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Abstract

We construct a model of innovation diffusion that incorporates a spa-
tial component into a classical imitation-innovation dynamics first in-
troduced by F. Bass. Relevant for situations where the imitation pro-
cess explicitly depends on the spatial proximity between agents, the
resulting nonlinear field dynamics is exactly solvable. As expected
for nonlinear collective dynamics, the imitation mechanism generates
spatio-temporal patterns, possessing here the remarkable feature that
they can be explicitly and analytically discussed. The simplicity of
the model, its intimate connection with the original Bass’ modeling
framework and the exact transient solutions offer a rather unique the-
oretical stylized framework to describe how innovation jointly develops
in space and time.
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1 Introduction

Since the middle of the XXth century, a substantial literature em-
phasizes the importance of quantitative models that enable the fore-
casting of the diffusion of technological innovations (DTI) not only
for pure academic interest, but for its practical relevance. While the
empirical evidence that quantification of DTI is possible was initially
recognized by E. Mansfield [1] and Z. V. Griliches [2, 3], the first quan-
titative stylized dynamical modeling framework was proposed by F.
Bass in his seminal 1969 paper [4]. Similar in essence to the P.-F.
Verhulst’s epidemiological logistic equation, the Bass’ model uses an
aggregated differential approach enabling the reproduction of the
relevant dynamical features of the adoption of a new product and/or a
new technology in a society of consumers. Bass’ nonlinear dynamics is
basically governed by the ratio of two control parameters, namely the
innovation and imitation rates. Introducing a quadratic nonlinearity
into the evolution equation, the model mathematically describes con-
sumer imitative interactions. This nonlinearity leads to an evolution
characterized by two distinct time scales, i.e. a fast initial exponen-
tially growing phase followed by a slow asymptotic evolution when
full equilibrium demand is nearly reached. The seminal works of J.
A. Schumpeter [5] and subsequently of B. Jovanovic and R. Rob [6]
support this observation by illustrating the importance of imitation
waves in DTI and the formation of business cycles.

In general, interaction-based models have been employed for various
applications ranging from epidemiology [7], variance of crime rates
across space when direct interdependencies occur between nearest
neighbors [8], herd behavior in financial markets [9, 10, 11, 12] to social
movements and political uprisings (see [13] and [14] for several addi-
tional references). Interaction-based methods have also been useful
tools in modeling the diffusion of innovation [16, 17, 18, 19, 20, 21]. In
their contribution, G. Ellison and D. Fudenberg [22, 23] study agents
who consider the experiences of their neighbors in deciding which of
two technologies to adopt, in a world where players use rules of thumb
that ignore historical data but may incorporate a tendency to use the
more popular technology. In this learning environment, agents ob-
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serve both their neighbors’ choices, and periodically reevaluate their
decisions, as opposed to making a once-and-for-all choice. R. Ander-
gassen et al. [24] investigate the evolutionary process of imitation and
innovation as a search mechanism in a given neighbourhood of firms.
In their world, the spreading of information through neighbourhoods
allows firms to acquire knowledge leading to innovation waves as firms
attempt to glean information on best practice techniques, which they
subsequently imitate. For additional models where preference order-
ings over alternatives in a choice set can depend on the actions chosen
by other agents, see [25, 26, 27, 28].

The original Bass’ dynamics is aggregated and hence fails to detail
the influence of spatial location of agents in the imitative be-
havior of consumers. Intuitively, spatial considerations strongly affect
the interactions between agents and the underlying imitation mecha-
nisms. In fact spatial proximity is argued to be a major driving force
of innovation diffusion which often exceeds the external marketing ef-
forts such as advertising [29, 30]. In 1991, P. Krugman [31] pointed
out that production is remarkably concentrated in space. This obser-
vation opened a strong research effort devoted to the understanding of
the spatial dimension of innovation diffusion. M. P. Feldman [32, 33]
echoed P. Krugman’s observation in pointing out that geographical
effects are even more stringent for innovative activity because the ra-
tionale for the formation of adopter clusters is related to the role of
word-of-mouth and imitation in the diffusion of innovations. As em-
phasized in [34], a clear correlation exists between geographical prox-
imity and the strength and speed of word-of-mouth spread, sometimes
labeled as the neighborhood effect.

In addition to these works, a wealth of empirical studies exemplify
the importance of geography in the diffusion of knowledge and R &
D. Spatially-mediated knowledge spillovers of R & D are explicitly
discussed in [35, 36, 37, 38]. It is noteworthy to observe that this pure
geographic view can be generalized by defining metric distances on
abstract state spaces in order to describe the evolution of technologi-
cal advance, R & D investment volume or any other abstract features
[39] on which agents can compete by adjustment of their individual
behavior.

Recent literature suggests that imitation interactions between inter-
acting agents like bacteria, flies, quadrupeds or fishes can explain the
formation of compact spatio-temporal patterns, i.e. swarms or pla-
toons, which spatially evolve as quasi-solid bodies [40, 41]. The flock-
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ing mechanism originates from mimetic type decisions based on agents’
observations of their neighbors. To the best of our knowledge, spatial
flocking mechanisms seem to be barely discussed in the interaction-
based socioeconomic literature. Hence a natural and simple attempt
to analytically infer the role of spatial parting is to introduce spatial
effects and it is the aim of our paper to incorporate their influence
into the original Bass’ evolution.

Adding a spatial dimension transforms the Bass’ ordinary differen-
tial equation into a partial differential equation (PDE). Due to the
underlying imitation mechanism, the resulting PDE will be intrin-
sically nonlinear, a perspective that generally offers little hope for
explicit solutions in the realm of field theories. The present paper
illustrates how a simple natural spatial extension of the original Bass’
dynamics leads nevertheless to a fully solvable nonlinear field dynam-
ics, a truly remarkable result. The resulting equations belong to the
discrete velocities Boltzmann equations (DVBE) which describe the
macroscopic properties of a dilute gas. The specific DVBE that can
be derived from the Bass’ dynamics coincide with the Ruijgrok-Wu
(RW) model introduced and solved by T. W. Ruijgrok and T. T. Wu
[42]. This intimate connection with statistical physics suggests that
the Bass’ dynamics can be obtained, via a mean-field limit, from a
microscopic point of view in which a large number of agents interact.
While the mean-field approach is a basic tool in statistical physics of
large systems, it has now been explicitly used in recent econometric
studies as well (see illustrations in [10, 11, 12, 14, 15, 28]). Relying
on the law of large numbers, the mean-field limit allows one to write
deterministic evolution for probability densities in question. In the
sequel, we will explicitly construct the microscopic connection that
exists between the Bass’ imitation model with spatial effects and the
RW model inspired by a similar approach adopted in [43] for a multi-
agent dynamics in logistics and econophysics contexts. In [43], the
dynamics exhibit a nonlinear term due to a specific imitation mecha-
nism giving rise to the famous Burgers’ nonlinear PDE to describe the
emergence of spatio-temporal patterns. As illustrated in [44], RW dy-
namics actually generalizes the Burgers’ equation, the spatio-temporal
Bass’ model presented here can itself be viewed as a natural general-
ization of the multi-agent imitation model studied in [43].

Besides its direct practical relevance, the simplicity of the original Bass
model, for which exact analytical solutions are available, has undoubt-
edly contributed to its popularity in the economics and management
literatures. Endowing Bass’ dynamics with spatially-dependent imita-
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tion mechanisms confers a new dimension to interaction-based socioe-
conomic modeling, opening the possibility to analytically study the
generation of spatio-temporal patterns in a highly nonlinear context.
Our stylized dynamics can be viewed as an exceptional possibility to
analytically observe the spatio-temporal effects arising for a collection
of agents subject to imitation interactions.

2 Spatially-Dependent Imitation Dy-

namics

Consider a collection A of N autonomous agents which are in a migra-
tion process on the one-dimensional real line R. At any time t ∈ R

+,
we assume that the complete population is composed by two types of
agents A+ and A−, (A = A− ∪ A+), characterized by two associated
(x, t)-dependent migration velocities V+(x, t) and V−(x, t) on R. At
any time, each agent is free to modify his/her velocity. Agents ak ∈ A,
k = 1, 2, ..., N , flip their velocities either spontaneously or after an au-
tonomous decision based on an imitation process (IP). Let us write
α(x, t), respectively β(x, t), as the spontaneous transformation rates
from states A+ 7→α(x,t) A−, respectively A− 7→β(x,t) A+. Apart from
these spontaneous transitions, additional transitions are assumed to
be triggered by mutual agents’ interactions. Specifically, for agent ak,
the IP mechanism is assumed to depend on the observation of the
present velocity states, (i.e. V+ or V−), adopted by other proximity
members located in the neighborhood Nk = Nk,−∪Nk,+ ⊂ A of agent
ak. For an arbitrary agent ak,±, we define his/her imitation decision
rule according to his/her interactions with other agents as follows:

i) Dynamic rule for an agent ak,−. At time t, the agent
ak,− simultaneously observes the (velocity) states of the agents
contained in his/her neighborhood Nk. The presence of agents
aj,+ ∈ Nk, j 6= k, seen by ak,− triggers an imitation mecha-
nism which enhances the transition rate towards state V+, i.e.
β(x, t) 7→ [β(x, t) + ik(x, t)]. The extra contribution ik(x, t) is
proportional to (monotonically increasing with) the number Nk

of agents aj,+ in the neighborhood Nk of agent aj,− (i.e. Nk =
card (Nk)).

ii) Dynamic rule for an agent ak,+. At time t, the agent
ak,+ simultaneously observes the (velocity) states of the agents
contained in his/her neighborhood Nk and does not modify
its velocity whatever he/she observes.
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According to these dynamic rules, the time-dependent position Xk(t)
of agent ak, k = 1, 2, ..., N , can be written as a set of coupled stochastic
differential equations (SDEs):

Ẋk(t) = Ik(t), k = 1, 2, ..., N, (1)

where Ik(t) stands for a two-velocity-states Markov chain (i.e. the
state space is here Ω := {V−(x, t), V+(x, t)}) the transition rates of
which are defined by :

V+(x, t) 7→α(x,t) V−(x, t) V−(x, t) 7→[β(x,t)+ik(x,t)] V+(x, t). (2)

The noise source in Eq.(1) can also be viewed as a non-homogeneous,
alternating Markov renewal process in which the inverse transition
rates α(x, t)−1 and [β(x, t) + ik(x, t)]−1 are respectively the mean so-
journ times in states V+(x, t) and V−(x, t). Observe therefore that
in Eq.(1), the coupling between the various agents is realized via the
extra ik(x, t) transition rate.

In what follows, we consider a very large population of agents, i.e.
N → ∞, and we focus on observation neighborhoodsNk, k = 1, 2, ..., N ,
that contain on average Nk = ρN agents (0 < ρ < 1), implying in turn
that Nk → ∞. Instead of individual trajectories, let us now think
in terms of statistical properties characterizing the evolution of the
whole population of agents A. To this aim, we write P (x, t) ∈ [0, 1]
and Q(x, t) ∈ [0, 1] to denote the density of agents A+ and A− to be
found at position x ∈ R at time t.

We now adopt a mean-field approach (MFA), which consists in
considering that, statistically, the time evolution of an arbitrary agent,
say ak ∈ A, is representative of the whole population and the influ-
ence due to his/her neighbors located in Nk is viewed as an external
effective interactive mean field. Accordingly, the MFA allows us
to replace Eq.(1) by a single scalar SDE:

Ẋ(t) = I(t), (3)

where in Eq.(3), the ik(x, t) transition rates are replaced by an effective
rate i(x, t) reading as:

i(x, t) = lim
N→∞

1

N
N
∑

j=1

aj,+ =

∫ x+Γ

x

P (|x − z|, t)dz. (4)

with Γ ∈ R
+ characterizing the typical neighborhood interval N .
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Note that while we proceeded here heuristically, a rigorous mathemat-
ical justification for the validity of the MFA for this type of dynamics
relies on the property of propagation of chaos, as explained in [47] for
SDEs of the type given by Eq.(1) when the noise is a White Gaussian
Noise (WGN). SDEs of the type given by Eq.(1) driven by WGN have
recently been used for multi-agent dynamics with imitation process in
[43].

Associated with the SDEs given by Eqs.(3) and (4), the MFA en-
ables us to write a Fokker-Planck equation for the probability densities
P (x, t) and Q(x, t), [44]:

Ṗ (x, t)+V+(x, t)
∂

∂x
P (x, t) = +J (P (x, t), Q(x, t))−αP (x, t)+βQ(x, t),

Q̇(x, t)+V−(x, t)
∂

∂x
Q(x, t) = −J (P (x, t), Q(x, t))+αP (x, t)−βQ(x, t),

(5)
where the imitation rate term in Eqs.(5) reads as:

J (P (x, t), Q(x, t)) = Q(x, t)

[
∫ x+Γ

x

P (|x − z|, t)dz

]

. (6)

The dynamics in Eqs.(5) is a coupled set of nonlocal and nonlinear
field equations, which barely offers hope for any analytical discus-
sion. However, for small Γ (i.e. infinitesimal interaction neighbor-
hoods), we may Taylor expand Eqs.(5), up to first order in Γ, to
obtain:

Ṗ (x, t)+V+(x, t)
∂

∂x
P (x, t) = +ΓP (x, t)Q(x, t)−αP (x, t)+βQ(x, t),

Q̇(x, t) + V−(x, t)
∂

∂x
Q(x, t) = −ΓP (x, t)Q(x, t) + αP (x, t) − βQ(x, t).

(7)
We directly observe that Eqs.(7) can be viewed as a generalized Bass’
dynamics which confers relevance to the spatial dimension on which
agents evolve. Indeed, similarly to the original Bass’ model, we in-
clude an imitation process, represented in Eqs.(7) by the nonlinear
contribution ΓP (x, t)Q(x, t).

Writing P (x, t) + Q(x, t) = Σ(x, t), the summation of both equations
in (7) yields a continuity equation:

∂

∂t
Σ(x, t) +

∂

∂x

[(

V+(x, t) + V−(x, t)

2

)

Σ(x, t)

]

= 0, (8)
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which in turn implies the normalization constraint:

∫

R

P (x, t)dx +

∫

R

Q(x, t)dx ≡ 1, ∀t ∈ R
+. (9)

Although the dynamics given by Eqs.(7) has been derived for non-
homogeneous and non-stationary parameters α(x, t), β(x, t) and V±(x, t),
in the sequel we will restrict our attention to situations where these
parameters can be assimilated to constants (i.e. α, β and V±).

2.1 Spatial Homogeneous Regimes - Bass’ Model

When V− = V+ = 0, the spatial character disappears from the dy-
namics given by Eqs.(7), which implyies that P (x, t) ≡ P (t) and
(Q(x, t) = Q(t). More precisely, Eqs.(7) becomes:

Ṗ (t) = +ΓP (t)Q(t) − αP (t) + βQ(t),

Q̇(t) = −ΓP (t)Q(t) + αP (t) − βQ(t), (10)

with the notation Ṗ (t) := d
dt

P (t). The constraint given by Eq.(9) now
simply becomes P (t) + Q(t) = 1 and enables us to rewrite Eq.(10) in
the following form:

Ṗ (t) = −Γ

{

P 2(t) −
[

1 − (α + β)

Γ

]

P (t) − β

Γ

}

. (11)

At this stage, it is worth observing that for α = 0 and Γ = 1 (with-
out loss of generality, indeed it can always be obtained by the time
rescaling t 7→ τ = Γt), Eq.(11) reduces to:

Ṗ (t) = [1 − P (t)] [β + P (t)] , (12)

which is precisely the original Bass’ dynamics [4] with β being the
ratio between the imitation and innovation rates.

For completeness of the exposition, let us integrate Eq.(11), with the
initial condition P (t = 0) = P0, to get:

P (t) =
(∆ + b) (P0 − ∆ + b) e−2∆Γt + (∆ − b) (P0 + ∆ + b)

(P0 + ∆ + b) − (P0 − ∆ + b) e−2∆Γt
(13)

with the definitions:

b = − 1

2Γ
(Γ − α − β) and ∆ =

1

2Γ

√

(Γ − α − β)2 + 4β.
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In the asymptotic time limit t → ∞, Eq.(13) converges to:

lim
t→∞

P (t) = Pstation = ∆ − b. (14)

For the original Bass’ model obtained when α = 0 and Γ = 1, we have
b = −1

2(1 − β) and ∆ = 1
2(1 + β). Accordingly, with P0 = 0, Eq.(13)

reduces to the original Bass’ solution:

P (t) =
β
[

1 − e−(1+β)t
]

β + e−(1+β)t
, Q(t) =

(1 + β)e−(1+β)t

β + e−(1+β)t
. (15)

Moreover Pstation = ∆−b = 1, which expresses the fact that all agents
ultimately adopt the new technology, as it is obviously expected in
the original Bass’ modeling framework, when α = 0.

3 Bass’ Dynamics with Spatio-Temporal

Effects

Coming back to the general dynamics given by Eqs.(7) and introduc-
ing dimensionless coordinates via the Gallileo transformation (x, t) 7→
(y, s) defined by:

(

y

s

)

=

(

2Γ
(V+−V

−
)

Γ(V
−

+V+)
(V

−
−V+)

0 Γ

)

(

x

t

)

, (16)

we straightforwardly have:

∂x(·) 7→
[

2Γ

(V+ − V−)

]

∂y(·) and ∂t(·) 7→
[

Γ(V− + V+)

(V− − V+)

]

∂y(·)+Γ∂s(·),
(17)

which transforms Eqs.(7) into the coupled set of nonlinear partial dif-
ferential equations (PDEs):

∂sP + ∂yP = +PQ − α

Γ
P +

β

Γ
Q,

∂sQ − ∂yQ = −PQ +
α

Γ
P − β

Γ
Q. (18)

The set of non-linear PDEs given by Eqs.(18) can be interpreted as
being a discrete two velocity model of Boltzmann equations, first stud-
ied in [42]. The dynamics given by Eqs.(18) is remarkable, as using a
generalized Hopf-Cole logarithmic transformation, we get:

P (y, s) = −β

Γ
+ ∂s log H(y, s) − ∂y log H(y, s) (19)
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Q(y, s) =
α

Γ
− ∂s log H(y, s) − ∂y log H(y, s) (20)

which actually reduces the set Eqs.(18) into the Telegraphist equation:

∂ssH(y, s) − ∂yyH(y, s) − αβ

Γ2
H(y, s) = 0. (21)

Accordingly, the dynamics given by Eqs.(7) with constant parame-
ters has the truly exceptional property that it can be exactly
and explicitly solved for any initial conditions P0(y) and Q0(y).
According to [42], the general solution reads as:

H(y, s) =
1

2
[A(y + s) + A(y − s)] +

1

2
B1(y, s) +

ηs

2
B2(y, s), (22)

where η =
√

αβ
Γ and where we have the following definitions:

B1(y, s) =

∫ y+s

y−s

I0

(

η
√

s2 − (y − y′)2
)

B(y′)dy′,

and

B2(y, s) =

∫ y+s

y−s

(

1
√

s2 − (y − y′)2

)

I1

(

η
√

s2 − (y − y′)2
)

A(y′)dy′,

with I0(·) and I1(·) being the modified Bessel’s functions and:

B(y) =
1

2

[

P0(y) − Q0(y) +
α

Γ
+

β

Γ

]

A(y), (23)

A(y) = exp

{

−1

2

∫ y
[

P0(y
′) + Q0(y

′) − α

Γ
+

β

Γ

]

dy′
}

. (24)

3.1 Behavior of the Solutions

Though fully explicit and exact, the truly beautiful solution given
by Eqs.(19) and (20) deserves discussion and interpretation for spe-
cific situations and this is precisely the objective of this section. In
what follows, we will systematically choose Γ = 1 and unit velocities
V± = ±1.

Let us here focus on the Bass’ dynamics that results when α = 0.
This directly implies that η =

√
αβ = 0 and hence Eqs.(19) and (20)

coincide with the ordinary wave equation. By definition of Bessel’s
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functions [48], we have that I0(0) = 1 and I1(0) = 0, thus leading to
the usual wave solution in the form:

H(y, s) =
1

2
[A(y + s) + A(y − s)] +

1

2

∫ y+s

y−s

B(y′)dy′. (25)

Due to the fact that α = 0, we expect that the agents’ population A+

with velocity V+ = +1 increases by opposition to the population A−
of agents with velocity V− = −1 which is doomed to extinction. Let
us now explore the transient nature of the solution and this for three
types of initial conditions.

a) Initial conditions: P0(y) = δ(y) and Q0(y) = 0.

In this case, the time-dependent solution reads as:

P (y, s) = δ(y − s) and Q(y, s) ≡ 0. (26)

as it can be checked directly from Eqs.(19) and (20). Eqs.(26)
are clearly consistent with the fact that α = 0 and hence that no
transitions from V+ = +1 to V− = −1 velocities occur. Hence,
starting with all agents with velocity V+ = +1, they stay with
their original velocity and the density P (y, s) is a uniformly trav-
eling Dirac mass with velocity V+ = +1 towards the positive
R-axis.

b) Initial conditions: P0(y) = 0 and Q0(y) = δ(y).

Either by direct substitution into Eqs.(18) or alternatively by
using Eqs.(19) and (20), one can verify that the time-dependent
solution in this case reads as:

P (y, s) =
β

2
e

β

2
(y−s)Θ(|y|−s) and Q(y, s) = e−βsδ(y+s) (27)

where Θ(|y| − s) is a Heaviside cutoff function which identically
vanishes for negative arguments. The dynamics P (y, s) of the
spatial dispersion of the agents with velocity V+ = +1 is illus-
trated in Fig. 1.

The behavior of the solution given by Eqs.(27) can be easily un-
derstood. Indeed, the Dirac mass for Q(y, s) expresses the fact
that agents with velocity V− = −1 are gradually depopulated
at the rate sβ for the benefit of agents traveling with velocity
V+ = +1 and hence migrating to P (y, s). The Heaviside function
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Figure 1: Spatial dispersion P (y, s) of the agents with velocity V+ = +1
for different times s = [0.01; 20; 40]. The initial conditions are given by
P0(y) = 0 and Q0(y) = δ(y), α = 0 and β = 0.1. In this case, the agents are
immediately segregated and there are no imitation processes.

Θ(|y|− s) expresses the fact that no agent can possibly be found
at a distance larger than |y| at time t (remember that the veloci-
ties here are V± = ±1). It is worth observing that in the original
Bass’ model, the adoption rate given in Eq.(15) is equal to (1+β).
This overcomes the β adoption rate that we will obtain below
in Eqs.(28), due to the fact that in the present configuration,
imitation process does not enter into play in our spatial model,
which drastically moderates the overall adoption rate. Indeed,
in this limiting regime the agents’ populations A+ and A− are
immediately and definitively segregated, which hence never al-
lows imitation processes to take effect (the unit rate discrepancy
between the (1+β) adoption rate occurring in Eq.(15) and the β

rate in Eq.(27) is obtained from the Γ = 1 choice). The resulting
temporal evolution of the agents’ overall adoption rate obtained
in the present case (P (t) =

∫

R
P (y, t)dy), compared with the one

of the original Bass’ model, will be illustrated later in Fig. 4.

Finally, let us observe that, from Eqs. (27), one immediately
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obtains:
∫

R

P (y, s)dy =
[

1 − e−βs
]

and

∫

R

Q(y, s)dy = e−βs, (28)

thus showing that Eq.(9) is fulfilled. In addition, for asymptotic
times s → ∞, Eqs.(28) indicate that all agents ultimately adopt
the V+ = +1 velocity as it is expected for the α = 0 regime.

c) Initial conditions: P0(y) = Q0(y) = 1

8γ
[tanh(y + γ) −

tanh(y − γ)] .
For these initial conditions and for the particular choice β = 2
and γ = 1

4 , the resulting time-dependent solution of our spatial
Bass’ model is given by:

P (y, s) =
1

2

{

−2 +
1

H(y, s)
[A(y − s) +

e−y+s cosh(y − s − γ)

cosh(y − s + γ)
(1 − tanh(y − s − γ) + tanh(y − s + γ))]

}

(29)
and

Q(y, s) =
1

2

{

1

H(y, s)
[−A(y + s) +

e−y−s cosh(y + s − γ)

cosh(y + s + γ)
(1 − tanh(y + s − γ) + tanh(y + s + γ))]

}

,

(30)
where

H(y, s) =
1

2
[A(y + s) + A(y − s) + B1(y, s)] ,

A(y) = ey cosh(y − γ)

cosh(y + γ)
,

B1(y, s) =
e−γ

2
[atan (sinh(y + s + γ)) − atan (sinh(y − s + γ))]

−e3γ
[

e−y−s−γ + atan(ey+s+γ) − e−y+s−γ − atan(ey−s+γ)
]

.

The spatio-temporal dynamics P (y, s) of the agents with veloc-
ity V+ = +1 is illustrated in Fig. 2. The joint evolutions of
P (y, s) and Q(y, s) (representing agents with velocity V+ = +1
and V− = −1 respectively) are drawn in Fig. 3.

In the present configuration, the two types of agents have an

13



−4 −2 0 2 4 6 8 10 12 14 16 18
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

y

 

 

P
0
(y)

P(y, s=0.2)

P(y, s=3)

P(y, s=10)

Figure 2: Spatial dispersion P (y, s) of the agents with velocity V+ = +1
for different times s = [0; 0.2; 3; 10]. The initial conditions are given by
P0(y) = Q0(y) = 1

8γ
[tanh(y + γ) − tanh(y − γ)], α = 0, β = 2 and γ = 1

4
.

identical initial spatial distribution (i.e. P0(y) = Q0(y), ∀y).
Hence, half of the agents have initially the velocity V+ = +1,
the other half having the velocity V− = −1 (i.e.

∫

R
P0(y)dy =

∫

R
Q0(y)dy = 1

2). The spatio-temporal behavior of the solu-
tion given by Eqs.(29) and (30) can be split into two different
time phases. For short times of the dynamics, the overlap be-
tween P (y, s) and Q(y, s) is non-null (i.e. the two populations
of agents A+ and A− are not spatially segregated), thus lead-
ing to strong imitation processes between the agents. Agents
are changing their velocity from V− = −1 to V+ = +1 due to
both imitation and spontaneous transitions. Accordingly, Q(y, s)
is gradually depopulated for the benefit of P (y, s). The imita-
tion processes are decreasing as the overlap between P (y, s) and
Q(y, s) gets smaller, but the rate β of spontaneous transitions
from V− = −1 to V+ = +1 remains itself constant with time. In
the time asymptotic regime, almost all the agents have adopted
velocity V+ = +1, leading P (y, s) to behave as a probability
density uniformly traveling with velocity V+ = +1 towards the
positive R-axis.
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Figure 3: Spatial dispersions P (y, s) and Q(y, s) of the agents with velocity
V+ = +1 and V− = −1 respectively, for times s = [0; 0.3; 1.2]. The initial
conditions are given by P0(y) = Q0(y) = 1

8γ
[tanh(y + γ) − tanh(y − γ)],

α = 0, β = 2 and γ = 1
4
.

In Fig. 4, the temporal evolution of the overall adoption rate
P (t) =

∫

R
P (y, t)dy of the agents is illustrated and compared to

the one observed for the Bass’ original model. For the present
configuration, the overall adoption rate stands between β, the
rate observed for our spatial Bass’ model in absence of imitation
processes (Section 3.1.b), and β + 1, the rate obtained for the
original aggregated Bass’ model. Hence, in general, the overall
adoption rate of our spatial Bass’ model will be equal to β+ǫ(t),
ǫ(t) ∈]0, 1], with ǫ(t) depending on the initial distributions of the
agents and on the model parameters. Remember that the im-
itation rate (and hence the overall adoption rate) is controlled
by the number of neighbors that each agent effectively observes
during the imitation process. In the aggregated (original) Bass’
model, this number is maximum as each agent systematically
observes the global population of agents. In the limiting regime
of Section 3.1.b, the number of observed agents is equal to 0 as
the two populations of agents A+ and A− are initially and hence
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Figure 4: Temporal evolution of the overall adoption rate P (t) i) for the
original Bass’ model, ii) for our spatial Bass’ model when there are imitation
processes (Section 3.1.c) and iii) for our spatial Bass’ model when there are
no imitation processes because the two populations of agents A+ and A− are
immediately segregated (Section 3.1.b).

permanently segregated, thus allowing no imitation processes.

4 Conclusion and Perspectives

Often, agents’ remoteness may naturally reduce the efficiency of im-
itation processes, a feature that is totally absent in the original ag-
gregated Bass’ approach. Incorporating a spatial dimension into the
Bass’ dynamics is however not a minor extension. It transforms in-
deed a nonlinear single dimension dynamics into a nonlinear infinite
dimensional field dynamics for which, in general, no solution methods
are available. It is hence truly remarkable that our spatial general-
ization of the original Bass’ dynamics leads to a class of models for
which the evolution of the resulting spatio-temporal patterns can be
completely and exactly calculated. Indeed, the quadratic nonlinear-
ity, due here to the underlying imitation mechanism, coincides with
the collision term found in a solvable Boltzmann equation, the RW
dynamics, used for gas models in mathematical physics. Our paper
points out that the exceptional beauty of the RW dynamics, solvable
via a linearizing logarithmic transformation, offers a unique, synthetic
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and exact modeling framework to study nonlinear features generated
by spatio-temporal imitation processes in economics systems.
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