). These studies demonstrate that mixed
logit models with unobserved inter- and intra-individual heterogeneity outper-
form standard logit models at out-of-sample prediction, both unconditionally (i.e.
non-personalised inter-individual prediction for respondents without a history of
past choices) and conditionally (i.e. personalised intra-individual prediction for
respondents with a history of past choices) individuals. However, these studies
do not draw comparisons with standard mixed logit models, which only account
for inter-individual heterogeneity. Danaf et al. (2019) and Xie et al. (2020) con-
trast non-personalised (unconditional) and personalised (conditional) predicted
choice probabilities of mixed logit with inter- and intra-individual heterogeneity.
As expected, they conclude that personalisation improves the conditional predic-
tion accuracy. However, unconditional choice probabilities of mixed logit with
inter- and intra-individual heterogeneity are not the same as conditional choice
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probabilities of standard mixed logit models.
In this research note, we evaluate the ability of mixed logit models with unob-
served inter- and intra-individual heterogeneity to provide personalised predic-
tions of choice behaviour. Using simulated and real data, we show that mixed
logit models with unobserved inter- and intra-individual heterogeneity provide
only marginal gains in terms of conditional predictions over simpler, computation-
ally less expensive mixed logit models with only inter-individual heterogeneity. In
light of these findings and informed by recent advances at the intersection of ma-
chine learning and econometrics, we then discuss alternative approaches adopted
in recommender systems to generate personalised predictions with random utility
models.
With the growing availability of dynamic panel data sets, recommender systems
are increasingly employed to increase user satisfaction and lower search costs by
helping users to navigate complex goods and service systems such as Internet
marketplaces and smart mobility (Ansari et al., 2000, Lu et al., 2015, Song et al.,
2018). An example of a recommender system is a mobile local search-and-discovery
application that provides users with personalised recommendations of places like
restaurants based on user characteristics and previous visits (Kim, 2015). Accu-
rate methods for personalised preference estimation and prediction lie at the heart
of successful recommender systems (Ansari et al., 2000). Unlike standard rec-
ommendation methods such as collaborative and content-based filtering, discrete
choice models can be employed even when the choice set is not persistent (Danaf
et al., 2019). Consequently, there is a synergy between the methods adopted in
recommender systems and discrete choice models, because the success of both ap-
proaches depends critically on the ability to capture rich dependencies between
individuals, alternatives and attributes (Jiang et al., 2014).
Several remarks about the focus of our contribution are in order: First, we empha-
sise that the main focus of our contribution is on evaluating the predictive abilities
of mixed logit with unobserved inter- and intra-individual heterogeneity and not
on understanding behaviour. At the same time, our analysis includes comparisons
of maximum simulated likelihood and Bayes estimators for mixed logit models
with unobserved inter- and intra-individual heterogeneity. These comparisons are
also relevant to researchers who are mainly interested in using the model to ex-
plain behaviour. Furthermore, we discuss several emerging approaches from the
recommender systems literature which can be incorporated into the random utility
maximisation framework in order to improve the conditional prediction accuracy
of discrete choice models. This research direction is timely and relevant because
the methods adopted in recommender systems offer flexible, parametric repre-
sentations of the dependencies between individuals, alternatives and attributes.
Until recently, these innovative models were expensive to estimate using standard
methods due to their large parameter spaces. However, emerging approximate
inference methods such as variational inference offer a drastic reduction of the
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computational burden associated with the estimation of such complex probabilis-
tic models (Bansal et al., 2020, Hosseini et al., 2018).
We organise the remainder of this research note as follows. First, we introduce
mixed logit with unobserved inter- and intra-individual heterogeneity (Section 2).
Next, we present the simulation study and the real data application (Sections 3 and
4). Then, we provide an extended discussion of alternative modelling approaches
(Section 5), and finally, we conclude (Section 6).

2 Methodology

2.1 Model formulation

Mixed logit with unobserved inter- and intra-individual heterogeneity (in particu-
lar Hess and Rose, 2009, Hess and Train, 2011) is established as follows: In choice
situation t ∈ {1, . . . T }, a decision-maker n ∈ {1, . . .N} derives utility

Untj = V(Xntj,βnt) + εntj (1)

from alternative j in the set C = {1, . . . , J}. Here, V() denotes the deterministic
aspect of utility, Xntj is a vector of covariates, βnt is a collection of taste pa-
rameters, and εntj is a stochastic disturbance. We obtain the logit model under
the assumption that εntj is independently and identically distributed according
to Gumbel(0, 1) across decision-makers n, choice situations t and alternatives j.
Consequently, the probability that decision-maker n chooses alternative j ∈ C in
choice situation t can be expressed as

P(ynt = j|Xntj,βnt, ) =
eV(Xntj,βnt)∑
j ′∈C e

V(Xntj ′ ,βnt)
, (2)

where the random variable ynt ∈ C indicates the chosen alternative.
The distinguishing feature of mixed logit with unobserved inter- and intra-individual
heterogeneity is that the taste parameters βnt are case-specific. More specifi-
cally, βnt is a normal perturbation around an individual-specific parameter µn,
i.e. βnt ∼ N(µn,ΣW) for t = 1, . . . , T , where ΣW is a full covariance matrix. The
distribution of the individual-specific parameter µn is then also multivariate nor-
mal, i.e. µn ∼ N(ζ,ΣB) for n = 1, . . . ,N, where ζ is a mean vector and ΣB is a full
covariance matrix. In contradistinction, the standard panel estimator for mixed
logit assumes taste homogeneity across replications, i.e. βnt = βn ∀t ∈ {1, . . . , T },
in order to capture inter-individual taste heterogeneity and to allow for depen-
dence across repeated observations (Revelt and Train, 1998).
The generally adopted labels inter- and intra-individual heterogeneity may falsely
suggest that inferences are performed at the individual level. However, this is
not the case. Compared to standard mixed logit, mixed logit with inter- and
intra-individual heterogeneity has one more level to capture taste variation across
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choice situations. We learn about taste variation at the inter-individual level
using information about differences across respondents in a longitudinal dataset.
However, since ΣW is generic, we learn about taste variation at the intra-individual
level using information about differences across all choices from all respondents
rather than across choices from only one respondent.

2.2 Estimation

Mixed logit with unobserved inter- and intra-individual heterogeneity can be es-
timated using either classical maximum simulated likelihood (MSL) or Bayesian
Markov chain Monte Carlo (MCMC) methods. In what follows, we describe both
estimation approaches.

2.2.1 Maximum simulated likelihood (MSL)

In MSL estimation, the parameters θ = {ζ,ΣB,ΣW} are treated as fixed, unknown
quantities. Point estimates of θ are obtained via maximisation of the unconditional
log-likelihood, whereby the optimisation is in fact performed with respect to the
Cholesky factors {LB,LW} of {ΣB,ΣW} in order to maintain positive-definiteness of
the covariance matrices. Unlike in Bayesian estimation, the stochastic parameters
µn and βnt are not directly estimated, because they are integrated out in the
simulation of the unconditional log-likelihood.
To formulate the unconditional log-likelihood, we define βnt = µn+γnt, where µn ∼

N(ζ,ΣB) is an individual-specific random parameter with density f(µn|ζ,ΣB), and
where γnt ∼ N(0,ΣW) is a case-specific random parameter with density f(γnt|ΣW).
We then obtain the unconditional log-likelihood by marginalising out the stochas-
tic parameters µn and βnt. We have

LL(θ) =

N∑
n=1

ln

(∫ T∏
t=1

(∫
P(ynt|Xnt,βnt)f(γnt|ΣW)dγnt

)
f(µn|ζ,ΣB)dµn

)
. (3)

Since the integrals in (3) are not analytically tractable, we resort to simulation to
approximate the log-likelihood. The simulated log-likelihood is given by

SLL(θ) =

N∑
n=1

ln

(
1

D

D∑
d=1

T∏
t=1

(
1

R

R∑
r=1

P(ynt|Xnt,βnt,dr)

))
, (4)

where we define βnt,dr = ζ+LBξn,d+LWξnt,r. Here, ξn,d and ξnt,r denote standard
normal simulation draws. For each decision-maker, we takeD draws to marginalise
out µn and R draws to marginalise out γnt. A point estimate θ̂ is then given by

θ̂ = argmax
θ

SLL(θ). (5)

The optimisation problem defined in (5) can be solved using quasi-Newton meth-
ods, which exploit the gradient of the objective function to find a local optimum.
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Numerical gradient approximations are computationally expensive, as they incur
many evaluations of the objective function. However, computation times of quasi-
Newton methods can be drastically reduced, if analytical gradients of the objective
are provided. In the case of mixed logit with unobserved inter- and intra-individual
heterogeneity, the two levels of integration in the approximation of the uncondi-
tional log-likelihood impose a substantial computational burden. Consequently,
efficient optimisation routines are critical for moderating estimation times. In
Appendix A.1, we present the analytical gradient of (4).
After computing the point estimate θ̂ = {ζ̂, Σ̂B, Σ̂W}, we can obtain the posterior
distribution of µn using Bayes theorem (Revelt and Train, 2000, Train, 2009). We
have

P(µn|yn,Xn, θ̂) =
P(yn|Xn,µn, Σ̂W)f(µn|ζ̂, Σ̂B)∫
P(yn|Xn,µn, Σ̂W)f(µn|ζ̂, Σ̂B)dµn

. (6)

The mean of this posterior distribution is given by µ̌n =
∫
µnP(µn|yn,Xn, θ̂)dµn.

Consequently, we have

µ̌n =

∫
µnP(yn|Xn,µn, Σ̂W)f(µn|ζ̂, Σ̂B)dµn∫
P(yn|Xn,µn, Σ̂W)f(µn|ζ̂, Σ̂B)dµn

=

∫
µn

(∏T
t=1

∫
P(ynt|Xnt,βnt)f(γnt|ΣW)dγnt

)
f(µn|ζ̂, Σ̂B)dµn∫ (∏T

t=1

∫
P(ynt|Xnt,βnt)f(γnt|ΣW)dγnt

)
f(µn|ζ̂, Σ̂B)dµn

.

(7)

Since the integrals in (7) are not analytically tractable, we resort to simulation to
approximate the posterior mean. The simulated posterior mean µ̂n is given by

µ̂n =

D∑
d=1

wdµn,d (8)

with

wd =

∏T
t=1

(
1
R

∑R
r=1 P(ynt|Xnt,βnt,dr)

)
∑D

d ′=1

∏T
t=1

(
1
R

∑R
r=1 P(ynt|Xnt,βnt,d ′r)

) . (9)

2.2.2 Markov chain Monte Carlo (MCMC)

The goal of Bayesian estimation is to infer the posterior distribution of all model
parameters {ζ,ΣB,ΣW,µ,β}. Thus, unlike in MSL estimation, posterior samples
of µn and βnt are directly obtained along with posterior samples of the other
parameters.
The Bayesian approach entails the specification of full probability model for all
parameters. Therefore, we also need to assign priors to {ζ,ΣB,ΣW}. We use a
vague normal prior for ζ, i.e. ζ ∼ N(λ0,Λ0), a half-t prior for ΣB, ΣW. The
latter is selected because of its superior non-informativity properties compared
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to alternative prior specifications for covariance matrices (Akinc and Vandebroek,
2018, Huang andWand, 2013). The half-t prior is defined hierarchically: It consists
of an inverse Wishart prior for Σ with Σ ∼ IW(ν + K − 1, 2ν∆), where ν is a
known hyper-parameter and K denotes the number of random parameters. ∆ =

diag(δ1, . . . , δK) is a diagonal matrix with elements δk distributed Gamma
(
1
2
, 1
a2k

)
.

Stated succinctly, the full generative process of mixed logit with unobserved inter-
and intra-individual heterogeneity is as follows:

δB,k|aB,k ∼ Gamma
(
1

2
,
1

a2B,k

)
, k = 1, . . . , K, (10)

δW,k|aW,k ∼ Gamma
(
1

2
,
1

a2W,k

)
, k = 1, . . . , K, (11)

ΣB|νB,δB ∼ IW (νB + K− 1, 2νBdiag(δB)) , δB =
[
δB,1 . . . δB,K

]>
(12)

ΣW |νW,δW ∼ IW (νW + K− 1, 2νWdiag(δW)) , δW =
[
δW,1 . . . δW,K

]>
(13)

ζ|λ0,Λ0 ∼ N(λ0,Λ0) (14)

µn|ζ,ΣB ∼ N(ζ,ΣB), n = 1, . . . ,N, (15)

βnt|µn,ΣW ∼ N(µn,ΣW), n = 1, . . . ,N, t = 1, . . . , T, (16)

ynt|βnt,Xnt ∼ Logit (V(βnt,Xnt)) , n = 1, . . . ,N, t = 1, . . . , T, (17)

where {λ0,Λ0, νB, νW,aB,aW} are known hyper-parameters, and θ = {δB,δW,ΣB,ΣW, ζ,

µ,β} are the model parameters whose posterior distribution we wish to estimate.
The generative process given in (10)–(17) implies the following joint distribution:

P(y,θ) =

(
N∏
n=1

T∏
t=1

P(ynt|βnt,Xnt)P(βnt|µn,ΣW)

)(
N∏
n=1

P(µn|ζ,ΣB)

)

P(ζ|λ0,Λ0)P(ΣB|ωB,BB)

(
K∏
k=1

P(δB,k|s, rB,k)

)

P(ΣW |ωW,BW)

(
K∏
k=1

P(δW,k|s, rW,k)

) (18)

where ωB = νB+K−1, BB = 2νBdiag(δB), ωW = νW+K−1, BW = 2νWdiag(δW),
s = 1

2
, rB,k = a−2

B,k and rW,k = a−2
W,k. By Bayes’ rule, the posterior distribution of

interest is given by

P(θ|y) =
P(y,θ)∫
P(y,θ)dθ

∝ P(y,θ). (19)

Exact inference of this posterior distribution is not possible, because the model
evidence

∫
P(y,θ)dθ is not analytically tractable. Hence, we resort to approximate

inference.
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The central idea of MCMC is to approximate a posterior distribution through sam-
ples from a Markov chain whose stationary distribution is the target distribution.
Gibbs sampling constructs such a Markov chain by iteratively sampling from the
conditional posterior distributions of blocks of model parameters. Becker et al.
(2018) devise a Gibbs sampler for posterior inference in mixed logit with unob-
served inter- and intra-individual heterogeneity. In Appendix A.2, we present one
iteration of the sampler. A key feature of the algorithm is that posterior samples
of µn are directly obtained.

3 Simulation study

In this section, we present an extensive simulation evaluation of mixed logit with
unobserved inter- and intra-individual heterogeneity. The model is benchmarked
against simpler conditional and mixed logit models in terms of estimation time,
estimation accuracy and out-of-sample predictive accuracy. In addition, we com-
pare the performance of the MSL and MCMC estimators for mixed logit with
unobserved inter- and intra-individual heterogeneity.

3.1 Data and experimental setup

For the simulation study, we rely on synthetic choice data, which we generate as
follows: The choice sets comprise three unlabelled alternatives, which are charac-
terised by four attributes. Decision-makers are assumed to be utility maximisers
and to evaluate the alternatives based on the utility specification

Untj = X
>
ntjβnt + εntj. (20)

For the generation of the taste parameters βnt, we consider two scenarios, in
which the proportion of the total variance that is due to intra-individual taste
heterogeneity is varied. In the two scenarios, βnt is drawn via the following process:

µn|ζ,ΣB ∼ N(ζ,ΣB), n = 1, . . . ,N, (21)

βnt|µn,ΣW ∼ N(µn,ΣW), n = 1, . . . ,N, t = 1, . . . , T, (22)

where ΣB = diag(σB)ΩBdiag(σB) and ΣW = diag(σW)ΩWdiag(σW). Here, {σB,σW}
represent standard deviation vectors and {ΩB,ΩW} are correlation matrices. The
assumed values of ζ, ΩB and ΩW are enumerated in Appendix B. We define
σ2B = 2 · (1 − α) · |ζ| and σ2W = 2 · α · |ζ| with α ∈ [0, 1], i.e. the total variance of
each random parameter is twice the absolute value of its mean, and a proportion
α of the total variance is due to intra-individual taste variation. In scenario 1, we
set α = 0.3, and in scenario 2, we set α = 0.7. In both scenarios, the alternative-
specific attributes Xntj are drawn from Uniform(0, 2), which implies an error rate
of approximately 20%, i.e. in one fifth of the cases decision-makers deviate from
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the systematically best alternative due to the stochastic utility component. In
both scenarios, we further set N = 1000 and let T take a value in {10, 20}. For
each experimental scenario and for each value of T , we consider 20 replications,
whereby the data for each replication are generated using a different random seed.

3.2 Accuracy assessment

We evaluate the accuracy of the estimation approaches in terms of their ability to
recover parameters in finite samples and their out-of-sample predictive accuracy.

3.2.1 Parameter recovery

To assess how well the estimation approaches perform at recovering parameters,
we calculate the root mean square error (RMSE) for selected parameters, namely
the mean vector ζ and the unique elements {ΣB,U,ΣW,U} of the covariance matrices
{ΣB,ΣW}. Given a collection of parameters θ and its estimate θ̂, RMSE is defined

as RMSE(θ) =
√

1
M
(θ̂− θ)>(θ̂− θ), whereM denotes the total number of scalar

parameters collected in θ. For MSL, point estimates of ζ, ΣB and ΣW are directly
obtained. For MCMC, estimates of the parameters of interest are given by the
means of the respective posterior draws. As our aim is to evaluate how well
the estimation methods perform at recovering the distributions of the realised
individual- and observation-specific parameters {µ,β}, we use the sample mean
ζ̄ = 1

N

∑N
n=1 µn and the sample covariances Σ̄B = 1

N

∑N
n=1(µn − ζ̄)(µn − ζ̄)

> and
Σ̄W = 1

NT

∑N
n=1

∑T
t=1(βnt −µn)(βnt −µn)

> as true parameter values for ζ, ΣB and
ΣW

3.2.2 Predictive accuracy

We consider two out-of-sample prediction scenarios. In the first scenario, we pre-
dict choice probabilities for a new set of individuals without a history of past
choices, i.e. we predict unconditionally on an individual’s past choices. To that
end, we generate a test set consisting of 100 observations from 100 new individ-
uals along with each training sample. The realised choices and attributes of this
sample are denoted by y∗nt and X∗nt. In the second scenario, we predict choice
probabilities for new choice sets for individuals who are already in the training
sample and thus have a record of past choices, i.e. we predict conditionally on
an individual’s past choices. To that end, we create another test set by generating
additional choice sets for 100 individuals from the training sample. The realised
choices and attributes of this sample are denoted by y†nt and X

†
nt. We let T = 1 in

both validation samples.
For mixed logit with unobserved inter- and intra-individual heterogeneity, the
estimated predicted choice probabilities for the unconditional prediction scenario
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are given by

P̂(y∗nt|X
∗
nt,y) =

∫ (∫
P(y∗nt|X

∗
nt,βnt)f(βnt|µn, Σ̂W)dβnt

)
f(µn|ζ̂, Σ̂B)dµn, (23)

where ζ̂, Σ̂B and Σ̂W denote the posterior means of ζ, ΣB and ΣW, respectively. The
estimated predicted choice probabilities for the conditional prediction scenario are
given by

P̂(y†nt|X
†
nt,y) =

∫
P(y†nt|X

†
nt,βnt)f(βnt|µ̂n, Σ̂W)dβnt, (24)

where µ̂n and Σ̂W denote the posterior means of µn and ΣW, respectively. Recall
that in MCMC, the posterior distribution of µn is directly estimated, whereas for
MSL, we obtain µ̂n using (8). Expressions for the estimated predicted choice prob-
abilities for standard logit and mixed logit with only inter-individual heterogeneity
can be obtained by omitting levels of integration from (23) and (24).
For each of the two prediction scenarios, we calculate Brier scores (Brier, 1950)
with respect to the realised choices and the predicted choice probabilities. The
Brier score (BS) of a test set is given by

BS =
1

NTJ

N∑
n=1

T∑
t=1

J∑
j=1

(
1{ynt = j}− P̂ntj

)2
, (25)

where 1{ynt = j} is an indicator, which equals one if the condition inside the
braces is true and zero otherwise. P̂ntj is a shorthand notation for the predicted
probability that ynt = j is observed. A lower Brier score indicates superior pre-
dictive accuracy. The Brier score is a strictly proper scoring rule, since it is exclu-
sively minimised by the true predictive choice probabilities (Gneiting and Raftery,
2007). An important feature of the Brier score is that it takes into account the pre-
dicted choice probabilities of whole choice sets. Danaf et al. (2019) and Xie et al.
(2020) use the average of the predicted probabilities of only the chosen alterna-
tives (henceforth, Pchosen) to evaluate predictive accuracy, with the interpretation
that a higher value of Pchosen indicates superior predictive performance. In what
follows, we report both Brier scores and Pchosen.

3.3 Implementation details

We implement the MSL and MCMC estimators in Python.1 For MSL, the nu-
merical optimisations are performed using the limited-memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS) algorithm (Nocedal and Wright, 2006) contained in
Python’s SciPy library (Jones et al., 2001). Analytical gradients are provided
(see Appendix A.1). The Hessian matrix of the simulated log-likelihood function
is calculated as a finite difference approximation of the Jacobian of the analyt-
ical gradient. We use 250 inter-individual simulation draws per decision-maker

1The code is available at https://github.com/RicoKrueger/inter_intra.
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and 250 intra-individual simulation draws per observation. To establish that the
estimation results are stable for these numbers of draws, we also evaluate the per-
formance of the MSL estimator using 500× 500 draws. The simulation draws are
generated using the Modified Latin Hypercube sampling (MLHS) approach (Hess
et al., 2006). We also take advantage of Python’s parallel processing capacities
to improve the computational efficiency of the MSL estimator. We process the
likelihood computations in ten parallel batches, each of which corresponds to 25
(50) inter-individual simulation draws.
The MCMC sampler for mixed logit with unobserved inter- and intra-individual
heterogeneity is executed with two parallel Markov chains and 400,000 iterations
for each chain, whereby the initial 200,000 iterations of each chain are discarded
for burn-in. After burn-in, every tenth draw is retained to moderate storage
requirements and to facilitate post-simulation computations. For standard logit
and mixed logit with only inter-individual heterogeneity, the MCMC samplers are
executed with two parallel Markov chains and 100,000 iterations for each chain,
whereby the initial 50,000 iterations of each chain are discarded for burn-in. After
burn-in, every fifth draw is kept.

3.4 Results

Table 1 compares the predictive accuracy of the models. For each value of α and
number of choice situations per individual T , we report the means and the standard
errors of the Brier scores as well as the average predicted probabilities of the chosen
alternative (Pchosen) for the unconditional and the conditional prediction scenarios
across 20 resamples. In our subsequent discussion, we focus on the Brier score, as
it is strictly proper. Nonetheless, Pchosen leads to the same general conclusions.
Across the different experimental scenarios, we do not observe significant differ-
ences in unconditional predictive accuracy between the considered methods. As
expected, standard logit without individual-specific parameters yields the same
level of predictive accuracy in the unconditional and the conditional prediction
scenarios. However, due to the presence of individual-specific parameters, mixed
logit provides better conditional predictive accuracy than standard logit. For in-
stance, in scenario 1 with α = 0.3 for T = 20, MNL produces an average Brier
score of 0.200. Mixed logit with only inter-individual heterogeneity produces an
average Brier score of 0.152, whereas mixed logit with unobserved inter- and intra-
individual heterogeneity estimated via MCMC and MSL with 250×250 draws give
average Brier scores of 0.149 and 0.150, respectively. We further observe that the
conditional predictive accuracy of mixed logit improves relative to standard logit,
as more choice situations are included in the estimation. For example, in sce-
nario 1 with α = 0.3, the Brier score of mixed logit with only inter-individual
heterogeneity is 0.165 for T = 10, while it is 0.152 for T = 20.
Interestingly, mixed logit with unobserved inter- and intra-individual heterogene-
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ity does not provide significantly better conditional predictive accuracy than stan-
dard mixed logit in any of the considered experimental scenarios. The difference
in Brier scores of the two methods is at most 0.003. Also, the proportion of vari-
ance α that is due to intra-individual taste variation does not appear to affect
the conditional predictive accuracy of considered mixed logit models. For exam-
ple, for T = 20, the average Brier score for the conditional prediction scenario of
mixed logit with unobserved inter- and intra-individual heterogeneity estimated
via MCMC is 0.149 and 0.150 in both scenario 1 (α = 0.3) and scenario 2 (α = 0.7).
Even in scenario 2, in which intra-individual taste variation accounts for 70% of the
total variation in tastes, mixed logit with unobserved inter- and intra-individual
heterogeneity does not outperform simple mixed logit with only inter-individual
heterogeneity.
Another insight from Table 1 is that the MCMC estimator and the two config-
urations of the MSL estimator for mixed logit with unobserved inter- and intra-
individual heterogeneity perform equally well in the considered prediction scenar-
ios.
Table 2 contrasts the estimation accuracy of MCMC estimator and the two con-
figurations of the MSL estimator for mixed logit with unobserved inter- and intra-
individual heterogeneity. We find that the three methods perform equally well
at recovering parameters. We further observe negligible differences between MSL
with 250× 250 draws and MSL with 500× 500 draws.
Finally, Table 3 gives the estimation times of the different methods across the
considered experimental scenarios. Mixed logit with only inter-individual het-
erogeneity is substantially faster than mixed logit with unobserved inter- and
intra-individual heterogeneity. In all of the considered simulation scenarios, MSL
with analytical gradients and 250 × 250 simulation draws is faster than MCMC.
For example, in scenario 1 for T = 10, the average estimation time of simple
mixed logit is 285 seconds, while the average computation times of mixed logit
with unobserved inter- and intra-individual heterogeneity estimated via MCMC
and MSL with 250 × 250 simulation draws are approximately tenfold with 3,423
seconds and 2,951 seconds, respectively. In the considered scenarios, MSL with
250 × 250 draws is approximately four times faster than MSL with 500 × 500
draws. We also observe that the standard errors of the estimation times across
the 20 resamples are proportionally higher for MSL than for MCMC. Inherent
differences between the estimation algorithms explain this discrepancy. Whereas
MCMC simulations are run for a fixed number of iterations, the number of func-
tion evaluations that is needed to reach convergence during the maximisation of
the simulated log-likelihood is not fixed and depends on initial values and the
shape of the log-likelihood surface.
In sum, the simulation study shows that none of the mixed logit models pro-
vide substantially better unconditional predictive accuracy than standard logit.
Nonetheless, the considered mixed logit models offer superior conditional pre-
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dictive accuracy. Yet, there are no substantive differences between standard
mixed logit and a more complex mixed logit accounting for both inter- and intra-
individual heterogeneity. Besides, we observe that MCMC and MSL with 250×250
draws are equivalent in terms of prediction and estimation accuracy. MSL with
250×250 draws is approximately four times faster than MSL with 500×500 draws,
while offering equivalent estimation and prediction accuracy.
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RMSE(ζ) RMSE(ΣB) RMSE(ΣW)

α T Method Mean SE Mean SE Mean SE

0.3 10 MXL-inter-intra (MCMC) 0.03744 0.00491 0.07211 0.01032 0.07137 0.00694
MXL-inter-intra (MSL, 250× 250 draws) 0.03693 0.00389 0.06640 0.00608 0.06514 0.00480
MXL-inter-intra (MSL, 500× 500 draws) 0.03379 0.00332 0.06275 0.00610 0.06374 0.00424

0.3 20 MXL-inter-intra (MCMC) 0.02319 0.00268 0.03646 0.00293 0.03903 0.00255
MXL-inter-intra (MSL, 250× 250 draws) 0.03149 0.00310 0.04556 0.00345 0.04111 0.00338
MXL-inter-intra (MSL, 500× 500 draws) 0.02612 0.00312 0.03941 0.00346 0.04004 0.00267

0.7 10 MXL-inter-intra (MCMC) 0.04355 0.00530 0.08585 0.01253 0.07898 0.00763
MXL-inter-intra (MSL, 250× 250 draws) 0.03814 0.00412 0.07142 0.00808 0.06915 0.00474
MXL-inter-intra (MSL, 500× 500 draws) 0.03889 0.00416 0.07267 0.00851 0.07004 0.00527

0.7 20 MXL-inter-intra (MCMC) 0.02119 0.00289 0.04149 0.00511 0.03965 0.00313
MXL-inter-intra (MSL, 250× 250 draws) 0.03431 0.00319 0.05014 0.00414 0.04117 0.00331
MXL-inter-intra (MSL, 500× 500 draws) 0.02798 0.00231 0.04310 0.00361 0.03950 0.00284

Note: The reported values are averages and standard errors across 20 replications. α =

proportion of taste variation due to intra-individual taste heterogeneity. T = observations
per individual. RMSE = root mean square error.

Table 2: Estimation accuracy on simulated data
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Time [s]
α T Method Mean SE

0.3 10 MNL (MCMC) 83.3 1.3
MXL-inter (MCMC) 284.9 2.7
MXL-inter-intra (MCMC) 3422.9 28.2
MXL-inter-intra (MSL, 250× 250 draws) 2951.0 90.5
MXL-inter-intra (MSL, 500× 500 draws) 12938.1 410.3

0.3 20 MNL (MCMC) 159.9 2.1
MXL-inter (MCMC) 423.7 0.7
MXL-inter-intra (MCMC) 6135.6 75.6
MXL-inter-intra (MSL, 250× 250 draws) 5214.7 185.4
MXL-inter-intra (MSL, 500× 500 draws) 23659.9 624.9

0.7 10 MNL (MCMC) 84.6 1.7
MXL-inter (MCMC) 287.4 2.1
MXL-inter-intra (MCMC) 3792.7 57.2
MXL-inter-intra (MSL, 250× 250 draws) 2998.4 89.5
MXL-inter-intra (MSL, 500× 500 draws) 11746.3 303.6

0.7 20 MNL (MCMC) 186.2 3.3
MXL-inter (MCMC) 413.7 4.4
MXL-inter-intra (MCMC) 6706.4 61.9
MXL-inter-intra (MSL, 250× 250 draws) 5323.1 129.5
MXL-inter-intra (MSL, 500× 500 draws) 22102.1 567.3

Note: The reported values are averages and standard errors
across 20 replications. α = proportion of taste variation due
to intra-individual taste heterogeneity. T = observations
per individual.

Table 3: Estimation time on simulated data

4 Real data application

In this section, we evaluate the performance of mixed logit with unobserved inter-
and intra-individual heterogeneity using real data.

4.1 Data, utility specification and implementation details

Data for the empirical application are sourced from a stated preference survey
about mobility on-demand in New York City (Bansal and Daziano, 2018, Liu et al.,
2018). The data include observations from 1,507 respondents who each completed
seven choice situations derived from a pivot-efficient design. Each choice situation
included three labelled alternatives, namely Uber (without pooling), UberPool
(with pooling) and the current mode. The alternatives are described by six at-
tributes, namely out-of-vehicle travel time (OVTT), in-vehicle travel time (IVTT),
trip cost, parking cost, the powertrain of the vehicle (gas/petrol or electric) and
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the automation level of the vehicle (with or without driver). Figure 1 shows an
example of a choice situation.

Uber (without ride-sharing) UberPool (with ride-sharing) Current mode: car

Walking and waiting time 6 min 9 min 12 min
In-vehicle travel time 38 min 50 min 48 min
Trip cost (excl. parking cost) $11 $8 $6
Parking cost – – $6
Powertrain Electric Gas Gas
Automation Service with driver Automated (no driver) –

Figure 1: Example of a choice situation in the mobility-on demand experiment
(reproduced from Liu et al., 2018)

Mixed logit with unobserved inter- and intra-individual heterogeneity assumes a
utility specification of the following form:

Untj =
(
Xrandom
ntj

)>
βnt +

(
Xfixed
ntj

)>
γ+ εntj. (26)

Here, Xrandom
ntj is a vector of attributes with individual- and observation-specific

random taste parameters βnt, and X
fixed
ntj is a vector of attributes with fixed taste

parameters γ. εntj is a stochastic disturbance with distribution Gumbel(0, 1).
We performed an extensive specification search to determine which attributes to
associate with either random or fixed parameters. During the specification search,
we monitored model tractability and the inferred amounts of intra-individual taste
variation. In the final model specification, we include three random parameters
and four fixed parameters in the model. The random parameters pertain to OVTT,
IVTT and a dummy variable indicating whether the hypothetical mobility on-
demand vehicle is automated. The fixed parameters pertain to two alternative-
specific constants for the hypothetical mobility on-demand alternatives, a dummy
variable indicating whether the hypothetical mobility on-demand vehicle is electric
and the total trip cost which subsumes the trip cost and the parking cost. The
dummy variables are effects-coded with negative one indicating that the feature is
absent and positive one indicating that the feature is present to reduce the scale
of the associated parameters. OVTT and IVTT are divided by ten to increase the
scale of the associated parameters. The utilities of standard logit and mixed logit
with only inter- and intra-individual heterogeneity are specified analogously.
We consider two configurations of the training and the test data to evaluate the
influence of including different numbers of choice situations per individual in the
training data on the predictive accuracy. In the first configuration, the training set
includes four randomly selected choice situations from 1,407 randomly selected re-
spondents. One test set is used to evaluate the unconditional predictive ability of
the considered models. It includes one choice situation from each of the remaining
100 respondents. A second test set is used to evaluate the conditional predictive
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ability. It is formed by randomly selecting one of the remaining choice situations
from the 1,407 respondents included in the training sample. In the second con-
figuration, the training set includes six randomly selected choice situations from
1,407 randomly selected respondents. The test sets are created in the same way as
in the first configuration. For each configuration, we create ten random splits into
training and test sets. We then compare the performance of the different choice
models across the splits.
The MCMC methods are estimated in the same way as described in Section 3.3.
For MSL, we use 250 inter-individual simulation draws per decision-maker and
250 intra-individual simulation draws per observation. We also tested the MSL
method with 500× 500 draws but found no differences in prediction accuracy and
estimation results.

4.2 Results

Table 4 contrasts the predictive accuracy of the considered models. For each
configuration of the training data with T = 4 or T = 6 and for each model, we
report the means and the standard errors of the Brier scores and the average
predicted choice probabilities of the chosen alternative for the unconditional and
the conditional prediction scenarios across ten random splits of the training data.
Overall, the results are consistent with the results of the simulation study. We do
not observe any noteworthy differences in unconditional predictive accuracy across
methods and configurations of the training data. Both mixed logit models offer
better conditional prediction accuracy than the standard multinomial logit model.
The more complex mixed logit model with unobserved inter- and intra-individual
heterogeneity does not provide benefits over standard mixed logit in terms of
conditional prediction accuracy. For both types of mixed logit, the conditional
prediction accuracy increases as more choice situations are included in the training
data. For example, for T = 4, standard mixed logit produces an average Brier score
of 0.154 in the conditional prediction scenarios. The same model yields an average
Brier score of 0.147 in the conditional prediction scenarios with T = 6. In both
configurations of the training data, the MCMC and MSL estimators for mixed logit
with unobserved inter- and intra-individual heterogeneity are equally accurate in
the two prediction scenarios.
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BrierUC BrierC Pchosen
UC Pchosen

C

T Method Mean SE Mean SE Mean SE Mean SE

4 MNL (MCMC) 0.17925 0.00478 0.18290 0.00070 0.45512 0.00751 0.44997 0.00132
MXL-inter (MCMC) 0.18005 0.00511 0.15376 0.00065 0.45387 0.00807 0.56771 0.00181
MXL-inter-intra (MCMC) 0.18079 0.00524 0.15131 0.00060 0.45288 0.00820 0.57228 0.00163
MXL-inter-intra (MSL) 0.18066 0.00523 0.15163 0.00061 0.45349 0.00818 0.57064 0.00172

6 MNL (MCMC) 0.18989 0.00405 0.18165 0.00066 0.44018 0.00616 0.45197 0.00128
MXL-inter (MCMC) 0.18860 0.00396 0.14694 0.00161 0.44263 0.00629 0.58253 0.00233
MXL-inter-intra (MCMC) 0.18947 0.00382 0.14483 0.00155 0.44131 0.00604 0.58804 0.00232
MXL-inter-intra (MSL) 0.18940 0.00381 0.14513 0.00161 0.44144 0.00601 0.58665 0.00258

Note: The reported values are averages and standard errors across ten random splits. T = observations per
individual. Brier = Brier score. Pchosen = average predicted probability of chosen alternative. UC = unconditional
prediction, C = conditional prediction.

Table 4: Predictive accuracy on real data

Table 5 enumerates the detailed estimation results for one of the random splits of
the stated choice data with six choice situations per individual. For MCMC, we
report the posterior means, the posterior standard deviations and the bounds of
the 95% credible interval. For MSL, we report the point estimates, the asymptotic
standard errors and the bounds of the 95% confidence intervals. Recall that for
MSL, the maximisation of the simulated log-likelihood is performed with respect to
the Cholesky factors of the covariance matrices of the heterogeneity distributions.
Thus, the reported estimates of the covariance elements reported are derived from
the point estimates of the Cholesky factors. Standard errors of the covariance
elements are obtained using a parametric bootstrap with 10,000 draws.
Our first observation is that in the majority of cases, the fixed taste parameters and
means of the random taste parameters have the same signs in the four models.
All four models suggest that the fixed taste parameter with respect to vehicle
electrification is not statistically different. In the case of the mean of the random
taste parameter pertaining to OVTT, we observe that the parameter is negative
and statistically different from zero in standard mixed logit, while the parameter
is not statistically different from zero in both classical and Bayesian mixed logit
with unobserved inter- and intra-individual heterogeneity. Furthermore, we find
that the MSL and MCMC estimates, including the credible (confidence) intervals,
of mixed logit with unobserved inter- and intra-individual heterogeneity exhibit a
close correspondence.
Due to its ability to decompose taste variation into inter- and intra-individual
components, mixed logit with unobserved inter- and intra-individual heterogene-
ity offers interesting behavioural insights into the sources of taste variation. We
find evidence of substantial intra-individual taste variation. For example, MCMC
suggests that 2.169/(3.782+2.169) = 36.4% of the variation in tastes with respect
to OVTT are due to intra-individual heterogeneity. Similarly, MSL indicates that
0.644/(1.260 + 0.644) = 33.8% of the variation in tastes with respect to vehicle
automation can be ascribed to intra-individual heterogeneity.
Both MCMC and MSL suggest that all off-diagonal elements of the inter-individual
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covariance of mixed logit with unobserved inter- and intra-individual heterogeneity
are statistically different from zero. Also, both MCMC and MSL suggest that
with the exception of the covariance between the random parameters pertaining
to vehicle automation and IVTT, all off-diagonal elements of the intra-individual
covariance of mixed logit with unobserved inter- and intra-individual heterogeneity
are statistically different from zero.
Finally, Table 6 gives the estimation times of the models across the ten random
splits for the two configurations of the training data. We observe that mixed
logit with only inter-individual heterogeneity is substantially faster than mixed
logit with unobserved inter- and intra-individual heterogeneity. For example, for
T = 4, the average estimation time of standard mixed logit estimated via MCMC
is approximately seven times lower than the average estimation time of mixed logit
with unobserved inter- and intra-individual heterogeneity estimated via MCMC
and approximately eleven times lower than the average estimation time of mixed
logit with unobserved inter- and intra-individual heterogeneity estimated via MSL.
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Time [s]
T Method Mean SE

4 MNL (MCMC) 60.9 0.2
MXL-inter (MCMC) 344.1 6.4
MXL-inter-intra (MCMC) 2434.6 75.8
MXL-inter-intra (MSL) 3754.5 332.2

6 MNL (MCMC) 85.1 1.8
MXL-inter (MCMC) 399.1 13.2
MXL-inter-intra (MCMC) 3147.0 55.2
MXL-inter-intra (MSL) 6027.0 401.8

Note: The reported values are averages and
standard errors across ten random splits. T =
observations per individual.

Table 6: Estimation time on real data

5 Extended discussion

Our analysis suggests that mixed logit models with unobserved inter- and intra-
individual heterogeneity do not provide significant improvements over simpler
mixed logit models which only account for unobserved inter-individual hetero-
geneity in terms of conditional prediction accuracy. The inability of the former
to outperform the latter can be ascribed to the former’s predominant emphasis
on nonstructural random heterogeneity. Thus, there is a need to explore alter-
native modelling approaches which have the potential to provide accurate indi-
vidualised predictions of choice behaviour by accounting for richer dependencies
between products and consumers’ preferences as well as temporal correlations be-
tween choices in a flexible framework. In what follows, we discuss four strands of
the literature and evaluate their relevance in creating choice-based recommender
systems within the random utility maximisation (RUM) framework.

5.1 Collaborative filtering

Various collaborative filtering approaches such as matrix factorisation have emerged
as powerful tools to generate personalised recommendations in recommender sys-
tems (Gopalan et al., 2013, Koren et al., 2009, Mnih and Salakhutdinov, 2008). The
fundamental idea of collaborative filtering is to predict a consumer’s preferences
by exploiting interdependencies between products. Matrix factorisation provides
a mapping of consumers and products into a joint latent factor space. Matrix
factorisation consists of learning a sparse matrix of dimension # of consumers ×
# of products. Each cell of this matrix represents one consumer’s preference for
a specific product. The consumer’s preference is represented as the inner product
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of a latent vector of product characteristics and a latent vector of consumer pref-
erences for each of the latent product characteristics (see Gopalan et al., 2013, for
details of the formulation).
Learning such a sparse matrix is computationally challenging, but advancements
in variational Bayes have made the estimation of these models tractable for large
data sets. Recent studies on matrix factorisation methods also account for dynamic
consumer preferences and social network effects (Hosseini et al., 2018). A combina-
tion of scalability, ability to account for dynamics and social aspects, and superior
predictive accuracy have made matrix factorisation methods popular in industrial
applications. However, they have received limited attention of applied economet-
rics and marketing communities due to their i) predominant focus on prediction
rather than inference, ii) apparent disconnection to economic theory, iii) inability
to model time-varying choice sets and product-specific attributes. Economists and
machine learning researchers recently joined forces to address the second and third
limitations of this powerful tool. Athey et al. (2018) illustrate how matrix fac-
torisation methods can be integrated into standard RUM frameworks to predict
an individual’s choice of restaurants using data from local search-and-discovery
application. The main idea of the approach is to augment the original utility
equation with the consumer- and product-level covariates by including a vector of
latent characteristics for each restaurant as well as latent preferences of consumers
for these characteristics. Thus, the framework incorporates the key component
(i.e., sparse latent construct) of standard matrix factorisation models in the RUM
framework and adopts variational Bayes for scalable estimation and prediction. In
another study, Donnelly et al. (2019) use a similar framework to model consumer
preferences across multiple categories of products in a supermarket. These theory-
driven advancements would hopefully convince applied choice modellers about the
benefits of matrix factorisation methods for personalised predictions.

5.2 Collaborative learning

Zhu et al. (2020) propose a choice model with time-varying parameters in a col-
laborative learning framework. Similar to latent class models, this model assumes
that there are several unique underlying preference patterns (i.e., classes), but
rather than assigning each consumer to one class and assuming preferences of all
class members to be the same, a vector of weights (membership vector) is specified
to represent the degree of resemblance of the consumer’s preferences to each pref-
erence pattern. Temporal variation in these unique preference patterns is captured
by time-varying model parameters. The framework is already a viable alternative
to mixed logit with inter-and intra-heterogeneity. Yet, it be can further improved
by taking inspiration from Athey et al. (2018) and by incorporating the latent
structure of matrix factorisation into the utility equation.
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5.3 Amortised variational inference

Recent application of amortised variational inference (AVI) in the estimation of
the mixed logit model also offers possibilities to improve the choice prediction ac-
curacy (Rodrigues, 2020). Instead of introducing consumer-level local variational
parameters for random parameters, AVI maps observed choices and covariates
with corresponding variational parameters using a deep neural network to avoid
the growth of variational parameters with the sample size. AVI thus includes a
generic inference network that takes a consumer’s data as input and provides the
approximate posterior distribution of her random taste parameters as output. In
other words, AVI provides a trained inference network as a byproduct of the es-
timation, which can be used to obtain the posterior distribution of random taste
parameters of a new consumer or the existing consumer in a new choice situation
(Rodrigues, 2020).
AVI has the potential to become a workhorse method in online learning appli-
cations due to its fast estimation with stochastic backpropagation and GPU-
accelerated computations. AVI performs well in the initial experiments presented
in Rodrigues (2020), but its performance needs to be benchmarked against other
competing methods.

5.4 Neural network and tree-based models

To leverage benefits of machine learning advancements in discrete choice models
without compromising at interpretability and economic theory, recent RUM based
choice models have adopted variants of neural networks (Sifringer et al., 2020,
Wang et al., 2020) and regression trees (Kindo et al., 2016) to specify semi- and
non-parametric utility functions. These advanced models claim to improve the
prediction accuracy of discrete choice models in validation samples, but they have
limited focus on improving within individual predictions, i.e. predicting choice
of a consumer from training dataset in a new choice situation. Bringing this
additional feature in these data-theory-driven models can make them viable for
online recommender systems.

6 Conclusion

In this research note, we evaluate the ability of mixed logit models with unob-
served inter- and intra-individual heterogeneity to generate individual-level pre-
dictions. Using simulated and real data, we demonstrate that mixed logit with
unobserved inter- and intra-individual heterogeneity does not provide significant
improvements over standard mixed logit models which only account for inter-
individual taste variation. This observation persists even in scenarios which are
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characterised by high levels of intra-individual taste variation and when the num-
ber of choice situations per individual is large.
Besides, the estimation of mixed logit with unobserved inter- and intra-individual
heterogeneity demands at least seven times as much computation time as the
estimation of standard mixed logit. For mixed logit with unobserved inter- and
intra-individual heterogeneity, we also find that the maximum simulated likelihood
(MSL) estimator with analytical gradients is faster or not substantially slower
then the Bayesian Markov chain Monte Carlo (MCMC) method, which stands in
contrast to previous studies which used MSL with numerical gradients (see Becker
et al., 2018).
We ascribe the inability of mixed logit with unobserved inter- and intra-individual
heterogeneity to outperform standard mixed logit to the former’s predominant em-
phasis on nonstructural random heterogeneity. In light of recent advances at the
intersection of machine learning and econometrics, we discussed several promis-
ing alternative modelling approaches, which may offer superior prediction perfor-
mance by flexibly capturing dependencies between decision-makers, alternatives
and attributes.
Regardless of our findings, we argue that mixed logit with unobserved inter- and
intra-individual heterogeneity has a place in the literature as a variance decom-
position technique and for understanding behaviour, even though the model does
not offer substantially better predictive accuracy than standard mixed logit models
which only account for inter-individual heterogeneity. Whilst extant applications
of the model focus on decomposing taste variation into inter- and intra-individual
terms, future applications of the model may benefit from reconceptualising the
model as an instance of a hierarchical model (Gelman and Hill, 2006) and may
examine less granular nesting structures of observational units. In particular,
revealed preference data inherently provide many meaningful ways to organise
observational units into nests. For example, in a longitudinal study of the ca-
reer choices of high school graduates, the observational units are naturally nested
within schools, districts, graduation year etc.
Our analysis also includes comparisons of the unconditional out-of-sample pre-
dictive abilities of standard logit, standard mixed logit and mixed logit with un-
observed inter- and intra-individual heterogeneity. In both the simulation study
and the real data application, we find that the two types of mixed logit do not
offer substantial improvements in unconditional predictive accuracy over standard
logit. These observations are consistent with the literature (Cherchi and Cirillo,
2010, Wang et al., 2021, Zhao et al., 2020) and suggest that while mixed logit is
useful for explaining behaviour, as it can accommodate unobserved taste hetero-
geneity, unrestricted substitution patterns and correlation in unobservables over
time, mixed logit may not necessarily provide more accurate unconditional out-
of-sample predictions than standard logit.
Finally, we note that the out-of-sample prediction scenarios considered in this
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research note correspond to cases of internal validation (see Parady et al., 2021).
It would be instructive to assess to what extent our findings generalise to cases of
external validation, i.e. out-of-sample prediction using data from a different time
period or region or data gathered via a different method (see Parady et al., 2021).
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A Estimation details

A.1 Gradient of simulated log-likelihood

In what follows, we derive expressions for the gradients of the simulated log-
likelihood of mixed logit model with unobserved inter- and intra-individual het-
erogeneity. First, we let ϑi denote one of the model parameters collected in θ. We
have

∂

∂ϑi
SLL(Θ) =

N∑
n=1

1
D

∑D
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∂
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∏T
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1
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)
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)
.

(27)

To find the derivative in the numerator, we define

ψnt,d(θ) =
1

R

R∑
r=1

P(ynt|Xnt,βnt,dr) (28)

with

ψ ′nt,d(θ) =
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∂V(Xntj ′ ,βnt,dr)

∂ϑi
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.

(29)

Note that if the deterministic aspect of the utility is specified as linear-in-parameters,
i.e.

V(Xntj,βnt,dr) = X
>
ntj(ζ+ LBξn,d + LWξnt,r), (30)

we have ∂V(Xntj,βnt,dr)

∂ζ
= Xntj,

∂V(Xntj,βnt,dr)

∂LB
= Xntjξ

>
n,d, and

∂V(Xntj,βnt,dr)

∂LW
= Xntjξ

>
nt,r.

From the product rule of differentiation, it follows that

∂

∂ϑi

T∏
t=1

(
1

R

R∑
r=1

P(ynt|Xnt,βnt,dr)

)
=

(
T∏
t=1

ψnt,d(θ)

)(
T∑
t=1

ψ ′nt,d(θ)

ψnt,d(θ)

)
. (31)

A.2 Gibbs sampler

In what follows, we present one iteration of the Gibbs sampler for mixed logit with
unobserved inter- and intra-individual heterogeneity:

1. Update δB,k for all k ∈ {1, . . . , K} by sampling δB,k ∼ Gamma
(
νB+K
2
, 1
a2B,k

+ νB
(
Σ−1
B

)
kk

)
.
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2. Update ΣB by sampling ΣB ∼ IW
(
νB +N+K− 1, 2νBdiag(δB) +

∑N
n=1(µn −

ζ)(µn − ζ)
>
)
.

3. Update δW,k for all k ∈ {1, . . . , K} by sampling δW,k ∼ Gamma
(
νW+K
2
, 1
A2

W,k

+

νW
(
Σ−1
W

)
kk

)
.

4. Update ΣW by sampling ΣW ∼ IW
(
νW +

∑N
n=1 T + K − 1, 2νWdiag(δW) +∑N

n=1

∑T
t=1(βnt − µn)(βnt − µn)

>
)
.

5. Update ζ by sampling ζ ∼ N(µζ,Σζ), where Σζ =
(
Λ−1
0 + NΣ−1

B

)−1
and

µζ = Σζ

(
Λ−1
0 λ0 + Σ

−1
B

∑N
n=1 µn

)
.

6. Update µn for all n ∈ {1, . . . ,N} by sampling µn ∼ N(µµn,Σµn), where Σµn =(
Σ−1
B + TΣ−1

W

)−1
and µµn = Σµn

(
Σ−1
B ζ+ Σ

−1
W

∑T
t=1βnt

)
.

7. Update βnt for all n ∈ {1, . . . ,N} and t ∈ {1, . . . , T }:

(a) Propose β̃nt = βnt +
√
ρchol(ΣW)η, where η ∼ N(0, IK).

(b) Compute r = P(ynt|Xnt,β̃nt)φ(β̃nt|µn,ΣW)
P(ynt|Xnt,βnt)φ(βnt|µn,ΣW)

.

(c) Draw u ∼ Uniform(0, 1). If r ≤ u, accept the proposal. If r > u, reject
the proposal.

ρ is a step size, which needs to be tuned. We employ the same tuning mechanism
as Train (2009): ρ is set to an initial value of 0.1 and after each iteration, ρ is
decreased by 0.001, if the average acceptance rate across all decision-makers is
less than 0.3; ρ is increased by 0.001, if the average acceptance rate across all
decision-makers is more than 0.3.

B True population parameters in the simulation study

ζ =
[
−0.5 0.5 −0.5 0.5

]>
,ΩB = I4+α·


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

,ΩW = I4+α·


0 1 0 1

1 0 0 0

0 0 0 1

1 0 1 0



32


	Introduction
	Methodology
	Model formulation
	Estimation
	Maximum simulated likelihood (MSL)
	Markov chain Monte Carlo (MCMC)


	Simulation study
	Data and experimental setup
	Accuracy assessment
	Parameter recovery
	Predictive accuracy

	Implementation details
	Results

	Real data application
	Data, utility specification and implementation details
	Results

	Extended discussion
	Collaborative filtering
	Collaborative learning
	Amortised variational inference
	Neural network and tree-based models

	Conclusion
	Estimation details
	Gradient of simulated log-likelihood
	Gibbs sampler

	True population parameters in the simulation study

