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Abstract

This paper shows that in delegation problems, a biased principal can strictly
benefit from hiring an agent with misaligned preferences or beliefs. We consider
a “delegated expertise” problem in which the agent has an advantage in acquiring
information relative to the principal. We show that it is optimal for a principal who
is ex ante biased towards one action to select an agent who is less biased. Such an
agent is more uncertain ex ante about what the best course of action is and would
acquire more information. The benefit to the principal from a more informed deci-
sion always outweighs the cost of a small misalignment. We show that selecting an
optimally misaligned agent is a valuable tool, which performs on par with optimal
contracting (while imposing no additional cost on the principal) and outperforms
restricted delegation. All results continue to hold when delegation is replaced by
communication.

JEL-codes: D82, D83, D91, M51.

Keywords: delegation, rational inattention, heterogeneous beliefs, discrete choice.
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1 Introduction
Presidents, CEOs, and other leaders are often touted as visionaries, paving the way to a
brighter tomorrow. Yet they are not doing this alone. In their reforms they rely on advice
and expertise of others – yet they may hire advisors and experts who do not necessarily
share the same vision. For example, Lyndon Johnson was passionate about his economic
reform, “the War on Poverty”: “That’s my kind of program. I’ll find money for it one
way or another. If I have to, I’ll take away money from things to get money for people. ...
Give it the highest priority. Push ahead full tilt” (Bailey and Duquette, 2014). Chairing
Johnson’s Council of Economic Advisers was Walter Heller, who, while being one of
the original authors of the program, was no stranger to pushing against it, advocating
for fiscal responsibility and frugality, especially later in the 1960s.1 Similarly, Ronald
Reagan’s radical “Reaganomics” reforms clashed since early on with a more restrained
position of the Federal Reserve and its then-chairman Paul Volcker,2 but that did not stop
Reagan from renominating Volcker for a second term in 1983.

Why can it be beneficial for a partisan principal to hire an agent with a misaligned
vision? At first sight such a decision looks counterintuitive – e.g., Holmström (1980)
suggests that misalignment between a principal and an agent leads to a conflict of inter-
est, since from the principal’s point of view, the agent then makes suboptimal decisions.
A similar conclusion could be drawn from the political economy literature, which sug-
gests that political leaders trade off competence versus loyalty when selecting appointees
(Lewis, 2011) – one would think that misalignment depresses loyalty, while not neces-
sarily benefitting the competence. Yet, we show in this paper that even conditional on
competence, misalignment between a principal and an agent can lead to better decisions
or recommendations, and thus benefit a partisan principal.

To show this, we consider a delegation model in which a principal (she) and an agent
(he) have common payoffs from different actions given an unobserved state of the world,
but have misaligned prior beliefs about the state of the world.3 The agent does not have
any preexisting knowledge about the case he is asked to consider, but can use his expertise
to acquire additional information to make the best decision. The agent’s cost of learning
is not internalized by the principal, and her own cost of learning is prohibitively high.
This setting was labeled by Demski and Sappington (1987) as the “delegated expertise”
problem.

We show that when the principal is ex ante biased towards some action (in the sense
of having a non-uniform prior belief over which of the actions is optimal), it is optimal

1Crichton, K. 1987. “Walter Heller: Presidential Persuader.” The New York
Times, June 21. https://www.nytimes.com/1987/06/21/business/
walter-heller-presidential-persuader.html

2Atkinson, C. 1982. “Reagan, Volcker Meet to Discuss Policy Rift.” Wash-
ington Post, February 17. https://www.washingtonpost.com/archive/
business/1982/02/17/reagan-volcker-meet-to-discuss-policy-rift/
f0e448ae-a08d-46b9-aefd-5f4d5449b04f/

3In the context of our motivating examples, this can be interpreted as both the President and the
Economist having the same objective (strong economy, low inflation, high employment, etc.), but different
views on which monetary and fiscal tools should be used in order to achieve these objectives in a given situ-
ation. For instance, the President could believe tax cuts are more likely to benefit the economy, whereas the
Economist could advocate for a more restricted fiscal policy for sake of maintaining control over monetary
policy.
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for her to hire a misaligned agent. In particular, she benefits the most from delegating
to an agent who is ex ante less biased and hence more uncertain than she is about what
the best course of action is (Propositions 1 and 9, Theorem 1). This is because the more
uncertain the agent is, the more he learns about the state, and the better his action fits the
state – which benefits the principal.4 This, however, has to be balanced against the tilt:
any kind of misalignment between the principal and the agent leads to a tilt in the agent’s
decisions relative to what the principal would prefer. In the end, the principal prefers to
hire an agent who is more uncertain than she is, and who thus conducts a more thorough
investigation than an aligned agent would, – but who still favors the same action ex ante.
This result holds regardless of who has the final decision rights: the optimal delegation
strategy is the same whether the principal delegates the decision rights to the agent or
merely expects a recommendation on the optimal course of action (Proposition 10).

This conclusion has implications in various settings. One relates to bilateral relation-
ships – e.g., when an authority in a public organization wants to find the best expert to
delegate a decision to. Our findings provide conditions on the set of experts for delegation
to be beneficial, as well as an upper bound for the expected gains in such a delegation.
Moreover, if it is relatively straightforward for the authority to order available experts in
regards to their attitudes, we provide a useful directional behavioral tool: the authority
should look for an expert who shares similar views but is more uncertain or moderate.
Our second interpretation covers large organizations. We take heterogeneous priors as
different views of the people in organizations such as research teams, firms, and politi-
cal parties. Our results speak in favor of diversity of views in such organizations. We
characterize a useful diversity strategy for the leader: she benefits from having workers
with slightly more moderate views. Although the optimal agent is unique in our model,
our problem is static and one-shot. For other decision problems, the leader may have dif-
ferent opinions and, therefore, benefits from having workers with different views in the
organization.5

Importantly, the optimal degree of misalignment is non-monotone in the strength of
principal’s own bias (Corollary 1). If the principal is unbiased, then she would prefer an
aligned agent, since delegating to such an agent both maximizes learning and minimizes
tilt. The same, however, is true if the principal is extremely biased – in this case she is
almost certain that one action is better than all others, and might either take this action by
herself, or find an agent who is aligned with her and just as biased. Hiring a misaligned
agent is most optimal for the somewhat-biased principal, who ex ante prefers one action
over another, but still values the information that would be collected by the agent.

We further show that the principal can equivalently benefit from leveraging misalign-
ment in preferences rather than misalignment in beliefs. Namely, Theorem 2 states that
the best delegation outcome can be implemented by hiring an agent with either optimally
misaligned beliefs, or optimally misaligned preferences (or, equivalently, offering action-
contingent payments). This result has a mirror implication for the empirical literature

4“Learning more” here is meant in the sense of the expected uncertainty reduction from the principal’s
prior to posterior belief (as measured by mutual information between the two). This measure extends but is
not equivalent to the Blackwell order.

5Banerjee and Somanathan (2001) and Li and Suen (2004) present a counterargument to the benefits
of diversity, arguing that if a decision needs to be made by a collective, diverse collectives may have a
harder time agreeing on a decision and may produce worse outcomes. For a recent review on diversity in
organizations, see Shore et al. (2009).
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estimating discrete choice models: Theorem 2 implies that the agent’s observed action
choice probabilities alone do not allow an external observer to jointly identify the deci-
sion maker’s beliefs and preferences in our setting.

The main conclusion of our paper is that delegation to an agent with misaligned beliefs
is an instrument that is available – and valuable – to the principal. Not only that, but in our
setting this instrument can not be outperformed by contracts with action-contingent pay-
ments (Theorem 2) or outcome-contingent payments (Proposition 4). Conversely, mis-
alignment in beliefs can itself outperform contracting if we take the cost of contracts for
the principal into account. Further, misalignment is typically better than restricting the
agent’s choice set (Proposition 5). This benefit of misalignment challenges the opinion
that disagreement between the principal and the agent inevitably leads to a conflict, so
the principal should seek to hire an agent who is most aligned with her preferences and
beliefs (see Holmström, 1980; Crawford and Sobel, 1982; Prendergast, 1993; Alonso and
Matouschek, 2008; Egorov and Sonin, 2011; Che et al., 2013 for some examples of such
a message).

The existence of the principal’s trade-off between the amount of information acquired
by an agent and the tilt in his resulting decisions relies on the flexibility of the agent’s
learning technology. We capture this flexibility by using the Shannon model of discrete
rational inattention, which allows the agent to acquire arbitrary signals and parametrizes
the cost of such a signal through the expected entropy reduction (see Maćkowiak et al.,
2023 for a recent survey of the literature on rational inattention).6 The choice of a signal
in this model depends on the agent’s prior belief: an agent whose prior is skewed towards
some state of the world chooses a signal which is relatively more informative regarding
that state and thus allows him to make a better decision in that state. This dimension of
flexibility is what enables the tilt in the misaligned agent’s decisions.

Our results, however, are not specific to the Shannon entropy model and continue to
hold with other information cost specifications that allow for flexible learning, as shown
in Section 6.2 for the channel capacity cost (Woodford, 2012), the log-likelihood ratio
cost (Pomatto et al., 2023), and the class of uniformly posterior-separable information
cost functions that generalizes the Shannon entropy cost (Caplin et al., 2022). These ro-
bustness exercises also confirm that our results are driven by the fact that agents with
different prior beliefs seek out different information, and are not purely driven by the ar-
tifact that the cost of information is dependent on the agent’s prior belief (and so different
agents have different concepts of what the cheaper information is), which is inherent to
the posterior-separable cost functions.

Our paper mainly connects to the literature on delegation. Most papers on delegation
follow Holmström (1980) in assuming that the agent has preexisting private information
relevant to the decision. We adopt instead the “delegated expertise” setting of Demski and
Sappington (1987), where the agent has no information advantage over the principal ex
ante, but rather has to collect information, and the expertise grants him a learning advan-

6The entropy parametrization has been rationalized in both information theory as a cost function arising
from the optimal encoding problem (see Cover and Thomas, 2012) and decision theory as arising naturally
from Wald’s sequential sampling model (see Hébert and Woodford, 2019), and has been shown to work as a
microfoundation of the logit choice rule commonly used in choice estimation (Matějka and McKay, 2015).
We mainly explore the model of finding the best alternative, studied in Caplin et al. (2019); the Shannon
model with other preference specifications, including a binary-quadratic model closer to classic delegation
framework, is studied in Section 6.1.
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tage over the principal.7 Demski and Sappington (1987) explore a contracting problem in
a setting in which the agent chooses between a finite number of signal structures. Lind-
beck and Weibull (2020) extend this analysis to a rationally inattentive agent (who can
acquire any information subject to entropy costs).

Deimen and Szalay (2019) study a version of the delegated expertise problem, in
which the agent’s bias is also unknown ex ante, and show that communication outperforms
delegation in such a problem. Our results imply that this conclusion depends on the model
specifics, as in the setting we consider, communication and delegation yield identical
results. Szalay (2005) shows that restricting the agent’s action set could be a useful tool
in such a setting, since banning an ex ante optimal “safe” action can nudge the agent
to acquire more information about which of the risky actions is the best. Our grand
message is similar: the principal is willing to sacrifice something in exchange for the
agent acquiring more information, but we present a different channel through which the
principal can achieve this.

The closest to our paper is contemporary work by Ball and Gao (2021). They consider
a model of delegated expertise and demonstrate a result similar to that of Szalay (2005):
that banning the ex ante safe actions can lead to more information acquisition by the agent,
which benefits the principal. However, where Szalay (2005) looks at the scenario in which
the principal’s and the agent’s preferences coincide ex post (i.e., net of information costs),
Ball and Gao (2021) explore a model with misaligned preferences and show that the
principal may benefit from some misalignment between her preferences and those of the
agent. In their setting, this is due to divergence between the principal’s and the agent’s ex
ante optimal actions (due to preference misalignment), which makes banning the ex ante
agent-preferred action less costly for the principal. Our paper suggests a different channel
through which misalignment may incentivize the agent’s information acquisition: using a
flexible information acquisition framework, we show that misalignment can lead to more
information acquisition by the mere virtue of the agent being more uncertain than the
principal about what the optimal action is.

The effects of misalignment in prior beliefs are also studied by Che and Kartik (2009).
They analyze a delegated expertise game in which the principal retains the decision rights,
and the agent, after acquiring the relevant information, chooses whether to disclose it to
the principal. They show that the need to communicate may incentivize a misaligned
agent to acquire more information than an aligned one, in order to more effectively per-
suade the principal about which action needs to be taken, as well as to avoid the punish-
ment for concealing evidence. As we show in Section 6.3, both the persuasion and the
prejudice avoidance channels are absent from our model, even if we consider communi-
cation (as opposed to delegation, as in the baseline model). Our explanation of the desir-
ability of misalignment is thus completely separate from that of Che and Kartik (2009).
We argue instead that agents are heterogeneous in their ex ante uncertainty regarding the
optimal action, and this heterogeneity can be exploited by hiring a more uncertain agent,
who would put more effort into learning the state – even if such an agent would be mis-
aligned relative to the principal. Our setup further allows us to obtain novel comparative

7Graham et al. (2015) show that delegation tends to be used when the decision-making demands more
evidence that the delegatee can provide. Alternatively, the choice to delegate a decision is often associated
with a volatile environment that a delegator faces (Foss and Laursen, 2005; Ekinci and Theodoropoulos,
2021), where any knowledge quickly becomes obsolete.
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statics results and show that the optimal misalignment is non-monotone in the principal’s
bias.

Finally, there exists a literature that argues in favor of misaligned delegation in strate-
gic settings, as a way to commit to a certain strategy. Examples include Rogoff (1985);
Segendorff (1998); Kockesen and Ok (2004); Stepanov (2020), and Ispano and Vida
(2022). We differ from that literature in focusing on delegation of non-strategic decisions,
showing how misalignment may be beneficial even in the absence of a strategic counter-
party. Additionally, a separate literature argues that people may have intrinsic preferences
for potentially biased information, see Masatlioglu et al. (2023) for a recent example. We
abstract from such considerations and focus on a setting in which information has purely
instrumental value.

The remainder of the paper is organized as follows: Section 2 formulates the main
model, which is then analyzed in Section 3 for the special case of binary states and actions,
while Section 4 analyzes the general problem. Section 5 compares misaligned beliefs as
a delegation tool to other tools, such as misaligned preferences, payments, and restricting
the action set. Section 6 explores a number of extensions of the baseline model, and
Section 7 concludes.

2 Model

2.1 The Story
We begin by explaining verbally the outline of the model and justifying some of the
assumptions made therein; the formal setup follows in Section 2.2.

Consider a principal (she) who would like to implement an optimal decision that de-
pends on the unknown state of the world. To choose the best course of action, the principal
delegates the decision to an expert (an agent, he), who has a learning advantage in acquir-
ing information about the state and the optimal decision. For simplicity, we assume that
the agent’s learning costs (defined further) are finite and the principal’s are infinite, but the
results extend naturally to the case when the principal’s learning costs are finite but larger
than the agent’s. Further, Section 6.3 demonstrates that communication is equivalent to
delegation in our setting (barring the equilibrium multiplicity), so it is not important for
our results whether the principal or the agent makes the final decision.

There are many experts available to the principal, and all experts have a common in-
terest with the principal, but differ in their opinions on the issue (Section 5.1 demonstrates
the connection of our results to the case of common beliefs but misaligned preferences).
These prior beliefs of different agents are observable by the principal – e.g., due to the
agents’ reputation concerns (i.e., agents needing to publicly establish a particular stance
on a broad policy question for sake of earning, and subsequently capitalizing on, a spe-
cific reputation). Experts with different initial opinions would acquire different informa-
tion, and thus possibly make different final decisions. The principal is thus concerned
with choosing the best agent for the job. Alternatively, our results can be interpreted as
comparative statics for a game between a principal and a given agent with some fixed
misalignment, w.r.t. the degree of misalignment. That said, we believe that a literal in-
terpretation of selecting one agent from a population with heterogeneous beliefs is valid
as well. Kahneman et al. (2021) survey a large body of evidence suggesting that similar
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experts and decision-makers in similar conditions make extremely different judgements
and predictions, with a large share of these differences attributable to the interpersonal
heterogeneity (and a smaller share being due to intra-personal noise in decision-making).
We argue that this heterogeneity can be leveraged by the principal through selecting an
agent whose bias fits a given problem the most.8

2.2 The Setup
The above can be modeled as a game played between a principal and a population of
agents. Let A denote the set of actions with a typical element a, and Ω denote the set of
states with a typical element ω. We assume that both A and Ω are finite. The principal
has a prior belief µp ∈ ∆(Ω), where ∆(Ω) denotes the set of all probability distributions
on Ω. Every agent in the population has some prior belief µ ∈ ∆(Ω), which is observable
by the principal.9 In what follows, we refer to an agent according to his prior belief. Let
M ⊆ ∆(Ω) denote the set of prior beliefs of all agents in the population.10

The terminal payoff that both the principal and the agent selected by the principal
receive when action a is chosen in state ω is given by u(a,ω). Prior to making the de-
cision, the selected agent can acquire additional information about the realized state. We
assume that the agent can choose any signal structure defined by the respective conditional
probability system ϕ : Ω → ∆(S), which prescribes a distribution over signals s ∈ S for
all states ω ∈ Ω, where S is arbitrarily rich. The information is costly: when choosing a
signal structure ϕ, the agent must incur cost c(ϕ,µ) that depends on the informativeness
of the signal ϕ and the agent’s prior belief µ.11

The cost function we consider is the Shannon entropy cost function used in rational
inattention models (Matějka and McKay, 2015). In this specification, the cost is propor-
tional to the expected reduction in entropy of the agent’s belief resulting from receiving
the signal (we consider other cost functions in Section 6.2 to show that our results do not
depend on this particular specification). Namely, let η : S → ∆(Ω) denote the agent’s

8Note that the evidence presented by Kahneman et al. (2021) implies that the population of principals
would also be heterogeneous in their judgements of a given decision problem. This, together with the
inherent heterogeneity of problems, would create demand for a wide variety of experts – and hence mitigate
the agents’ desire to conceal or misrepresent their biases.

9To clarify, we work with a model of non-common prior beliefs about ω, and we take this assumption
at face value. Such settings are not uncommon in economic theory: see Morris (1995); Alonso and Câmara
(2016); Che and Kartik (2009) for some examples and discussion. It is well known (see Aumann, 1976;
Bonanno and Nehring, 1997) that agents starting with a common prior can not commonly know that they
hold differing beliefs. We allow the agents to have heterogeneous prior beliefs, and thus to “agree to
disagree”. While it may be possible to replicate our results in a common-prior model with asymmetric
information, where an agent’s ex ante belief is affected by some private information not observed by the
principal, such a model would feature signaling concerns (e.g., an agent learning something about the
principal’s information about the state from the fact that he was chosen for the job, and the principal then
exploiting this inference channel). We prefer to abstract from such signaling and simply assume non-
common priors from the start.

10For many of the results we assume that the population of agents is rich enough to represent the whole
spectrum of viewpoints: M = ∆(Ω).

11Similar to, e.g., Alonso and Câmara (2016), we assume that the agent and the principal share the
understanding of the signal structure. Combined with them having different (subjective) prior beliefs over
states, this implies they would also have different (subjective) posterior beliefs if both could observe the
signal realization.
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posterior belief system, obtained from µ and ϕ using the Bayes’ rule. The cost is then
defined as

c(ϕ,µ) ≡ λ

(
−

∑
ω∈Ω

µ(ω) lnµ(ω)+

+
∑
ω∈Ω

∑
s∈S

(∑
ω ′∈Ω

µ(ω ′)ϕ(s|ω ′)

)
η(ω|s) lnη(ω|s)

)
, (1)

where λ ∈ R++ is a cost parameter.12 We assume that the principal does not internalize
the cost of learning, and the agent fully bears this cost. The main interpretation (shared
by, e.g., Lipnowski et al., 2020) of this assumption is that the cost reflects the cognitive
process of the agent. Information acquisition costs thus lead to moral hazard, with the
agent potentially not willing to acquire the amount of information desired by the principal.
This is the main conflict between the two parties in our model.

In line with the delegation literature, we assume that the principal cannot use monetary
or other kinds of transfers to manage the agent’s incentives. This is primarily because
learning is non-contractible in most settings – indeed, it is difficult to think of a setting,
in which a learning-based contract could be enforceable, i.e., either the principal or the
agent could demonstrate beyond reasonable doubt exactly how much effort the agent has
put into learning the relevant information, and what kind of conclusions he has arrived
at. A simpler justification of the no-transfer assumption could be that such transfers are
institutionally prohibited in some settings (see Laffont and Tirole, 1990; Armstrong and
Sappington, 2007; Alonso and Matouschek, 2008 for some examples and a discussion of
such settings). Section 5 shows, however, that even when contracting is feasible, it does
not improve upon hiring an agent with a misaligned belief, and neither can restricting the
set of actions that the agent is allowed to choose from.

The game proceeds as follows. In the first stage, the principal selects an agent from
the population based on the agent’s prior belief µ. In the second stage, the selected agent
chooses signal structure ϕ and pays cost c(ϕ,µ). In the third stage, the agent receives
signal s according to the chosen signal structure ϕ and selects action a given s. Payoffs
u(a,ω) are then realized for the principal and the agent.

The following subsections describe the respective optimization problems faced by the
principal and her selected agent, and introduce the equilibrium concept.

2.3 The Agent’s Problem
The agent selected by the principal chooses a signal structure ϕ : Ω → ∆(S) and a choice
rule σ : S → A to maximize his expected payoff net of the information costs. The agent’s
objective function is

E[u(a,ω)|µ] − c(ϕ,µ) =
∑
ω∈Ω

µ(ω)
∑
s∈S

ϕ(s|ω)u(σ(s),ω) − c(ϕ,µ).

The agent’s problem can then be written down as

max
ϕ,σ

{∑
ω∈Ω

µ(ω)
∑
s∈S

ϕ(s|ω)u(σ(s),ω) − c(ϕ,µ)

}
. (2)

12We follow the standard convention and let 0 ln 0 = 0.
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Lemma 1 in Matějka and McKay (2015) shows that problem (2) with entropy cost
function can be reframed as a problem of selecting a collection of conditional choice
probabilities. This reformulation is presented in Section 2.6.

2.4 The Principal’s Problem
The principal’s problem is to choose an agent to delegate to. The choice is based on the
agent’s prior belief µ ∈ M in order to maximize her expected utility from the action
eventually chosen by the chosen agent. Her objective function is

E[u(a,ω)|µp] =
∑
ω∈Ω

µp(ω)
∑
s∈S

ϕ(s|ω)u(σ(s),ω),

so her optimization problem can be written down as

max
µ

{∑
ω∈Ω

µp(ω)
∑
s∈S

ϕµ(s|ω)u(σµ(s),ω)

}
,

s.t. (ϕµ, σµ) solves (2) given µ,

(3)

where the choice of agent µ affects the signal structure ϕµ and the choice rule σµ chosen
by the agent. Therefore, the principal’s problem is effectively that of choosing a pair
(ϕ, σ) from a menu given by the agents’ equilibrium strategies.

2.5 Equilibrium Definition
We now present the equilibrium notion used throughout the paper; the discussion follows.

Definition (Equilibrium). An equilibrium of the game is given by (µ∗, {ϕ∗
µ, σ

∗
µ}µ∈M): the

principal’s choice µ∗ ∈ M of the agent who the task is delegated to and a collection of the
agents’ information acquisition strategies ϕ∗

µ : Ω → ∆(S) and choice rules σ∗
µ : S → A

for all µ ∈ M, such that:

1. ϕ∗
µ and σ∗

µ constitute a solution to (2) for every µ ∈ M;

2. µ∗ is a solution to (3) given (ϕ∗
µ, σ

∗
µ).

Note that the above effectively defines a Subgame-Perfect Nash Equilibrium. Ravid
(2020) and Cusumano et al. (2024) show that solving games with rationally inattentive
players becomes tricky when such players’ beliefs are endogenous, and care is required
in defining an equilibrium. While our game features incomplete information (about the
state of the world chosen by Nature), and the players’ beliefs play a central role in the
analysis, problem formulations (2) and (3) allow us to treat these beliefs as exogenous
parameters or regular maximization variables entering the terminal payoff functions. This
is because one player’s actions do not affect another player’s beliefs in this game, hence a
belief consistency requirement is not needed (however, we do require internal consistency
in that the agent’s posterior belief η is obtained by updating his prior belief µ via Bayes’
rule given his requested signal structure ϕ).
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2.6 Preliminary Analysis
Matějka and McKay (2015) show that with entropy costs, the agent’s problem of choosing
the information structure and choice rule can be reduced to the problem of choosing the
conditional action probabilities. Namely, the maximization problem of the agent can be
rewritten as that of choosing a decision rule π : Ω → ∆(A) (which is a single state-
contingent action distribution, as opposed to the combination of a signal strategy ϕ :
Ω → ∆(S) and a choice rule σ : S → A):

max
π

{ ∑
ω∈Ω

µ(ω)

(∑
a∈A

π(a|ω)u(a,ω)

)
− c(π, µ)

}
, (4)

where c(π, µ) denotes, with abuse of notation, the information cost induced by the action
distribution π.13 Lemma 2 in the online appendix of Matějka and McKay (2015) implies
that with the utility functions we adopt in the remainder of the paper, the agent’s problem
has a unique solution in either formulation (up to signal labels). Let β(ai) denote the re-
spective unconditional probability of choosing alternative ai (calculated using the agent’s
own prior belief µ):

β(a) ≡
∑
ω∈Ω

µ(ω)π(a|ω).14 (5)

The principal’s problem can then be rewritten as choosing µ ∈ M that solves

max
µ

{∑
ω∈Ω

µp(ω)

(∑
a∈A

πµ(a|ω)u(a,ω)

)}
,

s.t. πµ solves (4) given µ.

(6)

In what follows, we refer to problem (6) as the principal’s full problem. Our main interest
in what follows lies in the properties of the solution µ∗ of the full problem and the chosen
agent’s optimal strategy πµ∗ .

We now proceed to analyze the model described above.

3 Binary Case
We start by looking at the binary-state, binary-action version of the model, since the
results can be presented more clearly in such a setting than in either the general model with
N states (explored in Section 4), or a quadratic-loss model more frequently encountered in
delegation literature (explored in Section 6.1).15 We show that the principal has to balance

13Cost c(π, µ) is calculated as the cost c(ϕ,µ) of the cheapest strategy (ϕ, σ) that generates decision
rule π. The choice rule in such a strategy is deterministic, and the signal strategy prescribes at most one
signal per action (Matějka and McKay, 2015, Lemma 1).

14Given this notation, we can express c(π, µ) as

c(π, µ) = λ

(∑
ω∈Ω

µ(ω)

(∑
a∈A

π(a|ω) lnπ(a|ω)

)
−

∑
a∈A

β(a) lnβ(a)

)
.

15Such a double-binary model is common in the delegation literature, see e.g. Li and Suen (2004) with a
slightly different informal story.

10



off the amount of information acquired against the nature of information acquired – since
agents with different prior beliefs tilt their learning towards different states. This makes
the principal favor agents who are somewhat more uncertain than her regarding the state,
but who do not necessarily have a uniform prior belief (Proposition 1).

Assume that the state space is Ω = {l, r} and with abuse of notation let us represent
beliefs µ by the probability they assign to state r, so µ ∈ [0, 1]. Assume further that the
action set is A = {L, R}, and the common utility net of information costs that the principal
and the agent get from the decision is given by u(L|l) = u(R|r) = 1 and u(L|r) =
u(R|l) = 0. We proceed by backward induction, looking at the agent’s problem first, and
then using the agent’s optimal behavior to solve the principal’s problem of choosing the
best agent.

The agent is allowed to choose any informational structure (Blackwell experiment)
he wants, paying the cost which is proportional to the expected reduction of the Shannon
entropy of his belief. Using the result presented in Section 2.6, the agent’s problem can
be reformulated as the problem of choosing a stochastic decision rule π : Ω → ∆(A),
which solves

max
π

{
µπ(R|r) + (1− µ)π(L|l) − c(π, µ)

}
. (7)

The solution to this problem can be summarized by the two precisions {π(R|r), π(L|l)}
or, alternatively, the two unconditional probabilities {β(R), β(L)}. Using Theorem 1 in
Matějka and McKay (2015), we get that

π(L|l) =
β(L)e

1
λ

β(L)e
1
λ + β(R)

, π(R|r) =
β(R)e

1
λ

β(L) + β(R)e
1
λ

, (8)

and their Corollary 2 implies that

β(R) =
µe

1
λ − (1− µ)

e
1
λ − 1

, β(L) =
e

1
λ (1− µ) − µ

e
1
λ − 1

, (9)

cropped to [0, 1].16 Combining (8) and (9), we get that the solution to problem (7) is given
by17

π(R|r) =

(
µe

1
λ − (1− µ)

)
e

1
λ(

e
2
λ − 1

)
µ

,

π(L|l) =

(
(1− µ)e

1
λ − µ

)
e

1
λ(

e
2
λ − 1

)
(1− µ)

,

(10)

cropped to [0, 1]. Figure 1 demonstrates how the agent’s action precisions choice depends
on his prior belief.

16Hereinafter, “f = g cropped to [0, 1]” means “f = min
{
1,max

{
0, g

}}
”.

17This solution takes the form of the so-called rational inattention (RI) logit. In comparison to the stan-
dard logit behavior, under RI-logit the decision-maker (the agent in our case) has a stronger tendency to
select the ex ante optimal alternatives more frequently.
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Figure 1: Solution of the agent’s problem (7) for different prior beliefs µ.

In turn, the principal’s problem is

max
µ

{µpπµ(R|r) + (1− µp)πµ(L|l)} ,

s.t. πµ solves problem (7) given µ.
(11)

It is easy to see by comparing the payoffs in (7) and (11) that the principal benefits from
higher precisions π(R|r) and π(L|l), the same as the agent. However, the relative weights
the principal and the agent assign to these precisions depend on their respective priors
µp and µ, and are hence different. Hence, in order to understand the trade-offs that the
principal faces in hiring agents with different priors, we need to explore how the agent’s
optimal strategy (10) depends on his prior belief µ.

When solving problem (7), the agent faces a trade-off between increasing the precision
of his decisions, π(R|r) and π(L|l), and the cost of information. Further, he prefers to
learn more about the more probable event: the higher is the probability that the agent’s
prior belief assigns to ω = r, the more important is precision π(R|r) for his payoff,
compared to π(L|l). Therefore, two agents with different beliefs would acquire different
information, leading to different precisions π(R|r) and π(L|l).18 At the same time, the
closer is the prior belief µ to the extremes (µ = 0 or µ = 1), the more confident is the
agent about what the state is, and the less relevant is the precision in the other state for
him, leading to such an agent acquiring less information in total.

To summarize, the agent’s belief µ affects his optimal decision precisions in two ways:
a more uncertain agent acquires more information (and hence makes a better decision
on average) than an agent who believes one state is more likely. However, the latter is
more concerned with choosing the correct action in the ex ante more likely state, while
neglecting the other state.

The principal prefers, ceteris paribus, to hire an agent who acquires more information
and hence makes better choices – i.e., a more uncertain agent (µ close to 0.5). However,
if she believes that, e.g., state r is ex ante more likely (µp > 0.5), then she, for all the
same reasons as the agent, cares more about the agent choosing the optimal action in state

18This feature of the flexible information acquisition model was analyzed in the application to belief
polarization by Nimark and Sundaresan (2019), as well as in the marketing literature (see Jerath and Ren,
2021).
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Figure 2: The principal’s problem (µp = 0.7).

r than in state l. The latter leads her to prefer an agent who is not completely uncertain
(µ ̸= 0.5), favoring those who agree with her in terms of which state is more likely
(µ > 0.5). Balancing the two issues leads to the principal optimally hiring an agent who
has a belief different from hers: µ ̸= µp, yet who agrees with her ex ante on the optimal
action: µ ≥ 0.5 ⇐⇒ µp ≥ 0.5.

Figure 2 presents the principal’s problem visually when µp = 0.7. Panel (a) plots
the principal’s “budget set” in the space of two precisions π(R|r) and π(L|l) (solid blue
line), given by the precision pairs optimally chosen by an agent with some prior belief
µ ∈ [0, 1]. Also plotted is the highest indifference curve the principal can achieve (yellow
dashed line). The indifference curves are linear, with the slope given by the ratio of
probabilities the principal assigns to the two states: µp

1−µp
. Panel (b) plots the principal’s

expected utility from hiring an agent as a function of the agent’s belief µ.
We can see from the two panels of Figure 2 that the principal with a prior belief

µp = 0.7 would prefer to hire an agent with a prior belief µ ≈ 0.6. Note that the graph in
panel (b) is flat for very high and very low µ, which corresponds to the agents who do not
learn anything, and simply always choose the ex ante optimal action. Further, agents with
low µ (e.g., µ ≈ 0.15) acquire non-trivial information, but hiring them is worse for the
principal than simply taking the ex ante optimal action for sure (equivalent to hiring an
agent with µ = 1). In other words, if an agent is too biased, the information he acquires
does not benefit the principal due to the tilt in the agent’s actions relative to what the
principal would have chosen.

It should be noted that throughout this paper, when we say that a more unbiased agent
acquires “more information”, the latter is meant in terms of mutual information of the
optimal signal structure ϕ∗

µ and the principal’s belief µp, given by c(ϕ∗
µ,µp)

λ
. Intuitively, one

can think of this informativeness measure as the number of bits that the principal needs
to encode the information contained in ϕ∗

µ. This informativeness measure imposes an
order on experiments ϕ that completes (and therefore respects) the Blackwell order. That
said, our statements should not be understood in the sense of Blackwell order: Figure
1 shows that the experiments chosen by any two different agents are (either the same,
or) Blackwell-incomparable, since the Blackwell order would require for both precisions
π(R|r), π(L|l) to be higher in one experiment than in another.
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Figure 3: The optimal delegation strategy µ∗ as a function of the principal’s prior belief
µp.

Proposition 1 below formalizes the intuition above and provides a closed-form solu-
tion for the optimal delegation strategy given the principal’s prior belief µp. Figure 3
visualizes the optimal delegation strategy as a function of µp.

Proposition 1. If M = [0, 1], then the principal’s optimal delegation strategy is given by

µ∗(µp) =

√
µp

√
µp +

√
1− µp

. (12)

Therefore, if µp ∈
(
1
2
, 1
)
, the principal optimally delegates to an agent with belief µ ∈(

1
2
, µp

)
.

Remark. The result in Proposition 1, including the functional form (12), is not exclusive
to the Shannon model and is robust to other information cost specifications (see Section
6.2) and other preference specifications (see Section 6.1).

From Proposition 1 and Figure 3 we can immediately see that misalignment is most
beneficial to a moderately-biased principal, while if µp is close to either 0.5 or 1, then it
is best to hire an (almost-)aligned agent. This is summarized by Corollary 1 below.

Corollary 1. The optimal misalignment |µp − µ∗(µp)| is single-peaked in µp ∈
(
1
2
, 1
)
.

One thing to note about Proposition 1 is that the optimal delegation strategy (12) does
not depend on the agent’s information cost factor, λ. While it is immediate that the higher
is λ, the less information the agent with any given prior µ collects, Proposition 1 serves
to show that the trade-off between the quantity of information and the tilt in the decisions
does not depend on the absolute quantity of information the agent acquires. Section 6.2
does, however, suggest that this specific conclusion is likely an artifact produced by the
entropy information cost function.

Figure 4 demonstrates the difference in action precisions π(R|r), π(L|l) between del-
egating to a perfectly aligned agent (µ = µp) and the optimally misaligned agent as given
by (12). Optimal delegation leads to the agent consuming more information, lowers the
probability of correctly matching the ex ante more likely (according to the principal’s
belief µp) state, π(R|r), and increases π(L|l), thereby bringing the two closer together.
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Figure 4: Action precisions under optimal delegation and delegating to the aligned agent.

Overall, under the optimal delegation, the ex ante less attractive option (as seen by both
the principal and the agent) is implemented relatively more frequently as compared to the
case of the aligned delegation. The principal’s benefit from a higher π(L|l) under optimal
delegation outweighs her loss from a lower π(R|r) than under aligned delegation.

Here, an interesting connection can be made to prospect theory (see Barberis, 2013
for a review). In particular, Tversky and Kahneman (1992) suggest that in problems of
choice under risk, individual decision-makers tend to succumb to cognitive biases such
as overweighing small probabilities and underweighing large probabilities. They propose
a probability weighting function that decision-makers unconsciously use, which is rem-
iniscent of our optimal delegation strategy (12), with µp being the objective probability
and µ∗ being the decision-maker’s perceived probability. Our result can thus be inter-
preted as one possible evolutionary explanation of the probability weighting functions.
Namely, suppose that “Nature” (evolutionary pressure) is the principal and “Human” is
the agent. They both have common utility function u(a,ω) representing the survival
probability of the individual/population, but natural selection is indifferent towards the
human’s cognitive costs c(ϕ,µ) involved in the decision-making process. In this setting,
natural selection would lead humans to develop probabilistic misperceptions according to
(12), since these maximize the survival probability.19

In the next section, we generalize the binary model, assuming more available alterna-
tives, while keeping the structure of the payoffs the same.

4 General Case
In this section, we extend the analysis to a general problem of finding the best alternative,
allowing for N > 2 actions and states. We show that the principal’s optimal delegation
strategy is qualitatively the same as in the binary case, i.e., it is optimal to hire a “more
uncertain” agent who investigates more actions in search of the best one than a fully
aligned agent. Further, we characterize the whole set of decision rules that can be achieved

19Steiner and Stewart (2016) suggest an alternative explanation of probabilistic misperceptions using a
similar nature-as-a-principal approach, but a different source of conflict between Nature and Human.

15



by selecting the agent’s prior belief and show that it coincides with what can be achieved
by selecting action-contingent subsidies for the agent.

We are now looking at the model with A ≡ {a1, ..., aN} and Ω ≡ {ω1, ...,ωN} for
some N, and the preferences are given by u(ai,ωi) = 1 and u(ai,ωj) = 0 if i ̸= j.
Without loss of generality, we assume that the principal’s belief µp ∈ ∆(Ω) is such that
µp(ω1) ≥ µp(ω2) ≥ . . . ≥ µp(ωN) (otherwise states and actions can be relabeled as
necessary; here µp(ω) denotes the probability that belief µp assigns to state ω). As
before, results from Section 2.6 apply, meaning that the agent’s problem is equivalent to
choosing the action distribution π : Ω → ∆(A) to maximize (4), and the principal selects
an agent according to his prior µ ∈ M to maximize (6). We do not restrict the choice of
agents and let M = ∆(Ω) (i.e., for any probability distribution µ ∈ ∆(Ω), the principal
can find and hire an agent with prior belief µ).

4.1 Agent’s Problem
Proceeding by backward induction, we start by looking at the problem of an agent with
some prior belief µ. Invoking Theorem 1 from Matějka and McKay (2015), as we did in
the binary case, we obtain that the agent’s optimal decision rule satisfies:

π(ai|ωj) =
β(ai)e

u(ai,ωj)

λ∑N
k=1 β(ak)e

u(ak,ωj)

λ

, (13)

where β(ai), defined in (5), is the unconditional choice probability according to the
agent’s prior belief µ, and itself depends on {π(ai|ωj)}

N
j=1. While (13) does not provide a

closed-form solution for the decision rule π(ai|ωj), it implies that the conditional choice
probabilities π are uniquely determined given the unconditional choice probabilities β,
and this mapping depends solely on the agent’s payoffs and not on his prior belief. In
what follows, we use the implication that a collection of the unconditional choice proba-
bilities β pins down the whole decision rule π and use β to summarize the agent’s chosen
decision rule.

The above is not to say that closed-form expressions cannot be obtained. Caplin et al.
(2019) show (see their Theorem 1) that in the setting of Matějka and McKay (2015), an
agent with a prior belief µ optimally chooses a decision rule that generates unconditional
choice probabilities

β(ai) = max

0,
1

δ

(K(β) + δ)µ(ωi)∑
j∈C(β)

µ(ωj)
− 1


 , (14)

where δ ≡ e
1
λ−1; C(β) ≡ {i ∈ {1, ...,N} : β(ai) > 0} denotes the consideration set, i.e.,

the set of actions that are chosen with strictly positive probabilities, and K(β) ≡ |C(β)|
denotes the power (number of actions in) this set.

4.2 Principal’s Relaxed Problem
As mentioned previously, (13) implies that a collection of the unconditional choice prob-
abilities β pins down the whole decision rule π. Let us then consider a relaxed problem
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for the principal, in which instead of choosing the agent’s prior µ, she is free to select the
unconditional choice probabilities β ∈ ∆(A) directly:

max
β

{
N∑
j=1

µp(ωj)

(
N∑
i=1

β(ai)e
u(ai,ωj)

λ∑N
k=1 β(ak)e

u(ak,ωj)

λ

u(ai,ωj)

)}
. (15)

In the above, we used (13) to represent the conditional probabilities π(ai|ωj) in (6) in
terms of the unconditional probabilities β(ai). In Section 4.3 we show that the solution
to this relaxed problem is implementable in the full problem – i.e., that there exists an
agent’s belief µ that generates the principal-optimal choice probabilities β.

Note that β(ai) in the above represents the probability with which an agent expects to
select action ai. The principal’s expected probability of ai being selected,

∑N
j=1 µp(ωj)π(ai|ωj),

would generically be different, since her prior belief µp is different. Despite the potential
confusion this enables, analyzing the principal’s problem through the prism of choosing β

is the most convenient approach due to the RI-logit structure of the solution to the agent’s
problem.

Given the state-matching preferences u(aj,ωj) = 1, u(ai,ωj) = 0 if i ̸= j, we can
simplify (15) to

max
β

{
N∑
j=1

µp(ωj)
β(aj)e

1
λ

1+ δβ(aj)

}
. (16)

We can now state the solution to the principal’s problem as follows.

Lemma 1. The solution to the principal’s relaxed problem (16) is given by

β∗(ai) = max

0,
1

δ

(K(β∗) + δ)
√
µp(ωi)∑

j∈C(β∗)

√
µp(ωj)

− 1


 ,

where δ ≡ e
1
λ − 1.

Lemma 1 describes the solution in terms of the action choice probabilities, which do
not necessarily give the reader a good idea of its features and the intuition behind this
solution. We explore these in more detail in Section 4.4. Before that, however, we need
to ensure that this solution is attainable in the principal’s full problem, which is done in
the following section.

4.3 Principal’s Full Problem
The question this section explores is: can the principal generate choice probabilities β∗

by appropriately choosing the agent’s prior belief µ? In the binary case, the answer was
trivially “yes”: due to continuity of the agent’s strategy, by varying the agent’s belief µ(r)
between 0 and 1, the principal could induce any unconditional probability β(R). In the
multidimensional case, this is not immediate. However, the following result shows that
the result still holds with N actions and states under state-matching preferences.
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Lemma 2. In the principal’s full problem (6), any vector β ∈ ∆(A) of unconditional
choice probabilities is implementable: there exists a prior belief µ ∈ ∆(Ω) such that
β(ai) =

∑N
j=1 µ(ωj)π

∗
µ(ai|ωj), where π∗

µ solves the agent’s problem (4) given µ.

The lemma states that if M = ∆(Ω), then the principal can generate any vector of
unconditional action probabilities. Note that this does not imply that she is able to select
any decision rule π(ai|ωj) – if this were the case, under the state-matching preferences
she would simply choose to have π(ai|ωi) = 1 for all i. However, Lemma 2 does imply
that the choice probabilities described in Lemma 1 – those that solve the principal’s re-
laxed problem, – are implementable and thus also solve her full problem. The result does,
however, rely on the state-matching preferences: we show in Section 5.1 that it does not
hold for arbitrary payoff functions.

4.4 Properties of the Optimal Delegation Strategy
While Lemma 1 presents the solution of the principal’s problem in terms of the uncondi-
tional choice probabilities, this representation is not the most visual. We now demonstrate
some implications of this solution in terms of other variables. Namely, Theorem 1 extends
Proposition 1 and shows how the chosen agent’s prior belief relates to that of the principal.
Proposition 2 then compares actions taken under optimal delegation vs aligned delegation.

We begin by looking at the optimal agent choice in terms of the agent’s belief µ∗.

Theorem 1. The principal’s equilibrium delegation strategy µ∗ is such that for all i, j ∈
{1, ...,N}:

µ∗(ωi)

µ∗(ωj)
=

√
µp(ωi)√
µp(ωj)

.

This characterization directly implies the following:

1. µ∗(ω1) ≥ ... ≥ µ∗(ωN);

2. µ∗(ω1) ≤ µp(ω1) and µ∗(ωN) ≥ µp(ωN), with equalities if and only if µp(ω1) =
... = µp(ωj);

3. distribution µ∗ is majorized by µp;20

4. µ∗ has higher entropy than µp.

The intuition behind the result above is the same as that behind Proposition 1: the
optimally chosen agent is more uncertain than the principal between any given pair of
states. To see this, note that if µp(ωi) > µp(ωj) then 1 < µ∗(ωi)

µ∗(ωj)
<

µp(ωi)

µp(ωj)
– i.e., the agent

believes state ωi is ex ante more likely than ωj, as the principal does, but he assigns

20A discrete probability distribution µp is said to majorize another distribution µ∗ if both probability
vectors are sorted in a descending order and for all k ∈ {1, ...,N}:

k∑
i=1

µ∗(ωi) ≤
k∑

i=1

µp(ωi).
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relatively less weight to ωi. This applies to any pair of states. Thus, the implication is
that the optimal agent must assign a lower ex ante probability to ω1, the most likely state
according to the principal, than she does, and vice versa for ωN. Note further that the re-
sult in Theorem 1 is again independent of λ, implying that the optimal delegation strategy
is determined by the relative trade-off between the quantity of information acquired and
the tilt introduced in actions by the misalignment in beliefs, but the absolute quantity of
information acquired is irrelevant. In particular, hiring an agent with µ∗ is optimal even
when he acquires no information, and another agent µ is available, who would be willing
to invest effort in learning ω (since such a µ-agent would be too misaligned relative to
the principal).

We now switch to comparing the choices made under optimal delegation to those that
would arise under aligned delegation – i.e., if the principal selected an agent with µ = µp.
Let β̄ denote the choice probabilities that would be generated under aligned delegation.
Caplin et al. (2019) show that these probabilities β̄, as a function of the agent’s prior µ,
are given by (see their Theorem 1)

β̄(ai) = max

0,
1

δ

(K(β̄) + δ)µ(ωi)∑
j∈C(β̄)

µ(ωj)
− 1


 . (17)

Since µp(ω1) > ... > µp(ωN), the consideration set in the aligned problem is then simply
C(β̄) = {1, ..., K̄}, and its size K̄ ≡ K(β̄) is the unique solution of

µp(ωK̄) >
1

K̄+ δ

K̄∑
j=1

µp(ωj) ≥ µp(ωK̄+1). (18)

In turn, we can see from Lemma 1 that under optimal delegation, size K∗ = K(β∗) of the
consideration set under optimal choice is√

µp(ωK∗) >
1

K∗ + δ

K∗∑
j=1

√
µp(ωj) ≥

√
µp(ωK∗+1). (19)

These two conditions allow us to compare K∗ and K̄ directly, which is done by the follow-
ing proposition.

Proposition 2. Optimal delegation weakly expands the consideration set relative to aligned
delegation:

K(β∗) ≥ K(β̄).

In other words, delegating to an optimally misaligned agent leads to a wider variety
of actions played in equilibrium. This is a direct consequence of delegation to a more
uncertain agent – since he is less sure than the principal of what the optimal action is
ex ante, he considers more actions worth investigating. Every action has some positive
probability of actually being optimal, and thus a more uncertain agent plays a wider range
of different actions ex post. We could already see this effect at play in the binary case,
where if µp is extreme, then an aligned agent takes the ex ante optimal action without ac-
quiring any additional information, whereas the optimally chosen agent could investigate
both actions.
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5 Misaligned Beliefs Versus Other Instruments
The preceding analysis set the foundation for using misalignment in beliefs as an in-
strument in delegation. This section studies how this instrument compares to the other
instruments, such as contracting or restricting the delegation set. We keep the overall
structure of the problem the same as in Sections 3 and 4, but modify the problem to allow
for different tools at the principal’s disposal, and compare the outcomes in these modified
problems to those in the baseline problem of choosing an agent with the optimal beliefs.

5.1 Contracting on Actions/Misaligned Preferences
The most basic delegation tool is contracting: if the principal could offer the agent a con-
tract that specifies contingent payments, this would be the most direct way to provide
incentives (see Laffont and Martimort (2009) for many examples). We begin by looking
at action-contingent contracts τ : A → R, which allow the principal to incentivize the
agent by offering payments that depend on the action that the agent selects. This assumes
that actions are contractible (i.e., observable and verifiable) and the principal has the in-
stitutional power to make such contracts – either of which may or may not hold in any
given setting. We assume that all agents and the principal have a common prior belief µp,
all players’ preferences are quasilinear in payments, and the principal’s marginal utility
of money is ρ, and the agent’s marginal utility of money is 1.21

Note that instead of contracting, we can interpret this setup as a problem of selecting
an agent with misaligned preferences by setting ρ = 0. Schedule τ then represents not
payments, but rather an agent’s “biases”, i.e., inherent preferences towards certain actions
on top of the “unbiased” utility u(a,ω). Such a problem of selecting an agent with opti-
mally misaligned preferences is a natural counterpart to our baseline problem of selecting
an agent with optimally misaligned beliefs.

The agent’s problem (again using the equivalence presented in 2.6) is then given by

max
π

{
N∑
j=1

µp(ωj)

N∑
i=1

π(ai|ωj)
(
u(ai,ωj) + τ(ai)

)
− c(ϕ,µp)

}
, (20)

given τ, and the principal’s contracting problem is

max
τ

{
N∑
j=1

µp(ωj)

N∑
i=1

π(ai|ωj)
(
u(ai,ωj) − ρτ(ai)

)}
s.t. π solves (20) given τ.

(21)

Instead of providing a closed-form solution to this problem, we appeal to Lemma 2 to
argue that regardless of ρ, the principal cannot obtain higher expected utility than in the
baseline problem of choosing an agent with a misaligned belief µ. In particular, Lemma 2

21In line with the baseline problem, we do not impose any explicit participation constraints on the agent
that would impose a lower bound on the transfers. The implicit assumption here is that the agent is being
paid some non-negotiable unconditional salary if he is hired, which is sufficient to ensure participation.
Payments {τ(ai)} should then be treated as premia, with the limited liability assumption implying they
must be non-negative.
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implies that any unconditional choice probabilities β ∈ ∆(A) generated by an agent, who
is incentivized by payments or misaligned preferences, can also be obtained by select-
ing an agent with appropriately misaligned beliefs. Moreover, by using Proposition 3 of
Matveenko and Mikhalishchev (2021) we can also show the converse – that any decision
rule achievable with misaligned beliefs can be replicated with payments τ, and the two
tools are thus equivalent in what they allow to achieve.22 These results are formalized by
the following theorem.

Theorem 2. The principal’s problem of contracting on actions (21) is equivalent to her
full (delegation) problem (6):

1. For any vector τ : A → R of payments/biases and a corresponding β : Ω → ∆(A)
that solves (20) given τ, there exists a prior belief µ ∈ ∆(Ω) such that β also solves
(4) given µ.

2. For any µ ∈ ∆(Ω) and the corresponding β : Ω → ∆(A) that solves (4) given µ,
there exist payments τ : A → R such that β also solves (20) given τ.

The theorem above directly implies that neither of the two instruments (contracting on
actions or searching for an agent with stronger/weaker preferences for specific actions)
can yield strictly better results than hiring an agent with an optimally misaligned be-
lief. On the other hand, neither can misaligned beliefs yield better outcomes than action-
contingent contracts. However, if the principal’s contract choice is subject to the limited
liability constraint (τ(ai) ≥ 0 for all i), then it is immediate that contracting on actions is
strictly worse, since it cannot yield a better decision rule, but requires payments from the
principal – payments which are avoidable if she instead hires an agent who is intrinsically
motivated by his beliefs over states or preferences towards specific actions.

Further, our Lemma 2 and the results of Matveenko and Mikhalishchev (2021) also
imply that no combination of misaligned beliefs, misaligned preferences, and payments
for actions can perform better than any individual instrument. Moreover, they also imply
that suboptimal misalignment along any single dimension can be amended using other
instruments. That is, if a given agent holds a non-optimal prior belief (that does not
coincide with the principal’s either), the optimal behavior might be induced via action-
contingent transfers. Conversely, if an agent has biased preference towards certain actions,
this misalignment can be compensated for by selecting an agent with an approprite prior
belief. Proposition 3 presents an example of such equivalence in the context of a model
with N = 2.

Proposition 3. Consider the binary setting of Section 3. Consider the principal’s problem
of contracting on actions (21), where ρ = 0 and the agent holds prior belief µ ̸= µp.
Then:

1. for any µ, there exist payments/biases {τ∗(L), τ∗(R)} that implement the optimal
conditional choice probabilities from Section 3;

22Lemma 1 of Matveenko and Mikhalishchev (2021) implies that a third equivalent tool is setting the
quotas, i.e., imposing specific unconditional choice probabilities for a different action.
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2. these payments/biases are such that23

τ∗(R) ≥ τ∗(L) ⇐⇒ µ ≤ µ∗ =

√
µp

√
µp +

√
1− µp

.

It is easy to see the intuition behind the proposition: if the agent’s prior belief µ assigns
lower probability to state ω = r compared to the principal-optimal prior µ∗ given in
Proposition 1, such an agent is ex ante too biased towards action a = L for the principal’s
taste, even though he potentially acquires more information than an agent with belief µ∗.
Therefore, the principal can nudge the agent towards action a = R by offering higher
payment if he selects R (or find an agent whose preference bias towards R offsets his
belief bias towards state l).24 This discussion also emphasizes that what matters for our
results is not the agent’s uncertainty about the state per se, but the agent’s uncertainty
about what the optimal action is. E.g., an agent who assigns very high probability to state
ω = l can be optimal for the principal, as long as the agent’s preferences are sufficiently
biased in favor of action a = R – so the agent is actually uncertain about which action to
take and chooses to acquire additional information to break the indifference.

5.2 Contracting on Outcomes
We now turn to exploring outcome-contingent contracts. An outcome in our model can
be measured by whether a correct action was chosen (a = aj when ω = ωj) or not. We
thus let the principal select payments τ̄, τ that the agent receives, so that τ(ai,ωi) = τ̄

and τ(ai,ωj) = τ if i ̸= j.25 We assume limited liability (τ̄, τ ≥ 0), quasilinearity of
preferences in payments for all agents, and let the agent’s marginal utility of money to be
1, and the principal’s marginal utility of money to be ρ.

The agent’s problem is then choosing π : Ω → ∆(A) that solves26

max
π

{
N∑
j=1

µ(ωj)

N∑
i=1

π(ai|ωj)
(
u(ai,ωj) + τ(ai,ωj)

)
− c(ϕ,µ)

}
, (22)

given τ, and the principal’s contracting problem is

max
τ̄,τ

{
N∑
j=1

µp(ωj)

N∑
i=1

π(ai|ωj)
(
u(ai,ωj) − ρτ(ai,ωj)

)}
, (23)

s.t. τ(ai,ωi) = τ̄ for all i,
τ(ai,ωj) = τ for all i, j ̸= i,

π solves (22) given τ̄, τ.

23The closed-form expressions are available in the proof in the Appendix.
24This is broadly related to the findings of Espitia (2023), who shows that the bias in the agent’s prefer-

ences can be counteracted by the bias in beliefs (although, the belief biases in his paper are limited to over-
and underconfidence).

25If the principal could contract on both actions and outcomes, she would have the freedom to select any
payment schedule {τ(ai,ωj)}. Lindbeck and Weibull (2020) study such a problem with N states and two
actions.

26While it is more common in the literature to consider an agent who yields no intrinsic utility from
actions and is motivated exclusively via payments, for sake of consistency, we maintain the assumption that
the agent enjoys the same intrinsic utility u(a,ω) as the principal, albeit possibly to a different magnitude.
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It is trivially optimal for the principal to set τ = 0, since her objective is to provide
incentives for the agent to match the state. Then the agent’s (ex post) payoff net of in-
formation cost becomes u(ai,ωj) + τ(ai,ωj) = (1 + τ̄)u(ai,ωj), and the principal’s
payoff is u(ai,ωj) − τ(ai,ωj) = (1 − ρτ̄)u(ai,ωj). In other words, by increasing the
incentive payment τ̄, the principal effectively lowers the relative cost of information for
the agent, at the cost of decreasing her own payoff. It then appears like an instrument
that could be universally useful for the principal – even when she chooses an agent with
the optimal prior belief, she could still benefit from reducing the agent’s information cost,
which would result in him acquiring more information. The following proposition shows,
however, that this is not the case: while contracting on outcomes may be a useful instru-
ment, it cannot improve on delegating to the optimally misaligned agent when payments
are costly to the principal.

Proposition 4. Consider the principal’s contracting problem (23) in the binary setting of
Section 3 and suppose µp ≥ 1/2. Then for any ρ ≥ min

{
1, 1

2λ

}
there exist µ̄L, µ̄R and

µ̂L, µ̂R such that:

1. µ̂L ≤ µ̄L < µ∗ < µp < µ̄R ≤ µ̂R, where µ∗ is given by (12);

2. the principal’s problem (23) is solved by τ̄ > 0 if µ ∈ (µ̂L, µ̄L) ∪ (µ̄R, µ̂R);

3. the principal’s problem (23) is solved by τ̄ = 0 otherwise.

The proposition states that the principal uses the incentive payments, τ̄ > 0, when
she has an intermediate degree of misalignment in opinions with the agent. This may
happen if the agent is moderately more biased than the principal, µ > µp, and acquires
too little information for the principal’s taste (which is the case when µp < µ̄R < µ < µ̂R).
An additional reward for matching the state then incentivizes the agent to acquire more
information and improves the principal’s payoff, despite her giving a part of it to the
agent. If the agent is too biased, however (µ > µ̂R), then the incentives become too
costly for the principal to provide, and she chooses τ̄ = 0. The logic is analogous if
the agent is sufficiently biased in the opposite direction (µ ≪ 0.5). Finally, if the agent
is sufficiently aligned with the principal, µ ∈ [µ̄L, µ̄R], then providing bonus payments
does not provide enough of an additional incentive to the agent to justify the cost for the
principal. This latter case includes both the aligned agent (µ = µp) and the optimally
biased agent (µ = µ∗(µp)). Therefore, the principal’s ability to offer incentive payments
is not beneficial to her when she has access to a broadly-aligned agent.

5.3 Restricting the Delegation Set
Another instrument commonly explored in the delegation literature is restricting the dele-
gation set – i.e., the set of actions that the agent may take (see, e.g., Holmström, 1980). In
particular, in the context of “delegated expertise” problems, Szalay (2005) and Ball and
Gao (2021) show that it may be optimal to rule out an ex ante optimal action in order to
force the agent to exert effort and learn which of the ex post optimal (but ex ante risky)
actions is best. Lipnowski et al. (2020) show a similar result in a Bayesian Persuasion
setting in which the receiver is rationally inattentive to the sender’s message.

In our setting, however, due to the state-matching utility assumption, there are no
“safe” actions that the principal could rule out, as Propostion 2 suggests. Assuming that
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the principal and the agent hold the same prior belief µp, and µp(ω1) > ... > µp(ωN),
action a1 is the “safest” in the sense of being the most likely ex ante to be optimal.
However, it could not be optimal for the principal to ban a1 – since, indeed, this is the
action that is ex ante most likely to be ex post optimal! In other words, while excluding
a1 from the delegation set would lead the agent to acquire more information, it would
also lead to larger ex post losses due to the agent being unable to select action a1 in cases
in which it is optimal to do so. Thus while the general idea of the principal being willing
to nudge the agent to acquire more information/information about ex ante suboptimal
actions holds true in our setting, restricting the delegation set is not an instrument that
lends any value to the principal.

Proposition 5 below summarizes this logic. Consider the agent’s problem as given by

max
π

{
N∑
j=1

µp(ωj)

N∑
i=1

π(ai|ωj)u(ai,ωj) − c(ϕ,µp)

}
, (24)

given A∗ ⊆ A (and the maximization is w.r.t. a mapping π : Ω → ∆(A∗)), and the
principal’s restriction problem

max
A∗

{
N∑
j=1

µp(ωj)

N∑
i=1

π(ai|ωj)u(ai,ωj)

}
,

s.t. π : Ω → ∆(A∗) solves (24) given A∗.

(25)

Then we can state the result as follows.

Proposition 5. The unrestricted delegation set A∗ = A is always a solution to the prin-
cipal’s restriction problem (25).

6 Extensions

6.1 Alternative Preference Specifications
The analysis in Sections 4 and 5.1 is heavily reliant on state-matching preferences that
we assume are shared by both the principal and the agent(s). It is reasonable to ask
whether our conclusions hold under other preference specifications. We first consider
a “binary-quadratic” model, which is closely related to the “uniform-quadratic” model
commonly used in delegation literature starting with Holmström, 1980 and Crawford and
Sobel, 1982. In such a uniform-quadratic model, the state is ω ∼ U[0, 1], the action set is
A = [0, 1], and the players’ preferences are described by ui(a,ω) = −(a−(ω+bi))

2 for
i ∈ {P,A} and some “biases” bA, bP. Such a uniform-quadratic model is not tractable with
entropy information costs. Instead, we consider a related model with a binary state and
quadratic loss and show that the characterization from Proposition 1 continues to hold in
this setting. We then proceed to explore general preferences with finite states and actions,
and whether the results of Section 5.1 on the equivalence of misalignment in beliefs and
misalignment in preferences carry over to such settings.
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Binary-quadratic model. Consider a binary-quadratic problem that looks as follows:
the state space is Ω = {0, 1}; all beliefs µ are represented in terms of probability µ ∈ [0, 1]
assigned to state ω = 1. The action set is A = [0, 1]; the principal’s and the agent’s
common utility function is u(a,ω) = −(a −ω)2; the agent’s information cost c(ϕ,µ)
is given by the Shannon entropy (1). Everything else is analogous to the binary model
presented in Section 3.

We show in the following proposition that our characterization (12) of the optimal
delegation strategy continues to hold in such a model, implying that our result is not
specific to the problem of finding the best alternative considered in the baseline model.

Proposition 6. In the binary-quadratic problem, there exists µ̂ ≥ 0.5 such that the prin-
cipal’s optimal delegation strategy is given by:

µ∗∗(µp) =

{
µ∗(µp) as given by (12) if µp ∈ (1− µ̂, µ̂) ,

µp otherwise.

While the result above may suggest that it must then be the entropy cost assumption
that is driving the result, Section 6.2 below demonstrates that this is not the case, and
the same characterization can be obtained in the binary setting of Section 3 with general
posterior-separable cost functions.

Alternative principal’s preferences. We now turn to the question of how general the
results of Section 5.1 are. We first generalize the principal’s utility function up(a,ω)
while maintaining the agent’s intrinsic preference for matching the state: uA(ai,ωi) = 1,
uA(ai,ωj) = 0 if i ̸= j. Naturally, the specific functional forms of the optimal delegation
strategies (such as those presented in Proposition 1, Theorem 1, and Lemma 1) depend
on the specific form of the principal’s utility function. However, Lemma 2 only depends
on the agent’s utility function, meaning that Theorem 2 still holds: any outcome that can
be achieved by contracting on actions or hiring an agent with misaligned intrinsic prefer-
ences, can also be achieved by hiring an agent with misaligned beliefs (and vice versa).
Meaning that regardless of the principal’s objective function, hiring an agent with state-
matching preferences and a suitable belief is as good as hiring an agent with aligned prior
belief, state-matching preferences, and either some additional preference over actions, or
action-contingent payments on top of that.

Alternative aligned preferences. The argument above does, however, hinge on the
agent having state-matching preferences as a baseline. If we allow arbitrary preferences
for the agent – even if they align with the principal’s preferences net of the information
cost – the equivalence stated in Theorem 2 breaks down. In such a general case, finding
an agent with optimally misaligned preferences may yield strictly better results for the
principal than hiring an agent with an optimally misaligned belief, and hence contracting
on actions may, in principle, yield better results too. This is due to the equivalence pre-
sented in Section 4.2 breaking down with general preferences, as stated by the following
proposition.

Proposition 7. There exists a utility function u(a,ω) such that the solution to the prin-
cipal’s relaxed problem (16) cannot be attained as a solution to the full problem (6).
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Corollary 2. There exists a non-state-matching utility function u(a,ω) such that the
conclusions of Theorem 2 do not hold.

The proposition above states that with general preferences, the principal is no longer
able to implement any vector of unconditional choice probabilities β via an appropri-
ate choice of the agent’s prior µ – which is still possible through the choice of action-
contingent contracts as in Section 5.1 (see Proposition 3 in Matveenko and Mikhalishchev,
2021). Therefore, hiring an agent with misaligned preferences can be strictly better for
the principal than hiring an agent with misaligned beliefs for general utility functions
u(a,ω). Equivalently, performance of an agent with optimally misaligned beliefs may,
in general, be improved upon by providing further incentives through action-contingent
contracts.

6.2 Alternative cost functions
Our analysis used Shannon entropy cost function (1) to model the agent’s cost of ac-
quiring information. It has an undesirable property that the cost of a given signal struc-
ture/Blackwell experiment depends on the agent’s prior belief (see Mensch, 2018; Denti
et al., 2022). To demonstrate that our main result does not hinge on this or any other
specific properties of the entropy cost parametrization, this section explores a number of
alternative specifications of the cost function in the binary setting of Section 3. We show
that in all cases, the principal’s optimal delegation strategy looks similar to what is ob-
tained in Proposition 1: if µp is not too extreme, it is optimal for the principal to delegate
to an ex ante more unbiased agent: µ∗(µp) ∈ [0.5, µp).

To remind, in the binary setting of Section 3, we assumed Ω = {l, r}, A = {L, R},
and the common utility function net of information costs given by u(L|l) = u(R|r) = 1

and u(L|r) = u(R|l) = 0. In all settings below, we will be looking for an equilibrium as
defined in Section 2.5, with the c(ϕ,µ) in the agent’s problem (4) replaced by one of the
respective cost functions defined below.

Channel capacity cost function. The first cost function we consider is the channel
capacity cost proposed by Woodford (2012). We follow the analysis by Nimark and Sun-
daresan (2019), hereinafter referred to as NS. The channel capacity cost of a given signal
structure ϕ : Ω → ∆(S) is given by

cC(ϕ) ≡ max
µ∈∆(Ω)

c(ϕ,µ),

where c(ϕ,µ) is the entropy cost (1). Intuitively, the channel capacity measures the
maximum amount of information that can be extracted from signal ϕ by any agent. By
definition, cost cC(ϕ) of a given signal structure does not depend on the selected agent’s
prior µ, unlike the Shannon entropy cost function.

NS show that the argument from Section 2.6 continues to hold with the channel capac-
ity cost: the agent optimally selects a “recommender” signal structure, where each signal
realization is associated with a unique action. Thus we can reduce the agent’s problem to
that of choosing a decision rule π : Ω → ∆(A) which solves

max
π

{
µπ(R|r) + (1− µ)π(L|l) − cC(π, µ)

}
, (26)
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Figure 5: The optimal delegation strategy µ∗(µp) with channel capacity cost function.

where cC(π, µ) denotes the information cost induced by π (which, in this formulation,
does depend on µ).

NS show that the agent’s problem (26) is well-defined and the solution always exists.
It shares the same broad features as the solution with entropy costs: an agent with µ > 0.5

chooses an experiment such that π(R|r) > π(L|l) and vice versa. More broadly, π(R|r)
is continuous and increasing in µ, while the opposite is true for π(L|l); a more uncertain
agent also acquires more information in total.

The continuity of π w.r.t. µ implies that the principal’s problem (11) always has a
solution. The fact that the agent’s behavior is qualitatively the same as a function of µ
as it was with entropy costs implies that the principal’s trade-off also remains fundamen-
tally the same: more information vs less tilt. While the principal’s problem proved to be
analytically intractable, Figure 5 presents numerical solutions for two values of λ and all
µp.

Observation 1. Figure 5 suggests that the solution of the principal’s problem with chan-
nel capacity costs cC(ϕ) is qualitatively similar to the solution described in Proposition
1 and Corollary 1.

We see that both plots in Figure 5 demonstrate a delegation strategy that is qualita-
tively the same as in Figure 3, which plotted it for entropy costs: if the principal’s belief
µp is not too extreme, she chooses an agent with belief µ between µp and 0.5. For extreme
µp, same as before, she selects (an agent who acquires no information and chooses) the ex
ante optimal action. However, Figure 5 also highlights a difference relative to the Shan-
non model, in that the principal’s solution now depends on the cost parameter λ: higher λ
leads to less delegation under channel capacity costs. This suggests that the independence
of the principal’s strategy from λ is a special feature of the Shannon model (or, as we see
later, of the posterior-separable cost functions more broadly).

Log-likelihood ratio cost function. We now move on to consider the log-likelihood
ratio (LLR) cost function proposed by Pomatto et al. (2023), hereinafter referred to as
PTS. PTS derive the LLR cost function axiomatically as the cost of acquiring information
(as opposed to the entropy cost being that of processing information, according to their
argument) from a set of intuitive cost linearity axioms. The LLR cost of a given signal
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Figure 6: The optimal delegation strategy µ∗(µp) with LLR cost function.

structure ϕ : Ω → ∆(S) is defined as

cL(ϕ) ≡
∑

ωi,ωj∈Ω

λij

∫
S

ln
(
ϕ(s|ωi)

ϕ(s|ωj)

)
dϕ(s|ωi),

where λij are the parameters encoding the “closeness” of states ωi and ωj (how difficult
it is to distinguish them). In our binary setting, we assume λLR = λRL = λ. As in the case
of channel capacity costs, PTS’ main representation theorem shows that the LLR cost of
a given experiment ϕ does not depend on the prior belief µ.

In the binary setting, the agent optimally chooses no more than two signal realizations,
because LLR cost is monotone with respect to the Blackwell order. Therefore, we can
again invoke the logic of Section 2.6 and reduce the agent’s problem to that of choosing a
decision rule π : Ω → ∆(A) subject to cost cL(π).27

PTS explore a binary problem in their Sections 6.1 and 6.6 but only demonstrate an
analytical solution to the agent’s problem for the case µ = 0.5. We have found the agent’s
problem to be analytically intractable for µ ̸= 0.5, and therefore solve both the agent’s
and the principal’s problems numerically. Figure 6 demonstrates our findings.

Observation 2. Figure 6 suggests that the solution of the principal’s problem with log-
likelihood ratio costs cL(ϕ) is qualitatively similar to the solution described in Proposi-
tion 1 and Corollary 1.

One can see that the principal’s optimal delegation strategy plotted therein looks quali-
tatively the same as for entropy and channel capacity costs (Figures 3 and 5, respectively):
if the principal’s belief µp is not too extreme, the principal chooses an agent with belief µ
between µp and 0.5. Further, similarly to the setting with channel capacity costs in Figure
5, the principal delegates less for higher values of the information cost parameter λ.

Uniformly posterior-separable cost functions. Another class of cost functions we
consider is a family of uniformly posterior-separable cost functions (Caplin et al., 2022)
that generalizes the Shannon entropy cost function (1). As shown below, the representa-
tion from Proposition 1 continues to hold for this wide class of information cost functions.
In particular, not only is the main insight (“hiring a less biased agent is beneficial for the

27PTS provide a representation for cL(π) not presented here.
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principal; more so for intermediate values of the principal’s ex ante bias”) valid for such
cost functions, but even the exact expression for the optimally misaligned agent applies.

Consider again the binary setting of Section 3. A UPS cost function over signal struc-
tures ϕ : Ω → ∆(S) conditional on the agent’s prior belief µ is defined as28

cUPS(ϕ,µ) ≡ λ
[
E[ĉ(η)|ϕ] − ĉ(µ)

]
where η ∈ ∆(Ω) are the posterior beliefs induced by the signal structure ϕ, the expec-
tation is taken over all posteriors η w.r.t. the distribution induced by ϕ conditional on µ,
and function ĉ(η) satisfies the following conditions:

• ĉ(η) is of Legendre type (strictly convex, differentiable and satisfies the Inada con-
ditions: lim

η→0+
ĉ ′(η) = −∞, lim

η→1−
ĉ ′(η) = +∞; Rockafellar, 1970);

• ĉ(η) is twice continuously differentiable;

• ĉ(η) is symmetric around η = 0.5: if η ′ + η ′′ = 1, then ĉ(η ′) = ĉ(η ′′).

An example of such a function is negative entropy, ĉ(η) = −H(η), which generates the
Shannon cost (1). We can now show that for any other function ĉ(η) that satisfies the
conditions above, Proposition 1 continues to hold.

Proposition 8. In the binary setting of Section 3 with UPS information cost function, the
principal’s optimal delegation strategy is given by (12).

This result suggests that the entropy specification is not crucial for our conclusions,
which continue to hold for a wide class of posterior-separable cost functions. A question
arises then of how far we can push our result – in other words, can it be obtained with
any information cost? As we show next, it is the flexibility of the information acquisition
technology that plays a significant role in our results.

Symmetric cost functions. Finally, we explore a family of simple “symmetric” cost
functions, which restrict the agent to symmetric signals. This analysis highlights the
importance of flexibility of the agent’s learning technology for the trade-off we identify.
In particular, suppose that instead of being able to choose an arbitrary signal structure ϕ :
Ω → ∆(S), the agent is restricted to a binary signal space S ≡ {l, r} and can only choose
signal precision that we denote, abusing notation, by ϕ ≡ ϕ(r|r) = ϕ(l|l) ∈ [1/2, 1].
The cost of information is then given by some function cS(ϕ) that is strictly increasing,
convex, differentiable in ϕ ∈ [1/2, 1], and satisfies cS(1/2) = 0 and the Inada conditions
c ′
S(1/2) = 0, lim

ϕ→1
c ′
S(ϕ) = +∞.

Let ϕ∗
µ denote the precision optimally chosen by an agent with prior belief µ. The

agent only acquires information (ϕ∗
µ > 1/2) if he intends to follow the signal (σ(r) = R

and σ(l) = L), since this trivially dominates doing the converse, and conditional on

28Under the conditions on ĉ imposed below, this is also known as Bregman information cost (Banerjee
et al., 2005; Fosgerau et al., 2023).
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ignoring the signal, acquiring an uninformative signal ϕ = 1/2 is strictly cheaper. Hence
if ϕ∗

µ > 1/2, then

ϕ∗
µ = arg max

ϕ
{µϕ+ (1− µ)ϕ− cS(ϕ)} . (27)

Let ϕ∗∗ denote the candidate solution given by the FOC of (27): c ′
S(ϕ

∗∗) = 1. Note that
ϕ∗∗ does not depend on the agent’s belief µ. The agent’s expected utility from acquiring
no information (ϕ = 1/2) and taking the ex ante optimal action is given by max{µ, 1−µ}.
The expected utility from choosing ϕ = ϕ∗∗ is given by ϕ∗∗−cS(ϕ

∗∗) ∈ [1/2, 1].29 Then
denoting the agents who are indifferent between the two options by µ̄R ≡ ϕ∗∗ − cS(ϕ

∗∗)
and µ̄L ≡ 1 − (ϕ∗∗ − cS(ϕ

∗∗)), we can describe the agent’s optimal choice of precision
by

ϕ∗
µ =

{
ϕ∗∗ if µ ∈ [µ̄L, µ̄R] ,

1/2 otherwise.

Moving on to the principal’s problem (and maintaining the assumption that µp > 1/2),
the principal’s payoff is given by ϕ∗∗ if ϕ∗

µ = ϕ∗∗, by µp if ϕ∗
µ = 1/2 and µ > 1/2, and

by 1− µp if ϕ∗
µ = 1/2 and µ < 1/2. Therefore, the principal’s preferred agent is

µ∗(µp) =

{
µ ∈ [µ̄L, µ̄R] if µp ≤ ϕ∗∗,

µ ∈ (µ̄R, 1] if µp > ϕ∗∗.
(28)

Notably, if µp ∈ (µ̄R, ϕ
∗∗), then the principal strictly prefers a misaligned agent, whose

prior belief is more uncertain than the principal’s. Further, there exists a selection from
(28) that supports the following proposition (which is proved by the preceding argument):

Proposition 9. Given a symmetric information cost function cS(ϕ), there exists an equi-
librium in which the principal always delegates to a more uncertain agent: for any
µp > 1/2, µ∗(µp) ∈ [1/2, µp).

It is evident, however, that the statement of Proposition 9 is quite weak. Symmet-
ric information cost leads to the principal actually being indifferent between all agents
µ ∈ [µ̄L, µ̄R], as well as between all agents µ ∈ (µ̄R, 1], since within these intervals, µ
affects neither the tilt in the agent’s decisions, nor the amount of information acquired.
Consequently, if µp /∈ (µ̄R, ϕ

∗∗), then hiring an aligned agent or, possibly, even a more
certain agent, is just as optimal for the principal as hiring a more uncertain agent. Con-
versely, if the principal strictly prefers to hire a learning agent, then she might as well hire
an agent with µ = 1/2, whose decisions would not be any more tilted than those of an
agent with µ = µ̄R.

It is straightforward that the result above continues to hold for any weakly increasing
cS(ϕ), whereas all the other assumptions on cS(ϕ) are not strictly necessary and were
adopted to simplify the argument. For example, we could also consider a “Pandora box”
cost function, under which the agent can either learn the state perfectly at a cost, or learn
nothing. This can be captured as cS(ϕ) = λ · I{ϕ > 1/2}, where I{·} is the indicator

29Function ϕ − cS(ϕ) is strictly concave in ϕ due to the assumptions made, evaluates to 1/2 when
ϕ = 1/2 (hence ϕ∗∗ − cS(ϕ

∗∗) ≥ 1/2), and from cS(ϕ) ≥ 0 we have that ϕ− cS(ϕ) ≤ 1 for all ϕ ≤ 1.
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function. Under such a cost function, the agent would learn the state perfectly if he is
sufficiently uncertain, and stick to his prior belief otherwise; and it is thus always weakly
optimal for the principal to choose the most uncertain agent: µ∗(µp) = 1/2. Another
learning technology that is also symmetric across states and signals, but does not fall under
the parametrization above, is the one used by Szalay (2005) and Ball and Gao (2021). In
their respective models, the agent selects an effort e ∈ [0, 1] subject to cost cF(e), which
allows him to perfectly learn the state with probability e, and with the complementary
probability 1− e the agent observes no signal. It is easy to see that under this technology,
the learning effort e∗µ is higher when µ is closer to 1/2 (more uncertain agents learn
more). However, same as with symmetric cost functions, there is no disadvantage to
hiring a misaligned agent – the principal would strictly prefer to hire the most uncertain
agent, µ = 1/2.

The goal of this exercise is to demonstrate that to fully capture the trade-off that the
principal faces – that between the quantity of information acquired by a misaligned agent
and the decision tilt that such a misalignment introduces, – a flexible learning technology
is necessary. Inflexible technologies, such as those described by the symmetric cost func-
tions, lack the detail to capture fully the trade-off that the principal faces. At the same
time, the robustness checks presented above that use the channel capacity and the log-
likelihood ratio cost functions demonstrate that our results are not specific to the entropy
cost – that it is indeed the flexibility of the agent’s learning technology and not the specific
features of the cost function that drive our results.

6.3 Communication
In this section, we consider the importance of decision rights in our model with misaligned
beliefs. In particular, we juxtapose the delegation scheme explored so far, under which
the agent has the power to make the final decision, to communication, where an agent
must instead communicate his findings to the principal, who then chooses the action.
A large literature in organizational economics is devoted to comparing delegation and
communication in various settings (see Dessein, 2002; Alonso et al., 2008; Rantakari,
2008 for some examples) Deimen and Szalay 2019 in particular explore this question in
the context of a delegated expertise problem similar to ours and show that communication
outperforms delegation in the class of problems they consider. In contrast, we show that
in our setting, communication performs exactly as well as delegation – i.e., the principal
will always find it optimal to follow the agent’s recommendation.

Although the principal and the agent have the same preferences, it is generally unclear
whether it is optimal for the principal to follow a recommendation of an agent due to
the misalignment in their beliefs. Namely, since the principal and the agent start from
different prior beliefs, the same is true for posteriors: if the principal could observe the
information that the agent obtained, her posterior belief would be different from that of the
agent. This implies that ex interim, the principal could prefer an action different from the
agent’s choice, and could benefit from overruling the agent’s decision if she had the power
to do so. However, this would mean that the agent’s incentives to acquire information are
different from the baseline model, and the principal could have some influence over the
agent’s learning strategy via her final choice rule.30 We show below that, in the end,

30Argenziano et al. (2016) provide one example of how the principal can manipulate the agent’s infor-
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none of these effects come into play, and there exists a communication equilibrium that
replicates the delegation equilibrium.

The setup follows the baseline model from Section 2 with state-matching preferences,
with the exception that the final stage (“agent selecting action a ∈ A”) is replaced by two.
First, after observing signal s ∈ S generated by his signal structure ϕ, the agent selects a
recommendation (message) ã ∈ A to the principal. After that, the principal observes the
recommendation ã, uses it to update her belief µp(ω|ã) about the state of the world, and
then selects an action a ∈ A that determines both parties’ payoffs.31 The equilibrium of
the communication game is then defined as follows.

Definition (Communication Equilibrium). An equilibrium of the cheap talk game is char-
acterized by (µ∗, {ϕ∗

µ, σ̃
∗
µ}µ∈M, σ∗, µp), which consists of the following:

1. the principal’s posterior beliefs µp : A → ∆(Ω) that are consistent with (ϕ∗
µ, σ

∗
µ)

(i.e., satisfy Bayes’ rule on the equilibrium path);

2. the principal’s choice rule σ∗ : A → A, which solves the following for every ã ∈ A,
given the posterior µp:

max
σ(ã)

{∑
ω∈Ω

µp(ω|ã)u(σ(ã),ω)

}
;

3. a collection of the agents’ information acquisition strategies ϕ∗
µ : Ω → ∆(S) and

communication strategies σ̃∗
µ : S → A that solve the following given σ for every

µ ∈ M:

max
ϕ,σ̃

{∑
ω∈Ω

µ(ω)
∑
s∈S

ϕ(s|ω)u(σ(σ̃(s)),ω) − c(ϕ,µ)

}
;

4. the principal’s choice µ∗ ∈ M of the agent to whom the task is delegated, which
solves the following given (ϕ∗

µ, σ
∗
µ), σ

∗, and µp:

max
µ

{∑
ω∈Ω

µp(ω)
∑
s∈S

ϕ(s|ω)u(σ(σ̃(s)),ω)

}
.

We can then state the result as follows.

Proposition 10. There exists a communication equilibrium (µ∗, {ϕ∗
µ, σ̃

∗
µ}µ∈M, σ∗, µp) that

is outcome-equivalent to the equilibrium (µ∗, {ϕ∗
µ, σ

∗
µ}µ∈M) of the original game, in the

sense that µ∗ and ϕ∗
µ∗ coincide across the two equilibria, σ̃∗

µ∗ = σ∗
µ∗ , and σ∗ is the identity

mapping.

mation acquisition incentives under cheap talk communication.
31Given that message labels are arbitrary, we focus w.l.o.g. on “direct” equilibria, in which the agent’s

message corresponds to an action recommendation. Further, for simplicity we assume that the principal
only observes the recommendation made by the agent, and not the signal he received or the signal structure
he requested.
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The result is, perhaps, unsuprising, since Holmström (1980) showed that communi-
cation is equivalent to restricting the agent’s action set, and this latter instrument was
shown in Section 5.3 to be irrelevant in our setting, as long as the principal can select an
agent with the prior belief she prefers. The result in Proposition 10, however, is subject
to a few caveats. First, cheap talk models are plagued by equilibrium multiplicity: for
any informative equilibrium, there exist equilibria with less informative communication,
up to completely uninformative (babbling) equilibria. In our setting, this means that, in
addition to the equilibrium outlined in Proposition 10 above, there also exists a babbling
equilibrium in which the agent acquires no information and makes a random recommen-
dation, and the principal always ignores it and selects the ex ante optimal action.32 There
would also likely exist multiple equilibria of intermediate informativeness – e.g., equi-
libria with a limited vocabulary, where only some actions Ã ⊂ A are recommended on
the equilibrium path. In practice, this means that, under communication, there is a risk of
miscoordination on uninformative equilibria, whereas under delegation the equilibrium is
unique. The same force may also work the other way, and there may be equilibria that are
preferred by the principal to the delegation equilibrium, that can only be sustained under
cheap talk (see Argenziano et al., 2016 for an example of how such equilibria may arise).
However, the question of whether such equilibria exist is beyond the scope of this paper.

The second caveat lies in the fact that Proposition 10 relies on state-matching pref-
erences. In our setting (with the exception of Section 6.1), any action is either “right”
or “wrong”, without any degrees of correctness. The misalignment of beliefs across the
principal and the agent is thus small enough to not warrant the principal overriding the
agent’s suggested action. In contrast, in a uniform-quadratic framework of Argenziano
et al. (2016) or a normal-quadratic framework of Che and Kartik (2009), both states and
actions lie in a continuum, and the principal’s loss is proportional to the distance between
the realized state and the chosen action. In such a setting, any misalignment (be it in
preferences or beliefs) between the principal and the agent would lead to the principal
being willing to override the agent’s recommendation, leading to the delegation equilib-
rium being no longer directly sustainable under communication. This ability to exploit
interim misalignment is also what drives the persuasion and prejudice avoidance channels
that underlie the result of Che and Kartik (2009). By shutting these channels down we
provide a novel explanation for the optimality of bias in delegation.

On a separate note, it is immediate from Proposition 10 that the same equilibrium
would survive in a setting with verifiable communication a là Che and Kartik (2009),
where an agent chooses between disclosing a signal that he received and disclosing noth-
ing – as opposed to cheap talk communication assumed above, where the agent can send
any message. Since in the cheap talk equilibrium described in Proposition 10, the princi-
pal always finds it optimal to follow the (optimally chosen) agent’s recommendation and
take the agent’s most preferred action even in the absence of evidence, the same is true
when evidence can be presented. In other words, the agent would never have an incentive
to conceal evidence from the principal.

32If an agent makes uninformed recommendations, it is optimal for the principal to ignore it. If the
principal ignores the recommendation, it is optimal for the agent to not acquire any information. Neither
agent in this situation can unilaterally deviate to informative communication.
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7 Conclusion
We show that hiring an agent with beliefs that are misaligned with those of the principal
can be beneficial for the principal, especially when the principal is ex ante biased. We
show this in the context of a model where the agent can acquire costly information before
making a decision. More specifically, a biased principal prefers to delegate to an agent
who is ex ante more uncertain about what the best action is but is somewhat biased towards
the same action as her. This is mainly due to a more uncertain agent being willing to
acquire more information about the state, which enables more efficient actions to be taken.
As we show, exploiting belief misalignment can be a valid instrument that the principal
can use in delegation, which in our setting performs on par with or better than contingent
transfers or restriction of the action set from which the agent can choose. The value of
this instrument is highest to a moderately-biased principal, whereas both an unbiased and
an extremely biased principals would optimally select an aligned agent.

In the analysis, we use the workhorse rational inattention model for discrete choice,
the Shannon entropy model. It allows us to provide a richer demonstration of the conse-
quences of delegation to a misaligned agent by allowing the agent to acquire information
flexibly, which tilts the decisions of an agent with misaligned beliefs relative to an aligned
agent. We show that misaligned delegation is optimal despite the tilt introduced by this
flexibility. While adopting a particular cost function specification simplifies the analysis,
we do show that our results are not specific to the entropy information cost, and continue
to hold for a much more general class of posterior-separable information cost functions,
as well as other cost functions recently proposed in the literature.

Due to the inherent complexity of rational inattention models, we mostly confine our
exploration to a discrete state-matching model, which strays away from the continuous
models more commonly used in delegation problems. In a model with a continuum action
space, the scope for an agent to manifest his tilt is much larger, and hence the trade-off
between the agent’s information acquisition and tilted decision-making would suppos-
edly be different. We show, however, that our results extend verbatim to a quadratic-loss
framework common in literature on delegation. Due to tractability concerns, we confine
the analysis to a binary-quadratic model, as opposed to the more commonly encountered
uniform-quadratic (Holmström, 1980) or normal-quadratic (Che and Kartik, 2009) mod-
els, but there are few reasons to believe that this dimension of richness would produce
results that are substantially different.

An assumption that may feel excessively strong in our analysis is the common knowl-
edge of all agents’ and the principal’s prior beliefs. It may be more reasonable to assume
that agents are strategic in presenting their viewpoints to the principal, as well as making
inferences from the fact that they were chosen for the job. Such signaling concerns could
yield an economically meaningful effect, yet we abstract from them completely in our
paper. A more careful investigation is in order.
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A Main Proofs

A.1 Proof of Proposition 1
Throughout this proof, we will refer to the delegation rule under consideration,

µ∗ =

√
µp

√
µp +

√
1− µp

,

as the candidate rule. It is straightforward that under the candidate rule, if µp > 1
2

then
µ∗ ∈

(
1
2
, µp

)
, since

µ∗

1− µ∗ =

√
µp√

1− µp

<
µp

1− µp

when µp > 1
2
, so µ∗ < µp, and also √

µp >
√

1− µp in that case, so µ∗ > 1
2
. It thus

remains to show that the candidate rule is indeed optimal for the principal. While a shorter
proof exists that invokes Lemma 1 that derives an optimal strategy for the case of N states
and actions, we choose to present a more direct, albeit a somewhat longer, proof.

Plugging the solution to the agent’s problem (10) (assuming this solution is interior for
now) into the principal’s problem (11), we get that the principal’s payoff looks as follows:

µpπ(R|r) + (1− µp)π(L|l) = µp

(
µe

1
λ − (1− µ)

)
e

1
λ(

e
2
λ − 1

)
µ

+ (1− µp)

(
(1− µ)e

1
λ − µ

)
e

1
λ(

e
2
λ − 1

)
(1− µ)

=
e

1
λ

e
2
λ − 1

[
µp

(
e

1
λ −

1− µ

µ

)
+ (1− µp)

(
e

1
λ −

µ

1− µ

)]
∝ e

1
λ − µp

1− µ

µ
− (1− µp)

µ

1− µ
.

The FOC for the principal’s maximization problem above w.r.t. µ is

µp

µ2
−

1− µp

(1− µp)2
= 0

⇐⇒ µ

1− µ
=

√
µp√

1− µp

. (29)

It is trivial to verify that the second-order condition holds as well, hence as long as (29)
yields an interior solution (i.e., the probabilities in (10) are in [0, 1]), the candidate solution
is indeed optimal among all such interior solutions.

We now check for which µ the solution (10) is interior. Using the expressions (10),
one can easily verify that π(R|r) ≥ 0 ⇐⇒ µ

1−µ
≥ e−

1
λ and π(R|r) ≤ 1 ⇐⇒ µ

1−µ
≤ e

1
λ ,

and the conditions π(L|l) ∈ [0, 1] yield the same two interiority conditions. This implies
that if µ

1−µ
∈
[
e−

1
λ , e

1
λ

]
, then the agent acquires some information and selects both actions

with positive probabilities, and otherwise (π(R|r), π(L|l)) ∈ {(1, 0), (0, 1)}, meaning that
the agent simply chooses the ex ante optimal action for sure without acquiring any infor-
mation about the state.
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The candidate rule then suggests that the principal delegates to a learning agent iff
µp

1−µp
∈
[
e−

2
λ , e

2
λ

]
, and otherwise delegates to an agent who plays the ex ante optimal

action. We have shown that the candidate rule selects the optimal among the learning
agents; it is left to verify that such a criterion for choosing between learning and non-
learning agents is optimal for the principal.

Consider µp ≥ 1
2
; then among the non-learning agents, the principal would obviously

choose the one who plays a = R (rather than a = L), and such a choice yields the
principal expected payoff µp · 1 + (1 − µp) · 0 = µp. Optimal delegation to a learning
agent yields (by plugging the candidate rule into the principal’s payoff obtained above)

e
1
λ

e
2
λ − 1

[
e

1
λ − µp

1− µ∗

µ∗ − (1− µp)
µ∗

1− µ∗

]
=

e
1
λ

e
2
λ − 1

[
e

1
λ − 2

√
µp(1− µp)

]
. (30)

Taking the difference between (30) and µp, the payoff from delegating to a non-learning
agent, let us find belief µp of a principal who would be indifferent between the two:

e
1
λ

e
2
λ − 1

[
e

1
λ − 2

√
µp(1− µp)

]
− µp = 0

⇐⇒ e
2
λ − 2e

1
λ

√
µp(1− µp) = µpe

2
λ − µp

⇐⇒ (
e

1
λ

√
1− µp −

√
µp

)2
= 0

⇐⇒ √
µp√

1− µp

= e
1
λ .

Hence, the principal prefers a learning agent when
√
µp√
1−µp

< e
1
λ and a non-learning agent

when
√
µp√
1−µp

> e
1
λ . Therefore, the candidate rule is indeed optimal for µp ≥ 1

2
. A mirror

argument can be used to establish optimality for µp ≤ 1
2
. This concludes the proof of

Proposition 1.

A.2 Proof of Corollary 1
Proof of Proposition 1 shows that µ∗(µp) < µp for all µp ∈ (0.5, 1), hence we can ignore
the absolute value operator. Using expression (12) we then obtain

d

dµp

(µp − µ∗(µp)) =
4µp(1− µp) + 2

√
µp(1− µp) − 1

2
√
µp(1− µp) ·

(√
µp +

√
1− µp

)2 ,
where the denominator is weakly positive for all µp ∈ (0.5, 1), and the numerator is

positive if and only if
√

µp(1− µp) /∈
(

−1−
√
5

4
, −1+

√
5

4

)
, which is equivalent to µp ≤

1
2
+ 1

2
·
√√

5−1
2

≈ 0.893. Then |µp − µ∗(µp)| is increasing for these values of µp and
decreasing otherwise, meaning it satisfies single-peakedness.
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A.3 Proof of Lemma 1
The goal is to find the optimal choice probabilities β∗ ∈ ∆(A) which maximize the
principal’s expected utility (16). First, let us rewrite expression (16) using δ ≡ e

1
λ − 1:

N∑
j=1

µp(ωj)
β(aj)e

1
λ

1+ δβ(aj)
=

∑
j∈C(β)

e
1
λ

µp(ωj)

δ
(1+ δβ(aj)) −

µp(ωj)

δ

1+ δβ(aj)

=
∑

j∈C(β)

e
1
λ

(
µp(ωj)

δ
−

µp(ωj)

δ (1+ δβ(aj))

)
.

The first term in the brackets above is independent of β, so the principal’s maximization
problem is equivalent to

min
β

∑
j∈C(β)

µp(ωj)

1+ δβ(aj)
. (31)

Let ξ denote the Lagrange multiplier corresponding to the constraint
N∑
j=1

β(aj) = 1. Then

the first-order condition for β(ai) with i ∈ C(β) is

(1+ δβ(ai))
2 = −

µp(ωi)

ξ
. (32)

Summing up these equalities over all j ∈ C(β), we get that∑
j∈C(β)

(1+ δβ(aj))
2 = −

∑
j∈C(β) µp(ωj)

ξ
(33)

Combining (32) and (33):

1+ δβ(ai) =

√
µp(ωi)√∑

j∈C(β) µp(ωj)

√ ∑
j∈C(β)

(1+ δβ(aj))2 (34)

Once again summing up these equalities over all j ∈ C(β), we get that

K(β) + δ =

∑
j∈C(β)

√
µp(ωj)√∑

j∈C(β) µp(ωj)

√ ∑
j∈C(β)

(1+ δβ(aj))2.

Expressing
√∑

j∈C(β)(1+ δβ(aj))2 from this expression and plugging it into (34) allows

us to express β(ai) (for i ∈ C(β)) in closed form as

β(ai) =
1

δ

(
(K(β) + δ)

√
µp(ωi)∑

j∈C(β)
√

µp(ωj)
− 1

)
. (35)

The necessary condition for option i to be in a consideration set (i ∈ C(β)) is β(ai) ≥ 0

or, equivalently, √
µp(ωi) >

1

K(β) + δ

∑
j∈C(β)

√
µp(ωj).
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Now let ξk denote the Lagrange multiplier for the constraint β(ak) ≥ 0. Then the
first-order condition for an alternative k /∈ C(β) that is not chosen is

µp(ωk) = −ξ− ξk ⇒ µp(ωk) ≤ −ξ.

Plugging in ξ from (32) into the inequality above yields

µp(ωk) ≤
∑

j∈C(β) µp(ωj)∑
j∈C(β)(1+ δβ(aj))2

⇔ √
µp(ωk) ≤

1

K(β) + δ

∑
j∈C(β)

√
µp(ωj)

for all k /∈ C(β).
Since the minimization problem has a convex objective function and linear constraints,

the Kuhn-Tucker conditions are necessary and sufficient. Thus the necessary and suffi-
cient conditions that the solution β∗ must satisfy are given by:

√
µp(ωi) >

1
K(β∗)+δ

∑
j∈C(β∗)

√
µp(ωj) for all i ∈ C(β∗),√

µp(ωk) ≤ 1
K(β∗)+δ

∑
j∈C(β∗)

√
µp(ωj) for all k /∈ C(β∗).

Recall that we assumed, without loss of generality, that µp(ω1) ≥ µp(ω2) ≥ . . . ≥
µp(ωN). Suppose that the solution β∗ is such that K(β∗) = K ′. Clearly then, in the
optimum, the consideration set C(β∗) will consist of the first K ′ alternatives.

Denote ∆L ≡ (L+ δ)
√
µp(ωL) −

L∑
j=1

√
µp(ωj). Notice that for all L > 1:

∆L ≡(L+ δ)
√
µp(ωL) −

L∑
j=1

√
µp(ωj)

=(L− 1+ δ)
√

µp(ωL−1) −

L−1∑
j=1

√
µp(ωj) −

√
µp(ωL)

− (L− 1+ δ)
√

µp(ωL−1) + (L+ δ)
√
µp(ωL)

=∆L−1 − (L− 1+ δ)

(√
µp(ωL−1) −

√
µp(ωL)

)
.

Therefore, ∆L decreases in L. Since ∆1 > 0, there either exists unique K ′ such that
∆K ′ > 0 and ∆K ′+1 ≤ 0, or ∆L > 0 for all L. In the former case, K(β∗) = K ′, and in the
latter case, K(β∗) = N.

In the end, the solution to the principal’s problem is given by β∗(ai) as in (35) if
i ∈ C(β∗), β∗(ai) = 0 if i /∈ C(β∗), and C(β∗) = 1, ..., K(β∗), where K(β∗) is as
described above.

A.4 Proof of Lemma 2
Corollary 2 from Matějka and McKay (2015) shows that a vector of the unconditional
choice probabilities β ∈ ∆(A) solves (13) only if it solves the system of equations given
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by

N∑
j=1

µ(ωj)
e

u(ai,ωj)

λ∑N
k=1 β(ak)e

u(ak,ωj)

λ

= 1, (36)

for every i ∈ {1, ...,N} such that β(ai) > 0.
The question then is: given a vector β ∈ ∆(A) of unconditional choice probabilities,

can we find µ ∈ RN
+ that solves the following system:
µ(ω1) + µ(ω2) + . . .+ µ(ωN) = 1,
N∑
j=1

µ(ωj)
e
u(ai,ωj)

λ

N∑
k=1

β(ak)e
u(ak,ωj)

λ

= 1 ∀i ∈ C(β). (37)

The system above is a linear system of K(β) + 1 equations with N unknowns. To prove
the solution exists, we use the Farkas’ lemma (Aliprantis and Border, 2006, Corollary
5.85). It states that given some matrix A ∈ Rm×n and a vector b ∈ Rm, the linear system
Ax = b has a non-negative root x ∈ Rn

+ if and only if there exists no vector y ∈ Rm

such that A ′y ≥ 0 with b ′y < 0. The two latter inequalities applied to our case form the
following system:

y0

(
N∑
k=1

β(ak)e
u(ak,ωj)

λ

)
+

( ∑
i∈C(β)

yie
u(ai,ωj)

λ

)
≥ 0 ∀j ∈ {1, ...,N},

y0 +
∑

i∈C(β)
yi < 0.

(38)

We need to show there exists no y ∈ RK(β)+1 that solves the system above. Let us define

zi ≡ yi + y0β(ai) for i ∈ C(β). Then, recalling that e
u(ai,ωi)

λ = e
1
λ and e

u(ai,ωj)

λ = 1 for
i ̸= j, system (38) transforms to

zje
1
λ +

∑
i∈C(β)\{j}

zi ≥ 0 ∀j ∈ C(β),∑
i∈C(β)

zi ≥ 0 ∀j ∈ {1, ...,N}\C(β),∑
i∈C(β)

zi < 0.

(39)

System (39) above does not have a solution. Indeed, if C(β) ⊊ {1, ...,N}, then the middle
set of inequalities directly contradicts the latter inequality. If C(β) = {1, ...,N}, then
subtracting the latter inequality from the former, for a given j ∈ C(β), yields zjδ ≥
0 ⇐⇒ zj ≥ 0. Since this must hold for all j ∈ C(β), we obtain a contradiction with the
latter inequality,

∑
i∈C(β)

zi < 0.

By the Farkas’ lemma, we then conclude that for any vector β ∈ ∆(A) there exists a
belief µ ∈ ∆(Ω) that solves system (37). This concludes the proof.
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A.5 Proof of Theorem 1
This proof proceeds in two parts. First, we show that the delegation strategy introduced
in the proposition (hereinafter referred to as “the candidate strategy”) is optimal for the
principal. Then we establish that it does indeed possess the stated properties.

Consider an agent with a prior belief

µ(ωi) =

√
µp(ωi)

N∑
j=1

√
µp(ωj)

. (40)

It is trivial to verify that prior belief µ defined this way satisfies the candidate strategy in
the statement of the proposition, and hence represents the candidate strategy. Consider an
agent hired in accordance with the candidate rule. Substituting (40) into (14) yields

β(ai) = max

0,
1

δ

(K(β∗) + δ)
√

µp(ωi)∑
j∈C(β∗)

√
µp(ωj)

− 1


 , (41)

which are exactly the probabilities stated in Lemma 1. Therefore, an agent hired accord-
ing to the candidate strategy makes decisions in such a way that generates the principal-
optimal unconditional choice probabilities. Therefore, delegation according to the candi-
date strategy is indeed optimal for the principal.

Now we show that the candidate strategy satisfies the properties stated in the proposi-
tion. The first property follows clearly from (40): µ∗(ω1) ≥ µ∗(ω2) ≥ . . . ≥ µ∗(ωN).

For the second property, we want to show that µ∗(ω1) ≤ µp(ω1) and µ∗(ωN) ≥
µp(ωN). The former inequality can be shown as follows:

µ∗(ω1) ≤ µp(ω1)

⇐⇒ √
µp(ωi)

N∑
j=1

√
µp(ωj)

≤ µp(ω1)

⇐⇒ 1 ≤
√

µp(ω1) ·

(
N∑
j=1

√
µp(ωj)

)

⇐⇒ 1 ≤ µp(ω1) +
√
µp(ω1)µp(ω2) + ...+

√
µp(ω1)µp(ωN),

and the latter inequality holds because µp(ω1)+...+µp(ωN) = 1 and
√

µp(ω1)µp(ωj) ≥
µp(ωj) for all j ∈ {1, ...,N}, since µp(ω1) ≥ µp(ωj). Note that µ∗(ω1) = µp(ω1) only
if µp(ω1) = ... = µp(ωN).

Similarly, the inequality µ∗(ωN) ≥ µp(ωN) is equivalent to

1 ≥
√
µp(ω1)µp(ωN) + ...+

√
µp(ωN−1)µp(ωN) + µp(ωN),

which holds because
√

µp(ωj)µp(ωN) ≤ µp(ωj) for all j ∈ {1, ...,N}, with equalities
only if µp(ω1) = ... = µp(ωN).
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We now proceed to show the third property (majorization). We want to show that
for all k ∈ {1, ...,N},

k∑
i=1

µ∗(ωi) ≤
k∑

i=1

µp(ωi).

Using (40), this inequality can be rewritten as

k∑
i=1

√
µp(ωi)

N∑
j=1

√
µp(ωj)

≤
k∑

l=1

µp(ωl),

⇐⇒ 1 ≤

k∑
l=1

µp(ωl)
N∑
j=1

√
µp(ωj)

k∑
i=1

√
µp(ωi)

⇐⇒ 1 ≤
k∑

l=1

µp(ωi) +

N∑
j=k+1

√
µp(ωj) · ρ, (42)

where ρ ≡
k∑

l=1

µp(ωl)

k∑
i=1

√
µp(ωi)

. Since
N∑
l=1

µp(ωi) = 1, to verify that (42) holds, it is enough to

show that ρ ≥
√
µp(ωk+1) (since

√
µp(ωk+1) ≥ ... ≥

√
µp(ωN)), with the former

inequality being equivalent to∑k
l=1 µp(ωl)

k∑
i=1

√
µp(ωi)

≥
√

µp(ωk+1)

⇐⇒ µp(ω1) + ...+ µp(ωk) ≥
√

µp(ω1)µp(ωk+1) + ...+
√
µp(ωk)µp(ωk+1),

which is true because µp(ωk+1) ≤ µp(ωk) ≤ ... ≤ µp(ω1). We conclude that µp ma-
jorizes µ∗.

To show the fourth property, observe that the Shannon entropy for some probability
vector µ is given by

H (p) ≡ −

N∑
i=1

µ (ωi) · logµ (ωi) .

Marshall et al. (1979, p.101) show that H (p) is a Schur-concave function (i.e., it is de-
creasing w.r.t. the majorization order). It therefore holds that if µp majorizes µ∗, then
H(µp) ≤ H(µ∗). This concludes the proof of Theorem 1.

45



A.6 Proof of Proposition 2
It follows from (18) that the size of the consideration set in the aligned problem, K̄, is
such that

K̄∑
j=1

µp(ωj)

µp(ωK̄)
< K̄+ δ ≤

K̄∑
j=1

µp(ωj)

µp(ωK̄+1)

Since µp(ωi)

µp(ωK̄)
> 1 for all i < K̄, we have that µp(ωi)

µp(ωK̄)
>

√
µp(ωi)√
µp(ωK̄)

> 1 holds for all i < K.

Therefore,

K̄∑
j=1

√
µp(ωj)√
µp(ωK̄)

< K̄+ δ. (43)

From (19), K∗ is the unique solution of

K∗∑
j=1

√
µp(ωj)√
µp(ωK∗)

< K∗ + δ ≤
K∗∑
j=1

√
µp(ωj)√

µp(ωK∗+1)
. (44)

Two cases are possible, depending on whether

K̄+ δ ⋛
K̄∑
j=1

√
µp(ωj)√

µp(ωK̄+1)
. (45)

If K̄ + δ ≤ RHS in (45) (where RHS refers to the right-hand side), then together with
(43) this implies that K̄ solves (44), and thus K̄ = K∗, which satisfies that statement of the
proposition.

If, however, K̄ + δ > RHS in (45), then K̄ does not solve (44). In this case, note that
going from K by K + 1 increases the LHS of (45) by 1 and increases the RHS by the

amount strictly greater than 1, since a new term
√

µp(ωK+1)√
µp(ωK+2)

> 1 is added to the sum, and

all existing terms increase because µp(ωK+1) < µp(ωK). This holds for all K, meaning

that if K̄ + δ > RHS in (45), then K + δ >
K∑
j=1

√
µp(ωj)√

µp(ωK+1)
for all K < K̄. Therefore, the

unique solution K∗ of (44) must be such that KM > K̄. This concludes the proof.

A.7 Proof of Theorem 2
Part 2 of the statement follows immediately from Proposition 3 of Matveenko and Mikhal-
ishchev (2021).

To show part 1, we invoke Theorem 1 from Matějka and McKay (2015) stated in (13),
which claims that in the contracting problem, the β : Ω → ∆(A) that solves the agent’s
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problem (20) is given by

π(ai|ωj) =
β(ai)e

u(ai,ωj)+τ(ai)

λ∑N
k=1 β(ak)e

u(ak,ωj)+τ(ak)

λ

=
β ′(ai)e

u(ai,ωj)

λ∑N
k=1 β

′(ak)e
u(ak,ωj)

λ

, (46)

where β(ai) =

N∑
j=1

µ(ωj)π(ai|ωj).

and β ′(ai) ≡
β(ai)e

τ(ai)

λ∑N
k=1 β(ak)e

τ(ak)

λ

.

Since β ′ is a valid probability distribution on A, representation (46) together with (13)
imply that such a collection of conditional probabilities π is a valid solution to the agent’s
problem (4) when the agent’s preferences net of information costs are given by u(ai,ωj).
That is, the principal can implement the desired conditional choice probabilities π by
choosing an agent with unbiased preferences and some belief µ, such that the uncondi-
tional choice probabilities selected by this agent are given by β ′. Lemma 2 implies that
such a belief µ ∈ ∆(Ω) does indeed exist.

A.8 Proof of Proposition 3
Plugging (12) into (10) yields the principal-optimal conditional choice probabilities for
the binary model, given by

π∗(R|r) =
(
e

2
λ − 1

)−1

e
1
λ

(
e

1
λ −

√
1− µp

µp

)
,

π∗(L|l) =
(
e

2
λ − 1

)−1

e
1
λ

(
e

1
λ −

√
µp

1− µp

)
,

(47)

cropped to [0, 1].
The agent’s preferences only depend on the difference τ(R) − τ(L). Assuming all

τ(R) ∈ R are available to the principal (no limited liability), it is without loss to set
τ(L) = 0. The agent’s problem is given by (20). Solving it given τ = (τ(R), 0) yields

π(R|r) = 1−
e

2
λ (1− µ) − e

1+τ(R)
λ + µ(

e
2
λ − 1

)(
e

1+τ(R)
λ − 1

)
µ
,

π(L|l) =
e

1
λ

(
e

2
λ (1− µ) − e

1+τ(R)
λ + µ

)
(
e

2
λ − 1

)(
e

1
λ − e

τ(R)
λ

)
(1− µ)

,

(48)

cropped to [0, 1].
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The principal’s contracting problem (21) in the binary setting with ρ = 0 is similar to
(11):

max
τ(R)

{µpπ(R|r) + (1− µp)π(L|l)}

s.t. π(R|r), π(L|l) are given by (48).
(49)

Assuming the probabilities in (48) are interior, the F.O.C. for (49) yields the candidate
solution τ(R) given by

τ∗(R) = λ ln

 1−µ
µ
e

1
λ +

√
1−µp

µp

1−µ
µ

+ e
1
λ

√
1−µp

µp

 , (50)

where the expression under the ln(·) is non-negative for any λ, µp, µ, and thus the candi-
date τ(R) exists for any µ that yields interior probabilities (48).

Plugging (50) into (48) yields, after some routine manipulations, the conditional choice
probabilities that coincide with (47) (hence, probabilities (48) are interior given µ and
τ∗(R) if and only if probabilities (47) are interior). Thus, condition (50) is not only nec-
essary, but also sufficient. Hence, for any µp for which (47) are interior, τ∗(R) as given
by (50) solves the principal’s problem (49), and this solution exists for any µ.

If λ and µp are such that probabilities (47) are not interior, then the principal would
like the agent to take the ex ante (principal-)preferred action (it can be verified that the
expressions in (47) are such that π∗(R|r) ≥ 1 ⇐⇒ π∗(L|l) ≤ 0 and π∗(R|r) ≤ 0 ⇐⇒
π∗(L|l) ≥ 1). The candidate transfers (50) yield exactly such non-interior probabilities
(when plugged into (48)), and hence they still solve the principal’s problem (49) for any
respective µ.33 This concludes the proof of part 1 of the proposition.

To show part 2, consider (50) as a function of µ. It is strictly decreasing in µ on [0, 1],
and the equation τ∗(R)(µ) = 0 has a unique root in [0, 1] equal to

µ∗ =

√
µp

√
µp +

√
1− µp

,

meaning that τ(R) ≥ 0 = τ(L) ⇐⇒ µ ≤ µ∗.

A.9 Proof of Proposition 4
As argued in the text, it is immediate that τ = 0. Proceeding analogously to Section 3,
we obtain that the agent’s problem (22) given the incentive payment τ̄ ≥ 0 is solved by

π(R|r) = min {1,max {0, πu(R|r)}} and π(L|l) = min {1,max {0, πu(L|l)}} ,

where πu (R|r) =
e

1+τ̄
λ

(
e

1+τ̄
λ µ− (1− µ)

)
(
e

2(1+τ̄)
λ − 1

)
µ

=
e

1+τ̄
λ

e
2(1+τ̄)

λ − 1

(
e

1+τ̄
λ −

1− µ

µ

)
,

πu (L|l) =
e

1+τ̄
λ

(
e

1+τ̄
λ (1− µ) − µ

)
(
e

2(1+τ̄)
λ − 1

)
(1− µ)

=
e

1+τ̄
λ

e
2(1+τ̄)

λ − 1

(
e

1+τ̄
λ −

µ

1− µ

)
.

(51)

33Note that τ∗(R) is not the unique solution in this case. If π∗(R|r) = 1, π∗(L|l) = 0, then any τ(R) ≥
λ ln

(
µ+ (1− µ)e

2
λ

)
− 1 yields the optimal choice probabilities, and if π∗(R|r) = 0, π∗(L|l) = 1, then

any τ(R) ≤ 1− λ ln
(
µe

2
λ + (1− µ)

)
solves the principal’s problem.
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The principal’s full contracting problem (23) can be rewritten as

max
τ̄∈R+

{
(1− ρτ̄)

(
µpπ(R|r) + (1− µp)π(L|l)

)}
,

s.t. π(R|r), π(L|l) are given by (51).
(52)

We use τ∗ to denote the solution to this problem.
To begin with, note that τ∗ ≥ 0 (due to limited liability) and τ∗ < 1/ρ (otherwise the

principal’s payoff is zero or negative, hence such τ∗ are dominated by τ̄ = 0). Further, if
τ∗ > 0, then π = πu, since otherwise the principal could reduce τ̄ without affecting the
agent’s choice.

Let us define the principal’s relaxed contracting problem as

max
τ̄∈R

{
(1− ρτ̄)

(
µpπu(R|r) + (1− µp)πu(L|l)

)}
,

s.t. πu(R|r), πu(L|l) are given by (51).
(53)

It differs from the full problem (52) in that it ignores the constraints τ̄ = 0 and π(R|r), π(L|l) ∈
[0, 1]. We use τ∗∗ to denote the interior solution of this relaxed problem, whenever it ex-
ists. So far, we can conclude that the principal’s problem (52) is solved by τ∗ ∈ {0, τ∗∗}.
The local maximizer τ∗∗ is optimal if it satisfies all of the following three properties (and
τ∗ = 0 otherwise):34

Feasibility: τ∗∗ exists and τ∗∗ ∈ [0, 1/ρ].35

Effectiveness: τ∗∗ generates π = πu.

Preferability: τ∗∗ is preferred to τ̄ = 0.

The FOC of problem (53) (that must be solved by τ∗∗) is given by

µp

1− µ

µ
+ (1− µp)

µ

1− µ
= e

1+τ̄
λ ·

λρ
(
e2

1+τ̄
λ − 1

)
+ 2(1− ρτ̄)

λρ
(
e2

1+τ̄
λ − 1

)
+
(
e2

1+τ̄
λ + 1

)
(1− ρτ̄)

. (54)

Let γ(µ, µp) denote the LHS and χ(τ̄) the RHS of (54), respectively. Note that χ(τ̄) is
continuous in τ̄ and only depends on τ̄, λ, and ρ, but not on µ or µp. Further, Lemma
3 below shows that if ρ ≥ min

{
1, 1

2λ

}
then for all λ, χ(τ̄) is increasing in τ̄ ∈ [0, 1/ρ]

(recall that τ∗∗ > 1/ρ obviously violates preferability, hence we drop this case). We
maintain this restriction on ρ throughout the rest of the proof. Monotonicity implies that
a feasible τ∗∗ exists for given µ, µp, λ, ρ if and only if χ(0) ≤ γ(µ, µp) ≤ χ(1/ρ), where
the “if” part follows from the intermediate value theorem, and the “only if” part follows
from τ ≥ 1/ρ never being optimal. The strict monotonicity of χ(τ̄) also means that the
objective function in (52) is strictly concave in τ̄, so if τ∗∗ exists, then it is unique and it
is a local maximizer of (52).

34Feasibility and preferability should be self-explanatory. Effectiveness means that the incentive payment
is effective at inducing the agent to acquire a non-trivial amount of information. Note that τ̄ = 0 is effective
when the agent acquires information in the absence of a transfer.

35Note that τ∗∗ ≤ 1/ρ is not an exogenous restriction, but is rather implied by preferability, as established
previously. It is, however, convenient to include this an explicit restriction.
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Lemma 3. Function χ(τ̄) is continuous and increasing in τ̄ ∈ [0, 1/ρ) for all λ and all
ρ ≥ min {1, 1/2λ}.

Proof. Denote ξ = ξ(τ, λ) ≡ e
1+τ
λ . For sake of brevity we drop the arguments of ξ(τ, λ)

and the bar from τ̄ throughout the proof of this lemma. Then we can rewrite

χ(τ) = ξ
λρ(ξ2 − 1) + 2(1− ρτ)

λρ(ξ2 − 1) + (ξ2 + 1)(1− ρτ)
.

This function is trivially continuous and differentiable in τ ∈ [0, 1/ρ]. Hence it suffices
to show that dχ(τ)

dτ
> 0:

dχ(τ)

dτ
=

(
λρ(3ξ2 − 1) + 2(1− ρτ)

)
∂ξ
∂τ

− 2ρξ

λρ(ξ2 − 1) + (ξ2 + 1)(1− ρτ)

−

[
2ξ(λρ+ 1− ρτ)

∂ξ

∂τ
− ρ(ξ2 + 1)

]
·

ξ
[
λρ(ξ2 − 1) + 2(1− ρτ)

]
[λρ(ξ2 − 1) + (ξ2 + 1)(1− ρτ)]2

=
ξ
(
ξ2 − 1

)
λ

·
2
(
ξ2 − 1+ 2 1−ρτ

λρ

)
+ 1−ρτ

λρ
·
(
ξ2 − 1− 2 1−ρτ

λρ

)
[
(ξ2 − 1) + (ξ2 + 1) 1−ρτ

λρ

]2 .

The latter expression is strictly positive for τ ∈ [0, 1/ρ) if and only if

2

(
ξ2 − 1+ 2

1− ρτ

λρ

)
+

1− ρτ

λρ
·
(
ξ2 − 1− 2

1− ρτ

λρ

)
> 0. (55)

The first term is strictly positive (since ξ > 1 and τ ≤ 1/ρ). The second term is nonnega-
tive for the given range of τ if ξ2 − 1 ≥ 2 1−ρτ

λρ
. Note that ξ2 − 1 ≥ 2 1+τ

λ
, hence (55) holds

if 1+τ
λ

≥ 1−ρτ
λρ

for all τ ∈ [0, 1/ρ), which holds if ρ ≥ 1.
Alternatively, we can rewrite (55) as(

ξ2 − 1
)(

2+
1− ρτ

λρ

)
+ 2

1− ρτ

λρ

(
2−

1− ρτ

λρ

)
≥ 0.

In the above expression, the first term is again always strictly positive; the second term is
nonnegative if λρ ≥ 1/2 (since τ ≤ 1/ρ).

We thus conclude that if either ρ ≥ 1, or ρ ≥ 1/2λ, then dχ(τ)
dτ

> 0 for τ ∈ [0, 1/ρ),
so χ(τ) is indeed increasing in τ on that interval.

Let us define the following cutoffs on µ that will prove helpful in establishing the
properties of interest of τ∗∗ (feasibility, effectiveness, and preferability):

1. Let µL1 ∈ (0, µ∗) and µR1 ∈ (µp, 1) be such that γ(µL1, µp) = γ(µR1, µp) = χ(0).
Lemma 4 below establishes that these cutoffs exist.

2. Let µL2 ≡ max
{
µ : π0

µ(L|l) = 1
}

, µR2 ≡ min
{
µ : π0

µ(R|r) = 1
}

, where π0
µ(L|l)

and π0
µ(R|r) stand for the respective probabilities (51) given µ and τ = 0. In words,

µL2 and µR2 are the most extreme beliefs µ for which the agent voluntarily acquires
information in the absence of incentive payment. Closed-form expressions can be

obtained from (51), with µL2 =
1

1+e
1
λ

and µR2 =
e
1
λ

1+e
1
λ

.
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3. Let µL3 ≡ inf {µ : τ∗ > 0}, µR3 ≡ sup {µ : τ∗ > 0}. In words, these denote the most
extreme beliefs µ up to which the principal is willing to offer incentive contracts.
Lemma 6 below shows that µL3 and µR3 are always well-defined (i.e., that the set
{µ : τ∗ > 0} is nonempty).

4. Let µL4 ≡ max
{
µ : π∗

µ(L|l) = 1
}

, µR4 ≡ min
{
µ : π∗

µ(R|r) = 1
}

, where π∗
µ(L|l)

and π∗
µ(R|r) stand for the respective probabilities (51) given µ and τ = τ∗∗. In

words, µL4 and µR4 are the most extreme beliefs µ for which the agent acquires
information given the candidate-optimal incentive τ∗∗. Closed-form expressions

can be obtained, with µL4 =
1

1+e
1+τ∗∗

λ

and µR4 =
e
1+τ∗∗

λ

1+e
1+τ∗∗

λ

.

5. Let µL5 ∈ (0, µ∗) and µR5 ∈ (µ∗, 1) be such that γ(µL5, µp) = γ(µR5, µp) =
χ(1/ρ). These cutoffs exists due to the properties of γ(µ, µp) established for µL1,
as well as the fact that χ(1/ρ) = e

1+1/ρ
λ > 1. Closed-form expressions can be

obtained, with

µL5, µR5 =
e

1+1/ρ
λ + 2µp ∓

√
e2

1+1/ρ
λ + 4µp(µp − 1)

2
(
1+ e

1+1/ρ
λ

) .

As χ(0) < χ(1/ρ) for all λ (see Lemma 3), it follows that µL5 < µL1 and µR5 > µR1.

We now proceed to establishing the conditions on µ for which the three properties
of τ∗∗ (feasibility, effectiveness, preferability) do or do not hold. To begin with, as was
previously claimed, a feasible τ∗∗ exists if and only if χ(0) ≤ γ(µ, µp) ≤ χ(1/ρ), which,
due to the monotonicity of χ(τ̄) in τ̄, is equivalent to

µ ∈ [µL5, µL1] ∪ [µR1, µR5]. (56)

As shown by construction above, µL5, µR5 are always well-defined and are located to the
outside of µL1 and µR1, respectively. It thus remains to verify that µL1 and µR1 are also
well-defined, which is done by the following lemma.

Lemma 4. For all λ, if ρ ≥ min {1, 1/2λ}, then µL1 and µR1 exist.

Proof. Function χ(τ̄) is independent of µ. Function γ(µ, µp) is single-dipped in µ, with
minµ γ(µ, µp) = 2

√
µp (1− µp) < 1 achieved at µ = µ∗(µp) as given by (12), and

supµ γ(µ, µp) = +∞ achieved by µ → {0, 1}. Hence a sufficient condition for the cutoffs
of interest to exist is

χ(0) ≥ γ(µ∗(µp), µp). (57)

In the inequality above, only χ(0) depends on ρ. Note further that dχ(0)
dρ

> 0. Therefore,
if (57) holds for some ρ̃, then it also holds – and, consequently, µL1 and µR1 exist – for all
ρ ≥ ρ̃.

Observe that χ(0) ≥ 1 for ρ = 1
2λ

: denoting ξ = ξ(λ) ≡ e
1
λ , we have

χ(0) = ξ
λρ(ξ2 − 1) + 2

λρ(ξ2 − 1) + (ξ2 + 1)
≥ 1

⇐⇒ (ξ− 1)2 (λρ(ξ+ 1) − 1) ≥ 0 (58)
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Since ξ = e
1
λ ≥ 1, a sufficient condition for (58) is given by

ρ ≥ 1

λ(ξ+ 1)
, (59)

which obviously holds if ρ ≥ 1
2λ

. Further, e
1
λ ≥ 1 + 1

λ
⇐⇒ λ(ξ + 1) ≥ 1, hence the

RHS of (59) is weakly smaller than 1, so the inequality also holds for all ρ ≥ 1.
We conclude that if ρ ≥ min

{
1, 1

2λ

}
, then χ(0) ≥ 1, and hence (57) is satisfied and

the relevant cutoffs exist.

Moving on to effectiveness, it should be immediate from the analysis in Section 3 that
for a feasible τ∗∗ to yield interior choice probabilities (51), it must be that µ ∈ [µL4, µR4].
The following lemma establishes the location of µL4, µR4 relative to other cutoffs.

Lemma 5. Cutoffs µL4 and µR4 are such that µL4 ∈ [µL5, µL2] and µR4 ∈ [µR2, µR5].

Proof. Denoting µL(τ̄) ≡ max {µ : πµ(L|l, τ̄) = 1} = 1

1+e
1+τ
λ

and observing that it is

strictly decreasing in τ, we get µL(0) ≥ µL(τ
∗∗) ≥ µL(1/ρ), which is equivalent to

µL2 ≥ µL4 ≥ µL(1/ρ). Routine calculations using the closed-form expression for µL5

then demonstrate that µL(1/ρ) ≥ µL5, implying that in the end, µL4 ∈ [µL5, µL2]. The
result for µR4 is shown analogously.

Finally, we need to establish when the principal prefers a feasible τ̄ = τ∗∗ to τ̄ = 0,
which is done by the following lemma.

Lemma 6. The principal weakly prefers a feasible τ̄ = τ∗∗ to τ̄ = 0 if and only if
µ ∈ [µL3, µR3]. Further, these cutoffs satisfy µL3 ∈ [µL4, µL2] and µR3 ∈ [µR2, µR4].

Proof. For µ ∈ [µL4, µL2], the principal compares his payoff from choosing τ = 0, given
by 1 − µp, and his payoff from choosing τ = τ∗∗. Thus, µL3 satisfies the following
indifference condition

E[u(a,ω) | µp, τ
∗∗] ≡

(
1− ρτ∗∗(µ)

)(
µpπ

∗
µ(R|r) + (1− µp)π

∗
µ(L|l)

)
= 1− µp. (60)

The LHS of (60) is single-peaked in µ:

dE[u(a,ω) | µp, τ
∗∗]

dµ
=

∂E[u(a,ω) | µp, τ
∗∗]

∂µ

= (1− ρτ∗∗(µ))

(
µp

∂π∗
µ(R|r)

∂µ
+ (1− µp)

∂π∗
µ(L|l)

∂µ

)
= (1− ρτ∗∗(µ))

e2
1+τ̄
λ

e
2(1+τ̄)

λ − 1

(
µp

µ2
−

1− µp

(1− µ)2

)
where the first equality follows from the envelope theorem. The final expression is strictly
positive for µ < µ∗(µp) and strictly negative for µ > µ∗(µp), hence the single-peakedness
follows.

Thus, d
dµ
E[u(a,ω) | µp, τ

∗∗] > 0 for µ ∈ [µL4, µL2] (since also µL2 < 1/2 ≤ µ∗).
Hence we can show that µL3 ∈ [µL4, µL2] by establishing that

E[u(a,ω) | µp, τ
∗∗;µ = µL4] ≤ 1− µp ≤ E[u(a,ω) | µp, τ

∗∗;µ = µL2]
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and applying the intermediate value theorem. The first inequality follows from the fact
that at µL4, τ∗∗ is such that the agent does not acquire information, yet the principal pays
a positive transfer to him (which is trivially dominated by τ̄ = 0). The second inequality
follows from the fact that given µ = µL2, (54) holds for all τ̄ ∈ [0, 1/ρ], so if τ∗∗ exists,
it is preferred to τ̄ = 0. We conclude that µL3 ∈ [µL4, µL2], and the mirror argument can
establish that µR3 ∈ [µR2, µR4].

Finally, the single-peakedness of E[u(a,ω) | µp, τ
∗∗] in µ implies that τ̄ = τ∗∗ is

preferred to τ̄ = 0 for all µ ∈ [µL3, µR3].

To summarize, the principal’s problem (23) is solved by τ∗ ∈ {0, τ∗∗}, with τ∗∗ being
the solution if and only if it is feasible, effective, and preferable. It is feasible if and
only if (56) holds; effective if and only if µ ∈ [µL4, µR4], and preferable if and only if
µ ∈ [µL3, µR3]. Further, we have established that µL5 ≤ µL4 ≤ µL3 ≤ µL2 (and the
converse holds for the other set of cutoffs), as well as µL1 < µ∗ ≤ µp < µR1. Therefore,
τ∗ = τ∗∗ if and only if µ ∈ [µL3, µL1] ∪ [µR1, µR3], whenever these intervals are non-
empty. After denoting µ̂L ≡ µL3, µ̂R ≡ µR3, µ̄L ≡ max{µL3, µL1}, µ̄R ≡ min{µR1, µR3} and
excluding the endpoints, at which τ∗∗ = 0, we obtain the statement of the Proposition.

A.10 Proof of Proposition 5
Using Theorem 1 of Caplin et al. (2019), the agent’s problem (24) given some restriction
set A∗ is solved by π such that the corresponding β ∈ ∆(A∗) satisfies (17) for all ai ∈ A∗.
Further, recall from Section 4 that π and β are connected in the optimum by relation (13)
(where we set π(ai|ωj) ≡ β(ai) ≡ 0 for all ai /∈ A∗ and all ωj ∈ Ω). Then by plugging
(13) and the state-matching utility into the principal’s expected payoff, it can be rewritten
as in (16):

N∑
i=1

µp(ωi)
β(ai)e

1
λ

1+ δβ(ai)
=

∑
i∈C(β)

µp(ωi)
(1+ δ)β(ai)

1+ δβ(ai)
.

Plugging in (17) for β in the expression above transforms it to

∑
i∈C(β)

1+δ
δ
µp(ωi)

[
(K(β) + δ)µp(ωi) −

∑
j∈C(β)

µ(ωj)

]
(K(β) + δ)µp(ωi)

=
1+ δ

δ

 ∑
i∈C(β)

µp(ωi) −
∑

i∈C(β)

∑
j∈C(β)

µ(ωj)

(K(β) + δ)


=

1+ δ

K(β) + δ

∑
i∈C(β)

µp(ωi). (61)

To prove the proposition statement, we proceed by induction. Consider some arbitrary
action set A− ⊂ A such that ak /∈ A− for some k ∈ {1, ...,N} and another action set
A+ ≡ A− ∪ {ak}. Let β+ denote the unconditional choice probabilities corresponding to
the solution of (24) given A+, let C+ ≡ C(β+) and K+ ≡ K(β+), and define β−, C−, K−

analogously given A−.
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Our goal is to show that that selecting A∗ = A+ is weakly better for the principal than
A∗ = A−. If ak /∈ C+, then the payoffs in the two cases are equal, and the statement
is trivially true. Otherwise, using (61) for the principal’s expected payoff, the statement
amounts to:

0 ≤

(
1+ δ

K+ + δ

∑
i∈C+

µp(ωi)

)
−

(
1+ δ

K− + δ

∑
i∈C−

µp(ωi)

)

⇐⇒ 0 ≤

(
(K− + δ)

∑
i∈C+

µp(ωi)

)
−

(
(K+ + δ)

∑
i∈C−

µp(ωi)

)

⇐⇒ 0 ≤(K− + δ)µp(ωk) −

(∑
i∈C−

µp(ωi)

)
. (62)

Since ak ∈ C+ by assumption, β+(ak) > 0, which, from (17), implies that

0 <
(K(β̄) + δ)µ(ωi)∑

j∈C(β̄)
µ(ωj)

− 1

⇐⇒ 0 <(K+ + δ)µp(ωk) −

(∑
i∈C+

µp(ωi)

)

⇐⇒ 0 <(K− + 1+ δ)µp(ωk) −

(∑
i∈C−

µp(ωi) + µp(ωk)

)

⇐⇒ 0 <(K− + δ)µp(ωk) −

(∑
i∈C−

µp(ωi)

)
,

which immediately implies that (62) holds. Therefore, it is indeed better for the principal
to choose A+ over A−. Since A− was arbitrary, this proves by induction that allowing a
larger action set is always weakly better for the principal, and hence proves the original
proposition.

A.11 Proof of Proposition 6
The proof follows in two main parts: first we solve the agent’s problem in the binary-
quadratic setting, and then we proceed to analyze the principal’s problem.

The agent’s problem. We solve the agent’s problem in the binary-quadratic problem
using the so-called posterior approach, where instead of a signal structure ϕ, the agent
maximizes over a distribution of posterior beliefs.36 This reformulation is as follows.

Consider an agent who chooses a signal strategy ϕ with signal realizations in S ∈ S.
Each signal realization s ∈ S is associated with a corresponding posterior belief η ∈ [0, 1]

36This approach is popular in the Bayesian Persuasion literature (Kamenica and Gentzkow, 2011). For
some examples of this approach being used in problems with rationally inattentive agents, see, e.g., Jain
and Whitemeyer (2021) and Matyskova and Montes (2023), with Caplin et al. (2022) presenting a general
treatment.
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(as with the priors, we represent all posterior beliefs η ∈ ∆(Ω) in terms of the probability
they assign to state ω = 1). Hence an experiment ϕ induces a distribution over posterior
beliefs. It is commonly known from the literature on rational inattention (see, e.g., Caplin
and Dean (2013)) that instead of considering the set of all Blackwell experiments ϕ, one
can consider the set of distributions of posterior beliefs that average out to the prior.

In order to avoid introducing new notation for such distributions, without loss of gen-
erality we restrict attention to “direct” signal structures, in which signals are labeled ac-
cording to the posterior belief they induce. Formally, for this proof, let S ≡ ∆(Ω) and
restrict attention to the set of feasible direct experiments ϕ:

Φµ ≡ {ϕ ∈ ∆(∆(Ω)) : ∀s ∈ ∆(Ω) : η(s) = s; E[s|ϕ] = µ} .

In other words, any experiment in Φµ prescribes some distribution over signals s ∈ ∆(Ω)
such that any signal induces a posterior belief η(s) = s, and the signals average out to
the prior belief µ. An agent with prior belief µ is limited to choosing a signal structure
ϕ ∈ Φµ. In what follows, we suppress the signal notation and refer to all signals s

according to the posterior beliefs η(s) that they induce.
It can be easily seen from (1) that the cost of a direct experiment ϕ can be expressed

as
c(ϕ,µ) = λ

[
− E[H(η)|ϕ] +H(µ)

]
,

where H(µ) ≡ µ lnµ+ (1− µ) ln(1− µ) is the entropy of belief µ.
Under the quadratic preferences u(a,ω) = −(a−ω)2, given some posterior belief η,

the agent’s optimal choice rule is σ∗(η) = η. His interim expected payoff given posterior
η, thus, equals E[u(η,ω)|η] = −η(1− η). Therefore, the agent’s problem is given by

max
ϕ∈Φµ

E
[
− η(1− η) + λH(η) − λH(µ) | ϕ

]
. (63)

Since the last term −λH(µ) does not affect the maximization, it can be safely ignored.
Then we can define the agent’s net utility as v(η) ≡ −η(1 − η) + λH(η). Problem (63)
is then equivalent to maxϕ∈Φµ E[v(η)|ϕ], which can be solved using a concavification
approach (Kamenica and Gentzkow, 2011; Caplin et al., 2022).

In particular, let v̂(η) denote the concavified net utility function (also known as the
concave closure of v(η); Rockafellar, 1970), which is defined as the minimal concave
function that majorizes all net utilities. We characterize v̂(η) by establishing some proper-
ties of v(η) and its derivatives v ′, v ′′. Note first that v(η) is symmetric around 0.5: for any
η1, η2 s.t. η1 + η2 = 1, it is true that v(η1) = v(η2), v ′(η1) = −v ′(η2), v ′′(η1) = v ′′(η2).
Further, simple algebra shows that v ′′(η) = 2 − λ 1

η(1−η)
. Two cases are then possible, as

depicted in Figure 7.
Case 1: λ ≥ 0.5. Then v ′′(η) ≤ 0 and function v(η) is concave on [0, 1], meaning

v̂(µ) = v(µ) for all µ. The results of Caplin et al. (2022) then imply that the agent
chooses degenerate distribution ϕ that puts all mass on η = µ and does not acquire any
information, regardless of µ. This concludes the analysis of the agent’s problem in case
1, and the remainder of this section is devoted to the analysis of the case when λ < 0.5.

Case 2: λ < 0.5. Then equation v ′′(η) = 0 has two roots, denote them as ηl, ηr, with
ηl < ηr. Function v(η) is concave on [0, ηl) ∪ (ηr, 1] and convex on (ηl, ηr), and so its
derivative v ′(η) is decreasing on [0, ηl)∪(ηr, 1] and increasing on (ηl, ηr). Simple algebra
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Figure 7: The net utility function v(η) and the concavified net utility function v̂(η).

shows that v ′(0.5) = 0. Together with the fact that lim
η→0+

v(η) = −∞ = lim
η→1−

v(η), it

implies that there exist two other roots of v ′(η) = 0 and they belong to the intervals
[0, ηl] and [ηr, 1]. We denote these roots as ηL, ηR, respectively, and the symmetry of v(η)
implies that ηL = 1− ηR.

The behavior of v ′(η) suggests that ηL, ηR are local and global maxima of v(η). There-
fore, v̂(η) = v(η) if η ∈ [0, ηL]∪ [ηR, 1], and if η ∈ (ηL, ηR) then v̂(η) lies on the straight
line connecting points (ηL, v(ηL)) and (ηR, v(ηR)). Therefore, if µ ∈ [0, ηL] ∪ [ηR, 1],
tangent lines to v(η) and v̂(η) coincide, and the agent does not acquire information; if
µ ∈ (ηL, ηR), the agent chooses ϕ with two posterior beliefs in the support: ηL and ηR.

We proceed to explicitly calculate the optimal signal structure ϕ∗ in the latter case
(i.e., when the agent acquires information). First, by the law of total probability:

ϕ∗(ηR)ηR + ϕ∗(ηL)ηL = µ ⇒ ϕ∗(ηR) =
µ− ηL

ηR − ηL

. (64)

Further, from the Bayes’ rule, we have that ηR = µ·ϕ∗(ηR|1)
µ·ϕ∗(ηR|1)+(1−µ)·ϕ∗(ηR|0)

. From the law of
total probability, µ ·ϕ∗(ηR|1)+ (1−µ) ·ϕ∗(ηR|0) = ϕ∗(ηR). Combining the two, we get

ϕ∗(ηR|1) =
ηR

µ
· µ− ηL

ηR − ηL

= 1− ϕ∗(ηL|1),

ϕ∗(ηR|0) =
1− ηR

1− µ
· µ− ηL

ηR − ηL

= 1− ϕ∗(ηL|0),
(65)

which completes the characterization of ϕ∗. However, it will also prove useful to note that
while not reflected in the notation, ϕ∗ does depend on the prior, µ, and this dependence is
given by

∂ϕ∗(ηR|1)

∂µ
=

ηR · ηL

µ2 · (ηR − ηL)
= −

∂ϕ∗(ηL|1)

∂µ
,

∂ϕ∗(ηR|0)

∂µ
=

(1− ηR) · (1− ηL)

(1− µ)2 · (ηR − ηL)
= −

∂ϕ∗(ηL|0)

∂µ
.

(66)
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The principal’s problem. Begin by assuming λ < 0.5. The principal’s expected utility
from hiring a learning agent with prior belief µ ∈ (ηL, ηR) is given by

µp

(
ϕ∗(ηR|1)ū+ ϕ∗(ηL|1)u

)
+ (1− µp)

(
ϕ∗(ηR|0)u+ ϕ∗(ηL|0)ū

)
, (67)

where ū ≡ −η2
L = −(1 − ηR)

2 and u ≡ −η2
R = −(1 − ηL)

2 < ū. If it is optimal to hire
a learning agent, then the optimal agent’s prior µ∗ must maximize (67), hence µ∗ must
solve the FOC given by

µp

ηR · ηL

(µ∗)2 · (ηR − ηL)
(ū− u) = (1− µp)

(1− ηR) · (1− ηL)

(1− µ∗)2 · (ηR − ηL)
(ū− u)

⇐⇒ µ∗

1− µ∗ =

√
µp

1− µp

,

where the first line uses (66), and then the second line follows from ηL = 1 − ηR. It is
trivial to verify that the SOC also hold. Representation (12) therefore applies conditional
on the principal hiring a learning agent. To fully solve the principal’s problem it is then
left to characterize her choice between a learning and a non-learning agent.

Conditional on hiring a non-learning agent, it is trivially optimal for the principal
to hire an aligned agent µ = µp (since such an agent chooses a ∈ A to maximize
E[u(a,ω)|µp], as opposed to some other function induced by an expectation w.r.t. an-
other belief).

Suppose w.l.o.g. µp ≥ 0.5 (the logic for µp < 0.5 is analogous). We first characterize
the principal’s optimal strategy for µp ∈

[
ηR, (µ

∗)−1(ηR)
)

– i.e., such µp that an agent
with µ = µp is not learning and an agent with µ∗(µp) is learning.37 We then show that
when one of these is violated (either µ = µ∗(µp) does not learn, or µ = µp does), an
extrapolation of such a strategy is optimal.

If µp ∈
[
ηR, (µ

∗)−1(ηR)
)
, hiring an aligned agent µ = µp yields the principal an

expected payoff of −µp(1− µp), while hiring agent µ∗(µp) yields

−µp

(
ϕ∗(ηR|1)(1−ηR)

2+ϕ∗(ηL|1)(1−ηL)
2
)
−(1−µp)

(
ϕ∗(ηR|0)η

2
R+ϕ∗(ηL|0)η

2
L

)
=

= −2ηR(1− ηR)
√

µp(1− µp),

where the equality uses (65) and the fact that ηR = 1 − ηL. The latter (hiring µ∗(µp)) is
preferred if and only if

−2ηR(1− ηR)
√

µp(1− µp) ≥ −µp(1− µp)

⇐⇒ 2ηR(1− ηR) ≤
√

µp(1− µp). (68)

Note that the RHS of the inequality above is strictly decreasing in µp ≥ 0.5, while the
LHS does not depend on µp. Furthermore,

• if µp = ηR, then (68) holds: 2ηR(1−ηR) ≤
√

ηR(1− ηR) ⇐⇒ √
ηR(1− ηR) ≤ 1

2
,

which holds because ηR(1− ηR) ≤ 1
4

for any ηR ∈ [0.5, 1];

37Here (µ∗)−1(µ) is the inverse of function µ∗(µp) given by (12).
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• if µp = (µ∗)−1(ηR) =
η2R

η2R+(1−ηR)2
, then (68) is equivalent to η2

R+(1−ηR)
2 ≤ 1

2
⇐⇒

2
(
ηR +

1
2

)2 ≤ 0, which fails to hold for any ηR ∈ [0.5, 1].

By the intermediate value theorem, we conclude that there exists µ̂ ∈
[
ηR, (µ

∗)−1(ηR)
)

such that (68) is satisfied – and delegation to a non-learning agent is preferred – if and
only if µp ≥ µ̂.

If µp ≥ (µ∗)−1(ηR), then the optimal non-learning agent µ = µp is still available,
but the optimal learning agent µ = µ∗(µp) is not, hence (if the principal wants a learning
agent, she has to deviate away from µ∗(µp), and so) the principal has an even stronger
preference towards hiring a non-learning agent than in the case above. The mirror logic
also holds: if µp < ηR, then the optimal learning agent is available, but the optimal
non-learning agent is not, hence the principal has a stronger preference towards hiring a
learning agent than in the case above.

We conclude that there exists µ̂ ∈
[
ηR, (µ

∗)−1(ηR)
)

that solves (68) w.r.t. µp such that
the principal’s optimal strategy is given by:

µ∗∗(µp) =

{
µ∗(µp) as given by (12) if µp < µ̂,

µp if µp ≥ µ̂.

This concludes the proof for the case λ < 0.5. In case λ ≥ 0.5, no agent acquires any
information, hence by the logic above, hiring an agent µ = µp is optimal. Setting µ̂ = 0.5,
we get the result in this case as well, which completes the proof.

A.12 Proof of Proposition 7
We provide an example for N = 3. We use the same version of the Farkas’ Lemma as in
the proof of Lemma 2. To show that there is no prior belief that solves the system of the
first-order conditions for the problem, it is sufficient to show that there is a solution to the
following dual inequality system

z1e
u(a1,ω1)

λ + z2e
u(a1,ω2)

λ + z3e
u(a1,ω3)

λ ≥ 0,

z1e
u(a2,ω1)

λ + z2e
u(a2,ω2)

λ + z3e
u(a2,ω3)

λ ≥ 0,

z1e
u(a3,ω1)

λ + z2e
u(a3,ω2)

λ + z3e
u(a3,ω3)

λ ≥ 0,

z1 + z2 + z3 < 0.

(69)

Let us normalize λ = 1 and consider payoffs given by the following matrix:u(a1,ω1) u(a2,ω1) u(a3,ω1)
u(a1,ω2) u(a2,ω2) u(a3,ω2)
u(a1,ω3) u(a2,ω3) u(a3,ω3)

 =

ln 3 0 ln(2+ ε)
0 ln 3 ln(2+ ε)
0 0 ln(2+ ε)


Notice that vector (z1, z2, z3) = (−1 − δ,−1 − δ, 2) for small enough δ, ε ≥ 0 solves
system (69): the two latter inequalities hold trivially for all such z, and the two former
inequalities hold if ε ≥ 3

1+δ
2 − 2. Therefore, there exists no µ that solves system (37)

given β ∈ ∆(Θ).
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A.13 Proof of Proposition 8
The proof is largely analogous to that of Proposition 6 and proceeds in two main parts: we
first solve the agent’s problem in the binary setting of Section 3 with uniformly posterior-
separable information costs, and then we proceed to analyze the principal’s problem.

The agent’s problem. We solve the agent’s problem using the so-called posterior ap-
proach, where instead of a signal structure ϕ, the agent maximizes over a distribution of
posterior beliefs (see Footnote 36). In particular, consider an agent that chooses a signal
strategy ϕ with signal realizations in S ∈ S. Each signal realization s ∈ S is associated
with a corresponding posterior belief η ∈ [0, 1] (as with the priors, we represent all pos-
terior beliefs η ∈ ∆(Ω) in terms of the probability they assign to state ω = r). Hence an
experiment ϕ induces a distribution over posterior beliefs. It is commonly known from
the literature on rational inattention (see, e.g., Caplin and Dean (2013)) that instead of
considering the set of all Blackwell experiments ϕ, one can consider the set of distribu-
tions of posterior beliefs that average out to the prior.

In order to avoid introducing new notation for such distributions, we instead consider
“direct” signal structures, in which signals are labeled according to the posterior belief
they induce. Formally, for this proof, let S ≡ ∆(Ω) and restrict attention to the set of
feasible direct experiments ϕ:

Φµ ≡ {ϕ ∈ ∆(∆(Ω)) : ∀s ∈ ∆(Ω) : η(s) = s; E[s|ϕ] = µ} .

In other words, any experiment in Φµ prescribes some distribution over signals s ∈ ∆(Ω)
such that any signal induces a posterior belief η(s) = s, and the signals average out to
the prior belief µ. An agent with prior belief µ is limited to choosing a signal structure
ϕ ∈ Φµ. In what follows, we suppress the signal notation and refer to all signals s

according to the posterior beliefs η(s) that they induce.
With state-matching preferences, the agent’s optimal choice rule as a function of his

posterior belief η is given by (up to a tie-breaking rule)

σ∗(η) =

{
R if η ≥ 0.5,

L if η < 0.5.

The agent’s expected payoff is hence E[u(σ∗(η),ω)|η] = max{η, 1− η}. Since the infor-
mation cost (of a given direct experiment ϕ) is given by

cUPS(ϕ,µ) ≡ λ
[
E[ĉ(η)|ϕ] − ĉ(µ)

]
,

the agent’s problem then amounts to

max
ϕ∈Φµ

E
[

max{η, 1− η}− λĉ(η) + λĉ(µ) | ϕ
]
. (70)

Since the last term λĉ(µ) does not affect the maximization, it can be safely ignored. Then
we can define the agent’s net utility as v(η) ≡ max{η, 1−η}−λĉ(η). Problem (70) is then
equivalent to maxϕ∈Φµ E[v(η)|ϕ], which can be solved using a concavification approach
(Kamenica and Gentzkow, 2011; Caplin et al., 2022). In particular, let v̂(η) denote the
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concavified net utility function (also known as the concave closure of v(η); Rockafellar,
1970), which is defined as the minimal concave function that majorizes all net utilities.
We characterize v̂(η) by establishing some properties of v(η) and its derivatives v ′, v ′′.

Note first that since ĉ(η) is assumed to be symmetric around 0.5, v(η) is also sym-
metric around 0.5: for any η1, η2 s.t. η1 + η2 = 1, it is true that v(η1) = v(η2), v ′(η1) =
−v ′(η2), v ′′(η1) = v ′′(η2). We thus limit our analysis to the interval η ∈ [0, 0.5), and the
analysis for η ∈ (0.5, 1] is analogous. Clearly, if η ∈ [0, 0.5) then v(η) = 1− η− λĉ(η).
Function ĉ(η) is assumed to be convex, thus v ′′(η) = −λĉ ′′(η) < 0 for η ∈ [0, 0.5).
Therefore, the derivative v ′(η) is decreasing for η ∈ [0, 0.5). Convexity and symmetry of
ĉ(η) also imply that it attains minimum at η = 0.5, so ĉ ′(0.5) = 0 and lim

η→0.5−
v ′(η) < 0.

On the other hand, from the Inada properties of ĉ(η), we also have that lim
η→0+

v ′(η) = +∞.

Since derivative v ′(η) is continuous and decreasing for all η ∈ [0, 0.5), there exists a
unique root of the equation v ′(η) = 0. Denote this root as ηL and note that it is then a
maximizer of v(η) on the interval [0, 0.5). Symmetry of v(η) implies that there exists
a symmetric maximizer ηR ∈ (0.5, 1] of v(η) on (0.5, 1]. Moreover, ηL + ηR = 1 and
v(ηL) = v(ηR).

It further follows from the monotonicity of v ′(η) on each interval that v(η) is concave
on η ∈ [0, ηL] ∪ [ηR, 1], hence v̂(η) = v(η) for such η. Conversely, if η ∈ (ηL, ηR),
then v̂(η) is the straight line connecting points (ηL, f(ηL)) and (ηR, f(ηR)). Thus, if the
agent’s prior is µ ∈ [0, ηL] ∪ [ηR, 1], then tangent lines to v(η) and v̂(η) coincide, and the
agent does not acquire any information; if µ ∈ (ηL, ηR), then the agent optimally chooses
experiment ϕ with two posterior beliefs in the support, ηL and ηR, which are such that
ηL + ηR = 1.

In the latter case, we can derive the optimal experiment ϕ∗ in closed form. Conditional
on ηL and ηR, expressions (64)–(66) apply in this context as well after replacing ϕ∗(η|1)
and ϕ∗(η|0) with ϕ∗(η|r) and ϕ∗(η|l), respectively.

The principal’s problem. The principal’s expected utility from hiring a learning agent
with prior belief µ ∈ (ηL, ηR) is given by

E[u(σ∗(η),ω)|µp, ϕ
∗] = µpϕ

∗(ηR|r) + (1− µp)ϕ
∗(ηL|l). (71)

If it is optimal to hire a learning agent, then the optimal agent’s prior µ∗ must maximize
(71), hence µ∗ must solve the FOC given by

µp

ηR · ηL

(µ∗)2 · (ηR − ηL)
= (1− µp)

(1− ηR) · (1− ηL)

(1− µ∗)2 · (ηR − ηL)⇐⇒ µ∗

1− µ∗ =

√
µp

1− µp

,

where the first line uses (66), and then the second line follows from ηL = 1 − ηR. It is
trivial to verify that the SOC also hold at this point. Representation (12) therefore applies
conditional on the principal hiring a learning agent. To fully solve the principal’s problem
it is then left to characterize her choice between a learning and a non-learning agent.

Suppose w.l.o.g. µp ≥ 0.5 (the logic for µp < 0.5 is analogous). We first characterize
the principal’s optimal strategy for µp ∈

[
0.5, (µ∗)−1(ηR)

)
– i.e., such µp that an agent
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with µ∗(µp) is learning. Here (µ∗)−1(µ) is the inverse of function µ∗(µp) given by (12),
so (µ∗)−1(ηR) =

η2R
η2R+(1−ηR)2

. Conditional on hiring a non-learning agent, the principal
is indifferent between all agents µ ∈ [ηR, 1], since any such non-learning agent chooses
a = R and yields the principal an expected payoff equal to µp. If µp ∈

[
0.5, (µ∗)−1(ηR)

)
,

hiring an optimal learning agent µ∗(µp) yields

µpϕ
∗(ηR|r) + (1− µp)ϕ

∗(ηL|l) =
ηR

ηR − ηL

(
ηR − 2ηL

√
µp(1− µp)

)
. (72)

Routine algebraic manipulations help establish that (72) is convex in µp, and it is tangent
to µp at µp = (µ∗)−1(ηR). Therefore, hiring agent µ∗(µp) is better than hiring a non-
learning agent for all µp ∈

[
0.5, (µ∗)−1(ηR)

)
.

In turn, for µp ≥ (µ∗)−1(ηR), maximizing (71) yields a corner solution µ = ηR, hence
hiring a learning agent is not optimal, and the principal prefers instead to hire any non-
learning agent µ ∈ [ηR, 1] – hence representation (12) prescribes one optimal strategy for
such µp. This concludes the proof.

A.14 Proof of Proposition 10
We first show that there exists an equilibrium in the communication game that replicates
the deletation equilibrium: the optimal agent acquires the same information, makes a
truthful action recommendation, and the principal follows the recommendation.

Suppose that under delegation, the optimally chosen agent follows a decision rule β∗

that yields a consideration set C(β∗) = {1, ..., K∗}. By Lemma 1, we have that√
µ(ωK∗) ≥ 1

K∗ + δ

K∗∑
i=1

√
µ(ωi)

⇐⇒ δ
√
µ(ωK∗) ≥

K∗−1∑
i=1

(√
µ(ωi) −

√
µ(ωK∗)

)
(73)

Suppose the agent reports truthfully. Given the state-matching payoffs, for the principal
to follow recommendation ã = ãK∗ whenever it is issued, it must hold that

µp(ωK∗ |ãK∗) = max
i

µp(ωi|ãK∗), (74)

where µp(ω|ã) is the probability that the principal’s posterior belief assigns to state ω

after hearing recommendation ã from the agent. In equilibrium, the principal’s posterior
µp(ωK∗ |ãK∗) must satisfy Bayes’ rule:

µp(ωK∗ |ãK∗) =
π(aK∗ |ωK∗)µp(ωK∗)∑N
i=1 µp(ωi)π(aK∗ |ωi)

=
β(aK∗)e

1
λ

β(a1) + ...+ β(aK∗−1) + β(aK∗)e
1
λ

· µp(ωK∗)∑N
i=1 µp(ωi)π(aK∗ |ωi)

=
β(aK∗)e

1
λ

1+ δβ(aK∗)
· µp(ωK∗)∑N

i=1 µp(ωi)π(aK∗ |ωi)

=

∑K∗

i=1

√
µp(ωi)

K∗ + δ
· β(aK∗)e

1
λ ·

√
µ(ωK∗)∑N

i=1 µp(ωi)π(aK∗ |ωi)
,
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Where the last line is obtained by plugging the expression for β(aK∗) from Lemma 1 in
the denominator of the preceding line. Similarly, we can calculate the probability that the
principal’s posterior assigns to any other state ωj:

µp(ωj|ãK∗) =


∑K∗

i=1

√
µp(ωi)

K∗+δ
· β(aK∗)e

1
λ ·

√
µ(ωj)∑N

i=1 µp(ωi)π(aK∗ |ωi)
if j < K∗,

0 if j > K∗.

For condition (74) to hold, it is then enough for

e
1
λ

√
µ(ωK∗) ≥

√
µ(ω1) ⇐⇒ δ

√
µ(ωK∗) ≥

√
µ(ω1) −

√
µ(ωK∗), (75)

to be satisfied. Note, however, that it is strictly weaker than (73), since

√
µ(ω1) −

√
µ(ωK∗) <

K∗−1∑
i=1

(√
µ(ωi) −

√
µ(ωK∗)

)
.

Therefore, we conclude that (75) holds, and thus it is optimal for the principal to choose
action aK∗ when the agent with prior belief µ∗ recommends it.

Following the same argument, we can show the same for any other recommendation
ãi for i ∈ C(β∗): the necessary and sufficient condition for the principal to find it optimal
to follow the recommendation would be

e
1
λ

√
µ(ωi) ≥

√
µ(ω1),

which is implied by (74), since µ(ωi) ≥ µ(ωK∗) for i ∈ C(β∗). This concludes the
proof.
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