
Exact Algorithms for Continuous Pricing with
Advanced Discrete Choice Demand Models

Tom Haering * Robin Legault † Fabian Torres *

Ivana Ljubić ‡ Michel Bierlaire *

December 11, 2023

Report TRANSP-OR 231211
Transport and Mobility Laboratory

School of Architecture, Civil and Environmental Engineering
Ecole Polytechnique Fédérale de Lausanne

transp-or.epfl.ch

*École Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Envi-
ronmental Engineering (ENAC), Transport and Mobility Laboratory, Switzerland, {tom.haering,
fabian.torres, michel.bierlaire }@epfl.ch

†Massachusetts Institute of Technology (MIT), Operations Research Center, USA,
legault@mit.edu

‡ESSEC Business School, Department of Information Systems, Decision Sciences and Statis-
tics, France, ljubic@essec.edu

1

Abstract
We present the Breakpoint Exact Algorithm (BEA) together with a Spatial Branch
and Bound (B&B), and Spatial Branch and Benders Decomposition (B&BD) ap-
proach to tackle the uncapacitated choice-based pricing problem (CPP) where de-
mand is captured by a discrete choice model (DCM). Integrating advanced DCMs
into optimization problems is challenging, due to the lack of closed-form probabil-
ity expressions. We leverage problem characteristics to reformulate the state-of-
the-art simulation-based formulation of the CPP as a mixed integer linear program
(MILP) into a non-convex quadratically constrained quadratic program (QCQP),
and then into a non-convex QCQP with linear objective (QCQP-L). We exploit
utility breakpoints to develop the BEA, which scales polynomially in the number
of customers and draws, along with an efficient Spatial Branch and Bound algo-
rithm utilizing the McCormick envelope for relaxations, which are then solved
using Benders decomposition. Our methods are evaluated against solving the
MILP, QCQP, or QCQP-L with GUROBI, on a mixed logit parking space op-
erator case study. We outspeed the state of the art by several orders of magnitude
when optimizing one or two prices and reduce computational time drastically for
larger numbers of prices. This methodology suits all choice-based optimization
problems with linear-in-price utilities, given any random utility model.

Keywords: discrete choice models, optimal pricing, exact algorithms, Spatial
Branch and Bound, Benders Decomposition

1 Introduction
Price optimization is essential when pricing decisions need to be made for one or
multiple products, particularly when there are cross-effects between their demands
(Talluri & Van Ryzin, 2004). This problem can arise in various areas, including
revenue management for airlines, railways, and hotels, assortment pricing in retail,
or product line pricing in consumer goods industries.
Disaggregate demand representations, such as discrete choice models, allow for a
better reflection of the heterogeneity of customers’ tastes and preferences and ac-
count for supply-demand interactions (Sumida et al., 2021). However, including
such models increases computational complexity, as the resulting choice proba-
bilities are nonlinear. As such, customary nonlinear algorithms may terminate at
a local optimum due to the highly nonlinear expected revenue function. Hanson &
Martin (1996) were among the first to demonstrate that the projected revenue func-
tion does not exhibit concavity in prices, even in the case of a basic logit model.
Later works have demonstrated that, under uniform price sensitivities across all
products, the expected revenue function is concave in the choice probability vector

1

(D. Zhang & Lu, 2013; Song et al., 2021). This concavity result also holds under
asymmetric price sensitivities, not only for the logit, but also for the nested logit
(NL) model (Li & Huh, 2011). Unique price solutions exist for some logit models
under restrictive conditions on the degree of asymmetry in the price sensitivity
parameters, as shown for the logit (Akçay et al., 2010), NL (Gallego & Wang,
2014), paired combinatorial logit (PCL) (Li & Webster, 2017), and generalized
extreme value (GEV) models (H. Zhang et al., 2018).
In some studies, pricing decisions are optimized jointly with other decisions, such
as assortment or scheduling decisions (Bertsimas et al., 2020), and decisions of
multiple firms are studied mainly from a game theory perspective, both coopera-
tive (Bortolomiol et al., 2021) and non-cooperative (Schlicher & Lurkin, 2022).
The logit model exhibits many limitations, see Train (2009): it does not account
for random taste variation, i.e. differences in tastes that cannot be linked to
observed characteristics. It implies proportional substitution across alternatives,
which can lead to unrealistic behavior, like the Red Bus / Blue Bus paradox. Fur-
thermore, logit cannot handle situations where unobserved factors are correlated
over time.
To address these issues, more involved choice models have been explored in recent
literature: Increasingly many authors consider pricing problems under a mixed
logit (ML) model that accommodates customer heterogeneity by allowing some
parameters to vary across customers (Li et al., 2019; van de Geer & den Boer,
2022). The ML model can, under mild regularity conditions, approximate choice
probabilities of any discrete choice model derived from the random utility max-
imization (RUM) assumption (McFadden & Train, 2000), making it a popular
choice model. However, the expected revenue function under the mixed logit
model is not well-behaved, and the concavity property with respect to the choice
probabilities breaks down, even for entirely symmetric price sensitivities across
products and segments.
Gilbert et al. (2014) proposed a tractable approximation of the ML pricing prob-
lem for a revenue-maximizing network pricing problem, which involves selecting
appropriate tolls for a congested network. They solve it in a two-step approach:
First, they solve a mixed integer program that simplifies the original problem by
assuming a simpler distribution for the price sensitivity parameter. The optimal
solution of this program is then utilized as the starting solution for an ascent algo-
rithm that solves a differentiable optimization problem, which approximates the
original ML pricing problem more accurately.
Li et al. (2019) study a price optimization problem with discrete ML demand.
They propose two concave maximization problems as lower and upper bounds for
the revenue function and develop an algorithm that converges to a local optimum.
Marandi & Lurkin (2020) propose an iterative optimization algorithm that asymp-
totically converges to the optimal solution, by formulating a linear optimization

2

problem based on the trust-region approach to find a feasible solution, and design-
ing a convex optimization problem using a convexification technique to approxi-
mate the optimization problem from above. They then use a branching method to
tighten the optimality gap.
van de Geer & den Boer (2022) consider a finite mixture of logit in a market
segmented by products and intrinsic product valuations of customers. However,
the customers’ price sensitivity parameters are product-dependent only, allowing
for a scalable algorithm that quickly converges to an optimal product price.
A general implementation approach for integrating any advanced choice model
into an optimization problem has been proposed in Paneque et al. (2021), where
Monte Carlo simulation is used to generate a deterministic problem at the cost of
an increase in complexity since the resulting mixed integer linear problem (MILP)
involves finding the best price over a large number of scenarios, generated by tak-
ing draws from the stochastic components of the formulation. With a sufficiently
large number of draws, the MILP formulation guarantees convergence to globally
optimal solutions. However, since the complexity of the MILP scales exponen-
tially with the number of draws, the approach can currently only be applied to
solving small-scale instances, i.e., with few individuals, draws, and alternatives.

We summarize that for pricing with disaggregate demand modeling in the form of
a DCM, which we will refer to as the choice-based pricing problem (CPP), there
is no exact solution approach in the literature that is both general and capable of
solving realistic instances in a reasonable amount of time. Our goal is to fill this
gap by leveraging on the MILP approach in Paneque et al. (2021).
To this extent, we first present some key properties of the problem that allow us to
reformulate it more efficiently, leading from the MILP to a non-convex quadrati-
cally constrained quadratic program (QCQP), and non-convex quadratically con-
strained linear program (QCLP) formulation. Exploiting additional features al-
lows us to develop the breakpoint exact algorithm (BEA), whose time complexity
scales polynomially in the number of customers and draws, but exponentially in
the number of prices to be optimized. We then introduce a Spatial Branch and
Bound (B&B) algorithm that makes use of the McCormick envelope together with
custom branching and enumeration rules to efficiently solve the problem for com-
plex instances. This B&B algorithm is further accelerated by the use of a Benders
decomposition to solve the McCormick envelope in each node, an approach that
we refer to as Spatial Branch and Benders Decomposition. Finally, we compare
the MILP, the QCQP, and QCLP formulations (all solved using the state-of-the-art
solver GUROBI) to our custom algorithms by application to a mixed logit parking
choice case study by Ibeas et al. (2014).
The paper is structured as follows. Section 2 describes the choice-based pricing
problem in its probabilistic form. In Section 3, we explore its key characteristics

3

and the different mathematical formulations. Section 4 describes the breakpoint
exact algorithm, followed by the Spatial Branch and Bound procedure in Section 5
and the extension with a Benders decomposition in Section 6. Section 7 presents
the computational experiments. Section 8 concludes the paper and presents the
essential takeaways of this study.

2 Problem definition
Consider a competitive market with J + K products, of which J products are con-
trolled by a supplier that wants to identify the set of prices that maximizes their
revenue. We number the controlled alternatives from 1 to J, and the competitors’
alternatives using non-positive numbers, from 1 − K to 0. The supply for every
product is assumed to be uncapacitated. We then consider N customers choosing
exactly one product among all offered alternatives (as the K competing products
do not generate any revenue for the supplier, choosing not to buy any product
can be seen as part of the competition). Each individual may furthermore have
a different set of considered alternatives, as some products might inherently be
rejected or otherwise unavailable to them. We thus denote Cn the choice set of
individual n, where n ∈ N = {1, . . . ,N}. The behavior of the customers is cap-
tured by a random utility model: each alternative i is associated with a stochastic
utility Uin, which depends on socioeconomic characteristics of individual n, as
well as alternative-specific attributes, and can be defined as follows:

Ujn = Vjn + εjn ∀j ∈ {1− K, . . . , 0} ∩ Cn,

Uin = Vin + βin
p pi + εin ∀i ∈ {1, . . . , J} ∩ Cn,

where Vin is the deterministic part of the utility that is observed by the analyst,
which can take any form and be non-linear in the explanatory variables (attributes
of the customer or the product), and εin is the error term that is unobserved (and
thus a random variable). The only assumption we make on the utilities is for them
to be linear in the prices pi, which are multiplied by a pricing coefficient βin

p < 0,
that can vary across n and i. This variation can be explicit, using a function of
the socio-economic characteristics, or implicit, using a random variable with an
assumed distribution. In all cases, the coefficient is assumed to be negative. The
probability Pn(i) that individual n chooses alternative i ∈ Cn can now be written
as follows:

Pn(i) = P(Uin ≥ Ujn ∀j ∈ Cn)

We can now formulate the probabilistic version of the uncapacitated choice-based
pricing problem (CPP), see Formulation 1.

4

max
p,U

∑
n∈N

∑
i∈{1,...,J}∩Cn

Pn(i)pi

s.t.
Pn(i) = P(Uin ≥ Ujn ∀j ∈ Cn) ∀n ∈ N, i ∈ Cn

Ujn = Vjn + εjn ∀n ∈ N, j ∈ {1− K, . . . , 0} ∩ Cn

Uin = Vin + βin
p pi + εin ∀n ∈ N, i ∈ {1, . . . , J} ∩ Cn

p ∈ [pL
1, p

U
1]× . . .× [pL

J , p
U
J]

U ∈ R(J+K)N

(1)

The controlled prices pi, i ∈ {1, . . . , J} are decision variables that need to be opti-
mized in order to maximize the expected profit, expressed as each product’s price
times the probability the product is bought by an individual, summed up over all
individuals. We assume each price pi to be bounded within a continuous domain
[pL

i , p
U
i]. It is crucial that customers are able to buy non-controlled products, as

otherwise, the problem could become unbounded.
For some well-known choice models, like the logit, nested logit, or ordered logit,
the probability Pn(i) has a closed-form expression, allowing for the probabilistic
CPP to be solved using conventional optimization methods. However, as men-
tioned in the introduction, such models have various drawbacks. Aiming to al-
leviate the unrealistic assumptions inherent in the logit model, advanced discrete
choice models like mixed logit or probit have demonstrated improved predictive
power, at the cost of the choice probability Pn(i) in general no longer taking on
a closed-form expression and thus being difficult to integrate in an optimization
problem.

3 Problem formulations and properties
To address the lack of closed-form expressions for the probability functions in
the stochastic version of the CPP, we employ the simulation approach of Paneque
et al. (2021): We take R draws εinr from the distribution of the error terms to
generate R scenarios with deterministic utilities Uinr:

Ujnr = Vjn + εjnr ∀j ∈ {1− K, . . . , 0}, n ∈ N, r ∈ R,

Uinr = Vin + βin
p pi + εinr ∀i ∈ {1, . . . , J}, n ∈ N, r ∈ R,

5

where R = {1, . . . , R}. As the Vin are constant as well, we can define
cinr := Vin + εinr and further simplify the utilities as:

Ujnr = cjnr ∀j ∈ {1− K, . . . , 0}, n ∈ N, r ∈ R,

Uinr = cinr + βin
p pi ∀i ∈ {1, . . . , J}, n ∈ N, r ∈ R.

In every scenario, each customer wants to maximize their utility across all alter-
natives available to them. This can be written as a binary knapsack problem, see
Formulation 2, where p is a given vector of prices and ωinr are called choice
variables. We have that:

ωinr =

{
1 if Uinr(p) = max

j∈Cn

Ujnr(p),

0 otherwise,
∀n ∈ N, i ∈ Cn, r ∈ R.

It is well established that, if all utilities Uinr(p) are distinct, the knapsack prob-
lem admits a constraint matrix that is totally unimodular, see for example Wolsey
(2020). This implies that the restrictions on ωinr being binary can be relaxed to
ωinr ≥ 0 without altering the optimal solution, allowing us to consider the dual
(Formulation 3) of this continuous relaxation, and invoke strong duality.

max
ω

∑
i∈Cn

ωinrUinr(p)

s.t.∑
i∈Cn

ωinr = 1

ωinr ∈ {0, 1} ∀i ∈ Cn

(2)

min
hnr

hnr

s.t.
hnr ≥ Uinr(p) ∀i ∈ Cn

(3)

Both the primal and dual are always feasible and bounded, hence we can impose
the following sufficient optimality conditions:

(Strong duality) hnr =
∑

i∈Cn
ωinrUinr(p),

(Dual feasibility) hnr ≥ Uinr(p) ∀i ∈ Cn,

(Primal feasibility I)
∑

i∈Cn
ωinr = 1,

(Primal feasibility II) ωinr ≥ 0 ∀i ∈ Cn,

6

which will allow us to integrate the utility maximization problem for each cus-
tomer and scenario into a larger optimization framework.
Given the above characterization of the choice variables ωinr, we can approximate
the choice probabilities as follows:

Pn(i) ≈ P̂n(i) =
1

R

∑
r

ωinr ∀n ∈ N, i ∈ Cn, r ∈ R.

The probability of individual n choosing alternative i is thus approximated by the
average number of times that customer made that choice over all scenarios. This
estimator is unbiased, see for example Train (2009).
Before we present the full model, we can simplify the problem by gathering all
products that are not in our control, i.e. that are offered by potential competitors,
into one single opt-out alternative. This is possible because, given a scenario, all of
these utilities become constants, thus we only have to keep the option that has the
highest constant utility as it will always be preferred over all other non-controlled
alternatives. We thus define:

U0nr = max
j∈{1−K,...,0}∩Cn

cjnr ∀n ∈ N, r ∈ R.

As this utility is again constant we refer to it as c0nr. We can simplify the notation
in the following sections by redefining Cn = {1, . . . , J} ∩ Cn and assuming the
opt-out to be available to everyone.
It is worth noting that the presented simulation approach can be extended to also
deal with randomly distributed parameters, as would be necessary in the case of
for example a mixed logit model. To this extent, we likewise take draws from the
distributions of the stochastic parameters, and, given a scenario r, denote a draw
of a distributed parameter βin

d by βin
dr.

3.1 MILP formulation
The full MINLP formulation of the uncapacitated choice-based pricing problem
(CPP) is given in Formulation 4.

7

max
p,ω,U,h

1

R

∑
r∈R

∑
n∈N

∑
i∈Cn

piωinr (o)

s.t.∑
i∈Cn∪{0}

ωinr = 1 ∀n ∈ N, r ∈ R (µnr)

hnr = c0nrω0nr +
∑
i∈Cn

Uinrωinr ∀n ∈ N, r ∈ R (ζnr)

hnr ≥ c0nr ∀n ∈ N, r ∈ R (α0nr)

hnr ≥ Uinr ∀n ∈ N, i ∈ Cn, r ∈ R (αinr)

Uinr = cinr + βin
p pi ∀n ∈ N, i ∈ Cn, r ∈ R (κinr)

ω ∈ {0, 1}(J+1)NR

p ∈ [pL
1, p

U
1]× . . .× [pL

J , p
U
J]

U,h ∈ RJNR,RNR

(4)

The objective function (o) is equal to the profit and is thus defined as the ap-
proximated choice probability of individual n selecting alternative i ∈ Cn mul-
tiplied by the alternative’s price pi, summed over all individuals. The constraints
define the individual choices: Constraints (µnr) guarantee that exactly one alter-
native is chosen per individual and scenario. Constraints (κinr) model the utility
Uinr of each alternative i for individual n in scenario r. Constraints (ζnr) and
constraints (αinr) enforce the optimality conditions for the customer utility max-
imization problem. Note that this is a non-convex MINLP formulation, as both
the objective (o) and the constraints (ζnr) contain the products piωinr. These
non-linear terms are handled automatically by modern solvers like GUROBI or
CPLEX, but can be linearized explicitly using a big-M approach, as proposed by
Paneque et al. (2021). The big-M value is determined by the highest possible
value the variable pi can achieve, which here corresponds to an upper bound pU

i ,
set by the supplier. The products piωinr is then replaced by auxiliary variables
ηinr, which is defined using the following constraints:

0 ≤ ηinr ≤ pU
i ωinr

pi − pU
i (1−ωinr) ≤ ηinr ≤ pi.

Note that by linearizing the products, the knapsack property is lost, i.e., it is no
longer possible to relax the integrality constraints on ω. This is a natural drawback
of the formulation as an MILP and the reason for which we will later extend the
framework of Paneque et al. (2021) to a non-convex formulation.

8

Finally, the price variables may also depend on the individuals (or groups of in-
dividuals), thus allowing for segmented targeting of the population. Let us now
explore some key properties of the problem.

3.2 Restriction to fixed prices
If the prices are all fixed to constant values, it is trivial to find the optimal values
of all variables in Formulation 4. To see this, it is enough to observe that with
fixed prices p, the problem reduces to solving the utility maximization problem
(Formulation 2) for each customer n and scenario r. As the prices are the only
connecting variables, this can be done separately for every tuple (n, r).
This property will be used in various ways within our algorithms, for example in
order to quickly generate feasible solutions from just a vector of prices, to compute
the resulting profit, or in the context of a Benders decomposition approach, where
in each iteration prices are fixed to a candidate solution, making the subproblem
easy to solve.

3.3 Continuous reformulation
In the MILP formulation of the problem introduced by Paneque et al. (2021), the
integrality property of the knapsack problem for every customer is not exploited.
This is due to the fact, that in an MILP context, the product piωinr has to be lin-
earized with big-M constraints, which invalidate the knapsack property. However,
if we choose to not linearize the product, we can instead define the problem as
a non-convex quadratically constrained quadratic program (QCQP), see Formu-
lation 5. The formulation is the same as Formulation 4, except that the variables
ωinr are no longer constrained to be binary and instead are relaxed to be in the
interval [0, 1].

9

max
p,ω,U,h

1

R

∑
r∈R

∑
n∈N

∑
i∈Cn

piωinr

s.t.∑
i∈Cn∪{0}

ωinr = 1 ∀n ∈ N, r ∈ R (µnr)

hnr = c0nrω0nr +
∑
i∈Cn

Uinrωinr ∀n ∈ N, r ∈ R (ζnr)

hnr ≥ c0nr ∀n ∈ N, r ∈ R (α0nr)

hnr ≥ Uinr ∀n ∈ N, i ∈ Cn, r ∈ R (αinr)

Uinr = cinr + βin
p pi ∀n ∈ N, i ∈ Cn, r ∈ R (κinr)

ω ∈ [0, 1](J+1)NR

p ∈ [pL
1, p

U
1]× . . .× [pL

J , p
U
J]

U,h ∈ RJNR,RNR

(5)

We can further simplify the problem by isolating all non-convexity into a set of
bilinear constraints (λinr) which define the product piωinr, turning the problem
into a non-convex QCQP with linear objective (QCQP-L), described in Formu-
lation 6. As this reformulation is purely algebraic, all properties of the QCQP-L
formulation still hold, most notably, under the assumption of distinct utilities, the
program is again integral.

10

max
p,ω,η,U,h

1

R

∑
r∈R

∑
n∈N

∑
i∈Cn

ηinr

s.t.∑
i∈Cn∪{0}

ωinr = 1 ∀n ∈ N, r ∈ R (µnr)

hnr = c0nrω0nr

+
∑
i∈Cn

[cinrωinr + βin
p ηinr] ∀n ∈ N, r ∈ R (ζnr)

hnr ≥ c0nr ∀n ∈ N, r ∈ R (α0nr)

hnr ≥ Uinr ∀n ∈ N, i ∈ Cn, r ∈ R (αinr)

Uinr = cinr + βin
p pi ∀n ∈ N, i ∈ Cn, r ∈ R (κinr)

ηinr = piωinr ∀n ∈ N, i ∈ Cn, r ∈ R (λinr)

ω ∈ [0, 1](J+1)NR

p ∈ [pL
1, p

U
1]× . . .× [pL

J , p
U
J]

U,h ∈ RJNR,RNR

(6)

3.4 Breakpoints
A very useful insight into the CPP is that, even though the price variables live
in a continuous domain, we can a priori enumerate all relevant solution values,
to which we later refer to as breakpoints. The key is the following observation:
for any of the controlled prices, its optimal value will necessarily be such that the
utility of its corresponding alternative is equal to the utility of the next cheapest
alternative (for some customer and scenario). This is due to the fact that we want
to maximize the profit, thus increasing the price as much as possible without los-
ing any more customers than necessary. For an optimal price pi, there will thus
inadvertently exist a customer n and scenario r such that if we increase pi by any
ε > 0, the utility Uinr would fall under that of cheaper alternatives or the opt-out,
thus deterring that customer and lowering the total profit. Otherwise, this increase
would improve the current solution, which would consequently be suboptimal.
This optimal value for pi can thus be considered a "breakpoint" in the customer’s
decision.
To illustrate this idea we consider the case of one price and one customer and
scenario. This means the only relevant breakpoint is the price p1 for which the

11

utility of the product to be sold is equal to the utility of the opt-out alternative:

c1nr + β1
pp1 = c0nr =⇒ p1 =

c0nr − c1nr

β1
p

.

Figure 1 shows the revenue of the supplier as a function of the price p1 of the one
controlled alternative. We observe that the optimal profit is achieved at p1 = p1.

p1 pU
1

η1nr

Controlled alternative
Opt-out alternative

Figure 1 – Revenue for one price and one simulated customer

This is because we assume the so-called "optimistic setting", where at a utility
tie, we assume customers to choose the higher-priced alternative, see for example
Labbé et al. (1998). As we are maximizing a sample average estimate of the
true objective function (i.e. we rely on simulation and use a finite sample), this
objective function is non-concave. This can be illustrated further by adding more
customers, see Figure 2, resulting in the typical shape of the objective functions
of (bi)linear pricing problems, see for example Violin (2016). Here the optimal
revenue is achieved at p = p2

1. Above each line, we indicate the number of
captured customers for that price range.

If we knew the breakpoints in advance, it would be sufficient to evaluate the rev-
enue for each of them and take the best solution. The question thus arises of
how to identify all breakpoints. For this we can apply the following procedure:
First, we need to assume an ordering of the prices, i.e. a permutation s such that
ps(1) ≤ . . . ≤ ps(J). We then compute all breakpoints for ps(1) compared to the
opt-out option. Subsequently we iterate over all of these values, fixing ps(1) to
each breakpoint, which allows us to compute a new intermediary opt-out option
for each tuple (n, r), which will have utility U0nr = max(U0nr, Us(1)nr(ps(1))).
This allows us to compute the breakpoints for the next highest price ps(2) in the

12

p1
1 p2

1 p3
1 pU

1

3

2
1

0

3∑
i=1

η1ir

Figure 2 – Revenue for one price and three simulated customers

same way. This procedure continues all the way to the highest price until all break-
points for this ordering have been explored. Repeating this enumerative process
for all possible permutations results in the complete set of breakpoints.
In the next section, we describe how we can transform this insight into an efficient
algorithm, whose complexity grows polynomially in the number of customers and
scenarios.

4 Breakpoint exact algorithm (BEA)
In this section, we present the breakpoint exact algorithm (BEA) for the CPP that
expands and exploits the notion of breakpoints discussed in Section 3.4. This
algorithm first assumes the order of prices to be fixed. The original problem is
then solved by testing all possible permutations of prices separately. The BEA
can easily be adapted to a heuristic by considering only a subset of the possible
orderings of prices, where the solution will depend strongly on how close the
optimal ordering is to the ones explored. Throughout this section, to lighten the
notation, we assume that p0 ≤ p1 ≤ . . . ≤ pJ, with p0 = 0 being the price of the
opt-out alternative.
The algorithm proceeds by iteratively introducing and fixing the price of new
alternatives, from the cheapest to the most expensive one. When a new alternative
is introduced in the market, we calculate, for each customer, the price for which
its utility would be equal to that of the alternative that was previously selected. We
then sort these breakpoints and solve the restricted problem associated with each
of them, as well as the one obtained by fixing the price of the current alternative
to its upper bound. This procedure is repeated recursively until all the prices have

13

been fixed. At the end of the algorithm, the space of breakpoints has been fully
explored, and the incumbent solution is optimal.
For a new alternative j, and given the set {0, 1, . . . , j − 1} of cheaper alternatives
whose prices have been previously fixed, the breakpoint p̄nr

j is defined as the price
at which the utility of alternative j matches the maximum utility over alternatives
{0, 1, . . . , j− 1} for customer (n, r). This price is given by:

p̄nr
j =

hj
nr − cjnr

βjn
p

,

where hj
nr = maxi∈{0,...,j−1}{cinr + βin

p pi}. From there, the set of relevant break-
points for alternative j corresponds to all the breakpoints p̄nr

j that lie in the feasible
interval [pL

j , p
U
j]. The upper bound pU

j also has to be considered in the BEA, as
increasing the price of j to its maximum feasible value can lead to an optimal so-
lution in some cases. For example, this systematically occurs in instances where
all the customers select alternative j in any feasible solution. Finally, we can omit
all the prices in the interval [pL

j , pj−1], as we assumed that the prices respect the
order p0 ≤ · · · ≤ pj−1 ≤ pj ≤ · · · ≤ pJ. Given the partial solution p1, . . . , pj−1,
the set of prices to test for alternative j is thus:

P̄j =
{{

p̄nr
j : n ∈ N, r ∈ R

}
∪ {pU

j }
}
∩
[
max{pL

j , pj−1}, p
U
j

]
In Proposition 4.1, we show that the BEA, by recursively exploring all the prices
of set P̄j at each step, yields an optimal solution.

Proposition 4.1. There exists an optimal solution p∗ to the CPP that respects
p∗
j ∈ P̄j ∀ j ∈ {1, . . . , J}.

Proof. Let p1 be a feasible solution such that p1
1 ≤ · · · ≤ p1

J and p1
j /∈ P̄j for a

given alternative j ∈ {1, . . . , J}. We define the solution p2 as follows:

p2
i =

{
p1
i if i ̸= j

min{q ∈ P̄j : q > p1
j } if i = j

Since pU
j = max P̄j, the price p2

j is always feasible and well-defined. Solution
p2 thus preserves the feasibility of solution p1. Since the pricing coefficients
βin
p are assumed to be negative for each alternative i and each customer n, the

consequence of increasing the price of alternative j can only impact the behavior
of the simulated customers who select alternative j in solution p1, i.e., such that
ω1

jnr = 1. Since p2
i is defined as the smallest element of P̄j larger than p1

j , and
since the customers are assumed to select the most expensive alternative among
the alternatives of maximum utility in case of equality, no customer will switch

14

from j to a cheaper alternative i ∈ {0, . . . , j − 1} when increasing the price of
alternative j from p1

j to p2
j . Consequently, the revenue η1

jnr = p1
j that was obtained

from a simulated customer (n, r) such that ω1
jnr = 1 can either increase to η2

jnr =
p2
j if j remains the maximum utility choice for (n, r) in solution p2, or it can

reach η2
jnr = p2

i for some alternative i ∈ {j + 1, . . . , J} if increasing the price of
alternative j causes its utility to fall below that of a more expensive alternative.
In both cases, we have that η2

jnr ≥ η1
jnr. This means that the objective value of

solution p2 is at least that of p1. In the case of inequality, we directly conclude
that p1 is suboptimal. Otherwise, a feasible solution that respects the assumption
of the proposition’s statement and that leads to a revenue at least equal to that of
solution p1 can be constructed by repeating the same procedure until pi ∈ P̄i ∀
i ∈ {1, . . . , J}.

The pseudocode of the BEA algorithm is provided in Algorithm 1. We denote
by S the set of all possible permutations s of {1, . . . , J}. For a given permutation
s ∈ S, the jth element of the ordered list s in denoted by sj.

Algorithm 1: Breakpoint exact algorithm (BEA) to solve the CPP
Result: optimal solution p∗ and value o∗ for Formulation 6.
p∗
j ← 0 ∀j ∈ {1, . . . , J}

o∗ ← 0

for s in S do
psj ← 0 ∀j ∈ {1, . . . , J}

hs1
nr ← c0nr ∀(n, r) ∈ N × R

ηnr ← 0 ∀(n, r) ∈ N × R

(p̂, ô)← enumerate(s, p, hs1 , η, 1)
if ô > o∗ then

p∗ ← p̂;
o∗ ← ô;

end
end
return (p∗, o∗)

Algorithm 1 iterates over all the possible orderings of prices ps1 ≤ ps2 ≤ . . . ,≤
psJ , s ∈ S. Each restricted problem is solved by the recursive enumerate func-
tion, whose pseudocode is provided in Algorithm 2. This function takes as input
the current permutation s ∈ S of alternatives, a partially populated vector of prices
p, whose components ps1 ≤ · · · ≤ psj−1

have been previously fixed, the utility h
sj
nr

and the price ηnr of the alternative currently selected by each simulated customer
(n, r) ∈ N × R, and the depth j of exploration in the current ordering.
The function enumerate iteratively sets the price of the current alternative sj
to each element of P̄sj and recursively solves the resulting restricted problem. At

15

level j of the recursion, N1 is the set of simulated customers who select alternative
sj at any feasible price. Set N2 refers to the set of simulated customers who may
or may not select alternative sj depending on its price.
At level j of the recursion, the alternative sj, which cannot be cheaper than any of
the previously introduced ones, is added to the product line. Its price psj is ini-
tialized to its upper bound pU

sj
. The customers’ behavior is adjusted accordingly,

and the incumbent solution p∗ and its objective value o∗ of the current restricted
problem are initialized. If j ≤ J − 1, the price of the current alternative is iter-
atively fixed to each value psj ∈ P̄j, the maximum utility alternative is updated
for each customer, and the resulting subproblem is solved recursively. We denote
its optimal solution by p̂ and update the incumbent solution p∗ if the objective
value ô exceeds the incumbent value o∗. If j = J, the current alternative is the last
and most expensive one. We denote by õ the revenue generated by the customers
selecting alternatives other than sJ. Each time a breakpoint p̄niri

sJ
is visited, the

corresponding customer (ni, ri) switches from their previously selected alterna-
tive to sJ, which reduces by ηn1r1 the revenue õ generated by alternatives s1 to
sJ−1. At this point, |N1| + i customers select alternative J, for a total objective
value of õ+ (|N1|+ i)p̄niri

sJ
. The incumbent solution is updated.

The solution p̂ with value ô that is returned to Algorithm 1 for each is the optimal
solution to the initial problem, only restricted by the ordering s ∈ S of the prices.
At the end of the execution of BEA, all the solutions p∗ to the CPP that respects
p∗
j ∈ P̄j ∀ j ∈ {1, . . . , J} have been explored and the solution p∗ with value o∗

returned by Algorithm 1 is optimal, by Proporition 4.1.

16

Algorithm 2: Recursive enumeration function within BEA
Function enumerate(s, p, hsj , η, j):

psj ← pU
sj

p̄nr
sj
← h

sj
nr−csjnr

β
sjn

p

∀(n, r) ∈ N × R

N1 ← {(n, r)|p̄nr
sj

≥ pU
sj
}

N2 ← {(n, r)|max{pL
sj
, psj−1

} < p̄nr
sj

< pU
sj
}

h
sj+1
nr ← h

sj
nr ∀(n, r) ∈ N × R \ N1

h
sj+1
nr ← csjnr + β

sjn
p pU

sj
∀(n, r) ∈ N1

ηnr ← pU
sj

∀(n, r) ∈ N1

o∗ ←∑n∈N
∑

r∈R ηnr

p∗ ← p

Sort the elements of N2 so that p̄n1r1
sj

≥ p̄n2r2
sj

≥ · · · ≥ p̄
n|N2|

r|N2|

sj

if j ≤ J− 1 then
for i ∈ {1, . . . , |N2|} do

psj ← p̄niri
sj

h
sj+1
nr ← csjnr+β

sjn
p psj ∀(n, r) ∈ {(n1, r1), . . . , (ni, ri)}∪N1

ηnr ← psj ∀(n, r) ∈ {(n1, r1), . . . , (ni, ri)} ∪N1

(p̂, ô)← enumerate(s, p, hsj+1 , η, j+ 1)
if ô > o∗ then

o∗ ← ô

p∗ ← p̂
end

end
end
else

õ← o∗ −
∑

(n,r)∈N1
ηnr

for i ∈ {1, . . . , |N2|} do
õ← õ− ηniri

psj ← p̄niri
sj

o← õ+ (|N1|+ i)psj

if o > o∗ then
o∗ ← o

p∗ ← p
end

end
return (p∗, o∗)

end
end

17

Proposition 4.2. The time complexity of the BEA algorithm is O(J!(NR)Jlog(NR)).

Proof. Until level J − 1, the algorithm keeps track of the utility h
sj
nr of the al-

ternative currently selected by each simulated customer and its price ηnr. These
updates lead to operations with time complexity O(NR) at each passage in the
for loop from level 1 to J − 1. When setting the last price sJ, however, only the
objective value o of the current solution is computed, by updating at each break-
point the revenue generated by the number of captured customers times the current
breakpoints. This allows the operations in the innermost loops of the algorithm to
be executed in constant time. The dominant operation at level J is thus the sort-
ing step, with time complexity O(NR log(NR)). Since O(NR) recursive calls are
made at each level, the total time complexity of the BEA algorithm for a given
permutation s is O((NR)J log(NR)). There are J! possible orderings of the prices.
We conclude that the time complexity is O(J!(NR)Jlog(NR)) in worst case.

This complexity exhibits exponential growth with J. However, for a fixed number
of prices, it grows polynomially in the number NR of simulated customers. The
BEA algorithm can thus be expected to perform well for instances of the CPP with
few prices and a high number of simulated customers.

5 Spatial Branch and Bound algorithm
The key property of the CPP, that we are trying to exploit in the following algo-
rithm, is that for a fixed price, the problem becomes trivial to solve. Indeed, it
reduces to assigning the value 1 to the choice variable ωinr if for individual n,
in scenario r, the highest utility is the one of alternative i and 0 otherwise. Fur-
thermore, with the QCQP-L formulation (Formulation 6), all non-convexity of the
problem is contained in a set of bilinear equality constraints. We want to make use
of both of these properties, together with additional features, to design an efficient
solution method for the CPP.
Starting from the QCQP-L formulation and given a set of bounds pi ∈ [pL

i , p
U
i] ∀i ∈ J,

we relax the constraints ηinr = piωinr ∀i ∈ Cn by the use of a McCormick
envelope, see McCormick (1976):

ηinr ≥ pL
iωinr

ηinr ≥ pU
i ωinr + pi − pU

i

ηinr ≤ pL
iωinr + pi − pL

i

ηinr ≤ pU
i ωinr

This yields the McCormick relaxation of the QCQP-L shown in Formulation 7.
We then employ a Spatial Branch and Bound algorithm, see for example Liberti

18

(2008), to find the best bounds for all the prices. A conceptual outline of the
method is given below:

1. Solve the McCormick relaxation (Formulation 7) using the initial bounds.

2. From the solution value of the prices, compute the corresponding choices
and construct a feasible solution.

3. Choose a price to branch on (see Section 5.1), then split the search inter-
val for that price, i.e., its bounds, into two, while all other price bounds
remain the same. Add two new nodes to the Branch and Bound tree, each
corresponding to one set of the new bounds.

4. Choose the next node from the tree (see Section 5.3) based on the achieved
objective value in its parent node (best-first-search), and solve the relaxation
with the bounds corresponding to that node.

5. Continue until the relative gap between the objective value of the tightest
relaxation is close enough (up to a predefined relative optimality gap) to the
best feasible solution found.

The choice of using best-first-search is supported by the non-convex search space
and the fact that we can easily generate feasible solutions, and thus lower bounds,
removing the need to go deep into the tree early. The great benefit of such a custom
Branch and Bound approach is that instead of branching on the JNR variables
ηinr, as a conventional solver would, we only branch on the J price variables,
which drastically reduces the computational effort.

19

max
p,ω,η,U,h

1

R

∑
r∈R

∑
n∈N

∑
i∈Cn∪{0}

ηinr

s.t.∑
i∈Cn∪{0}

ωinr = 1 ∀n ∈ N, r ∈ R (µnr)

hnr = c0nrω0nr

+
∑
i∈Cn

[cinrωinr + βin
p ηinr] ∀n ∈ N, r ∈ R (ζnr)

hnr ≥ Uinr ∀i, n ∈ N, r ∈ R (αinr)

Uinr = cinr + βin
p pi ∀i, n ∈ N, r ∈ R (κinr)

ηinr ≥ pL
iωinr ∀n ∈ N, i ∈ Cn, r ∈ R (λ1

inr)

ηinr ≥ pU
i ωinr + pi − pU

i ∀n ∈ N, i ∈ Cn, r ∈ R (λ2
inr)

ηinr ≤ pL
iωinr + pi − pL

i ∀n ∈ N, i ∈ Cn, r ∈ R (λ3
inr)

ηinr ≤ pU
i ωinr ∀n ∈ N, i ∈ Cn, r ∈ R (λ4

inr)

ω ∈ [0, 1](J+1)NR

p ∈ [pL
1, p

U
1]× . . .× [pL

J , p
U
J]

η,U, h ∈ RJNR,RJNR,RNR

(7)

5.1 Branching strategy
If we deal with more than one price, an important decision we have to make at
each branching is which alternative’s price to branch on. The traditional approach
of Spatial Branch and Bound is to always select the alternative i where the interval
[pL

i , p
U
i] is the largest (longest-edge-branching). This is comparable to a strategic

exhaustive search. In our case, we utilize a custom branching rule instead, where
we branch along the asset which displays the largest average absolute violation of
the constraints ηinr = piωinr over all i ∈ {1, . . . , J}:

branching_index = arg max
i∈{1,...,J}

{∑
nr |ηinr − piωinr|

}
where p,ω, η are the solution values in the current relaxation. The motivation
behind this rule is that we know that for an optimal solution, the violation of
this constraint needs to be zero, thus exploring the space where there is the most
potential to reduce this violation promises faster convergence, which is also the
case empirically (especially for instances with higher number of prices). Further-
more, after each branching, the bounds improve and the McCormick relaxation

20

gets tighter. Thus the largest average absolute constraint violation decreases, im-
plying convergence over time.
Other branching strategies like probabilistic branching based on market shares or
profits, as well as a fully random approach, were computationally explored in pre-
liminary experiments, all performing significantly worse than this deterministic
strategy.

5.2 Dominating and dominated alternatives
The further down the Branch and Bound tree we progress, the tighter the bounds
on the prices. This indicates that for certain tuples of individuals and scenarios,
it can happen that one alternative is either dominating or dominated over the en-
tire set of bounds in the current node, meaning that for any set of prices found
within these bounds, the alternative either always has the highest utility amongst
all alternatives (dominating) or there exists at least one alternative that always has
higher utility than that alternative (dominated). Formally we define an alternative
i to be dominating for an individual n and scenario r, if given a set of bounds
[pL

i , p
U
i]i∈{1,...,J}, the following holds:

Uinr(p
U
i) ≥ Ujnr(p

L
j) ∀j ∈ {1, . . . , J} \ {i}

i.e. its utility, given the least attractive (highest possible) price within the bounds,
is higher than all other utilities given their best (lowest) prices, making it guaran-
teed to be chosen. In the same way, an alternative i is described to be dominated
if:

Uinr(p
L
i) ≤ Ujnr(p

U
j) ∀j ∈ {1, . . . , J} \ {i}

i.e. its utility, given the most attractive (lowest possible) price within the bounds,
is lower than all other utilities given their worst (highest) prices, making it guaran-
teed to never be chosen. If for a tuple there exists an alternative that is dominating,
we can remove that tuple entirely from the current node and simply add the price
of the dominating alternative to the total profit after the optimization (except if
the dominating alternative is the opt-out). If for a tuple (n, r) there exists an
alternative j that is dominated, we can add the constraint that ωjnr = ηjnr = 0,
simplifying the problem. The closer we get to the optimal solution, i.e. to a break-
point (as discussed in section 3) the more likely it is that two utilities take very
similar values, to the point where comparisons become a question of numerical
precision. If that is the case, we define the alternative that brings more profit, i.e.
has a higher price, to be the dominant one (this is also what mathematical solvers
do in such cases, as the goal is to maximize the objective).
Applying this approach leads to large speed-ups in convergence, especially in the
later parts of the algorithm, which is notorious for being the most time-consuming.

21

5.3 Enumeration strategy
The enumeration strategy concerns the choice of which node to select next when
exploring a given branch in the Branch and Bound tree. As mentioned above,
the first criterion is the upper bound on the objective from its parent node, i.e.,
the best possible objective value that can be achieved when exploring that node.
However, we will generally have multiple nodes with the same upper bound, each
exploring a disjoint search space, raising the question of which space to explore
first. Here we opt to always select the node where the number of market captures
is maximized, i.e., the node with the fewest people that, given the bounds on the
prices in that node, are guaranteed to choose the opt-out option (the opt-out is
the dominating alternative). We can formally define the number of guaranteed
opt-outs given a node j with its lower price bounds (pL

j)i∈{1,...,J} as follows:

σ(j) := # {(n, r) | U0nr > Uinr((p
L
j)i) ∀i ∈ {1, . . . , J}}

i.e., the number of (simulated) customers, for which the highest achievable util-
ities of the priced options are all strictly smaller than the utility of the opt-out
alternative.
As the penalty coefficients in the utility are negative, lower price ranges will al-
ways capture more customers, yielding a lower number of guaranteed opt-outs.
Thus this strategy coincides with preferring the node that explores lower prices
over the one exploring higher prices after branching.
Let Ω denote the set of all currently open nodes in the tree, where a node j consists
of a set of bounds ∆j, its upper bound on the objective value ôj and the number of
guaranteed opt-outs σ(j). The next node to be selected from the tree can now be
written as:

j∗ := arg min
j∈Ω

{σ(j) | ôj = max{ôi | {∆
i, ôi} ∈ Ω}}}

implying that, among the nodes that reach the highest upper bound on their poten-
tial objective value, we choose the one that has the lowest number of guaranteed
opt-outs.

5.4 Finding an initial solution
The Branch and Bound algorithm is initiated with a starting solution, i.e., a set
of prices for which we compute the integer objective value. This objective value
serves as the initial lower bound for the optimal objective value of the solution.
It reduces the search tree size, since if we explore a branch and the relaxation in
this branch already yields an objective value that is worse than the current best
lower bound, there is no need to continue along that branch. It is thus beneficial

22

to start with a good initial guess for the price, for which we use a simple sampling
heuristic: We sample 5 customers, one single scenario, and then solve this reduced
problem using the QCQP-L formulation with a mathematical solver. This heuris-
tic generally provides decent initial solutions in a short amount of time. Other,
more sophisticated heuristics might lead to further improvements in the overall
performance of the algorithm.

5.5 Utilizing breakpoints
If one can a priori assume which one of the products will always have the low-
est price out of all of them, for example when offering different amounts of the
same product, we can make use of the insights about breakpoints from Section
3.4. By computing all the breakpoints for the cheapest controlled alternative in
advance, after each branching, we can cut off the regions where no breakpoints
are contained and thus reduce the search space.
Algorithm 3 provides the pseudo-code for the Branch and Bound procedure de-
scribed in this section.

Algorithm 3: A Spatial Branch & Bound algorithm to solve the CPP
Result: perctol-optimal solution (p∗,ω∗, η∗) for Formulation 6.

(1) Initialization: Set j := 0, ∆j := [pL
1, p

U
1]× · · · × [pL

J , p
U
J], o

∗ := oheuristic,
ôj :=∞, Ω := {{∆j, ôj}}

(2) while maxj{ôj}−o∗

o∗
· 100 ≤ perctol do

(3) let j := argmin{σ(j) | ôj = max{ôi | {∆
j, ôj} ∈ Ω}}}. Remove {∆j, ôj}

from Ω and solve Formulation 7 with bounds ∆j. Denote its optimal
solution by (pj,ωj, ηj) and its optimal objective value by oj as well
as its integer optimal value ōj.

(4) if ōj > o∗ then
(5) compute ω̄j, η̄j from pj and set o∗ = oj,

(p∗,ω∗, η∗) := (pj, ω̄j, η̄j), delete from Ω all instances {∆j, ôj}

where ôj ≤ o∗.
(6) end
(7) if oj > o∗ then
(8) let i = argmax

{∑
nr |ηinr−piωinr|

NR
, i ∈ Cn

}
and divide the interval

[pL
i , p

U
i] into two new intervals [pL

i ,
pLi +pUi

2
] and [

pLi +pUi
2

, pU
i].

Construct the two new subpolyhedra ∆
′ and ∆

′′ . Define
ô

′
= ô

′′
:= oj and augment Ω = Ω ∪ {∆

′
, ô

′
} ∪ {∆

′′
, ô

′′
}.

(9) end
(10) end

The algorithm is initialized with the full set of bounds for each price and the lower

23

bound on the objective value generated by the starting heuristic. We select the
node with the highest upper bound and solve the related relaxation. Next we fix
the prices to their solution values to compute the corresponding integer solution
(line 3). If it is better than the current best integer solution, we update the latter
(lines 4-5). If the objective value of the relaxation is larger than the current best
integer objective value, we select a price to branch on, create the two new nodes
and add them to the tree (lines 7-9). The algorithm terminates when the relative
gap between the best lower bound and upper bound is higher than a predefined
tolerance perctol.

6 Benders decomposition
In every node of the Branch and Bound tree, we need to solve Formulation 7,
which may be time-consuming due to a large number of variables η and ω. How-
ever, Formulation 7 is highly separable: indeed, if all variables pi are fixed to a
certain value, the utility maximization problem can be solved for every individual
and scenario independently. This is why we consider a Benders decomposition
approach to speed up the solution of the McCormick relaxation in each node of
the Branch and Bound tree, see for example Rahmaniani et al. (2017). It is worth
noting that Benders is most commonly applied in the context of MILP optimiza-
tion, however, here we use it to speed up the computation of a separable LP. The
idea is to derive a valid problem reformulation by projecting out the ω,η, h and
U variables from Formulation 7, and replacing them with auxiliary variables Pnr

whose value will represent the revenue of customer n in scenario r. A conceptual
outline of the decomposition method is given below:

1. Choose an initial set of values for the prices. Compute the integer objective
value to get a lower bound on the optimal objective value.

2. Solve the Benders subproblem (Formulation 9) for all individuals n and
scenarios r separately, with the price variables fixed to the initial prices.

3. Extract the dual values of the constraints fixing the prices and add the fol-
lowing Benders cuts to the master problem (Formulation 8):

Pnr ≤ Pc
nr −
∑
i

φc
inr(pi − pc

i)

where pi and Pnr are variables in the master problem representing the price
of alternative i and the obtained revenue from tuple (n, r) respectively. For
a cut c, pc are the values the prices are fixed to, Pc

nr is the revenue generated
from tuple (n, r) with these prices and φc

nr is the dual vector corresponding
to constraints pi = pc

i , i ∈ Cn.

24

4. Solve the master problem with these NR optimality cuts and retrieve the
optimal solution values for the prices. Compute the integer objective value
and update the best lower bound if necessary.

5. Solve the subproblem with the price variables fixed to the new set of prices
to obtain the dual values for the next optimality cuts.

6. We iterate the process until the objective value of the master problem is
close enough to the one of the best feasible solution found.

Benders decomposition works by decomposing the original problem into a mas-
ter problem and a subproblem, where the master problem is a relaxation of the
original problem that iteratively is improved by the addition of optimality and
feasibility cuts.
As the subproblem can be solved independently for each individual and scenario,
we can similarly add a Benders cut for each of them separately (called multi-cut
or disaggregate Benders). Adding all NR cuts at once is not a common practice
in Benders decomposition, however, our preliminary tests have revealed that the
number of iterations and the overall time needed to solve the LP relaxation are
drastically reduced when compared to the traditional implementation of adding
only violated Benders cuts in each iteration. More detailed information on the
implementation of the cuts is given in Appendix B.1.
Formulation 8 shows the Benders master problem, where the variables consist of
the revenue Pnr for each individual n and scenario r and the complicating vari-
ables, i.e. the prices, pi. Each Benders cut c ∈ C, where C denotes the set of
all currently added cuts, consists of the candidate price pc

i used in the fixing con-
straint of the subproblem, the resulting revenue Pc

nr for each tuple (n, r) and the
corresponding dual variable values φc

inr. Constraints (acnr) represent the Benders
cuts, constraint (b) is included to ensure that the initial LP solved for C = ∅ is not
unbounded, where PUB is a reasonable upper bound on the total revenue.

max
P,p

∑
n∈N

∑
r∈R

Pnr

s.t.

Pnr ≤ Pc
nr −
∑
i

φc
inr(pi − pc

i) ∀c ∈ C, n ∈ N, r ∈ R (acnr)∑
nr

Pnr ≤ PUB (b)

p ∈ [pL
1, p

U
1]× . . .× [pL

J , p
U
J]

P ∈ RNR

(8)

25

Formulation 9 shows the subproblem for an individual n and scenario r. It corre-
sponds to Formulation 7 (reduced to one tuple) with the only addition being con-
straints (φinr), fixing pi to pc

i . We notice that for any price vector pc, the resulting
Benders subproblem is feasible and an optimal solution is obtained. Therefore, no
Benders feasibility cuts are needed. To speed up the generation of optimality cuts,
we set a time limit for the computation of the master problem. This means we
do not solve it to optimality, i.e., we generate suboptimal candidate solutions for
the subproblem, potentially weakening the resulting optimality cuts. However, we
observed that a large amount of time in Benders was spent on proving optimality
of the solution for the master problem, which is only of key importance in the last
iteration of Benders, to prove convergence.

Pc
nr = max

p,ω,η,U,h

1

R

∑
i∈Cn

ηi

s.t.∑
i∈Cn∪{0}

ωi = 1 (µ)

h = c0nrω0 +
∑
i∈Cn

[cinrωi + βin
p ηi] (ζ)

h ≥ c0nr (α0)

h ≥ Ui ∀i ∈ Cn (αi)

Ui = cinr + βppi ∀i ∈ Cn (κi)

ηi ≥ pL
iωi ∀i ∈ Cn (λ1

i)

ηi ≥ pU
i ωi + pi − pU

i ∀i ∈ Cn (λ2
i)

ηi ≤ pL
iωi + pi − pL

i ∀i ∈ Cn (λ3
i)

ηi ≤ pU
i ωi ∀i ∈ Cn (λ4

i)

pi = pc
i ∀i ∈ Cn (φc

inr)

ω ∈ [0, 1]|Cn|+1

p ∈×
i∈Cn

[pL
i , p

U
i]

η,U, h ∈ R|Cn|,R|Cn|,R

(9)

7 Numerical results
In this Section, we present the parking space operator case study to evaluate the
procedures presented in the previous sections. We describe the performed experi-

26

ments, comment on the numerical results, and give a summary on our findings.

7.1 Case study
To test the presented methodology we rely on the same case study as Paneque et
al. (2021), as it uses a mixed logit model published in the literature, illustrating
the fact that there is no need for any assumption about the choice model to apply
the methodology. The case study concerns a parking services operator, motivated
by the published disaggregate demand model for parking choice by Ibeas et al.
(2014). The exact specification of the model with all estimated parameters can
be found in Appendix A. The choice set consists of three services: paid on-street
parking (PSP), paid parking in an underground car park (PUP), and free on-street
parking (FSP). The prices of PSP and PUP are controlled by a single operator try-
ing to maximize profit, whereas the FSP alternative does not provide any revenue
and thus represents the opt-out option. For this case study, we assume that all cus-
tomers must pay the same price for the same service. Furthermore, no capacity
constraints are imposed on the parking facilities.

7.2 Extension to more than two prices
In order to test the performance of our methods on instances with a larger number
of prices, we artificially extend the choice set as follows. First, we define:

JPSP := Number of paid on-street parking alternatives.

JPUP := Number of underground parking alternatives.

where for the non-extended choice set we have JPSP = JPUP = 1 and the total num-
ber of prices to be optimized is J = JPSP + JPUP. To add more PSP or PUP options
we duplicate the respective alternative and increase the access time from the park-
ing space to desired destination by one minute per duplicate. This corresponds to
augmenting the parking space facilities in size.

7.3 Description of experiments
The goal of our experiments is to answer the following questions:

1. How does relaxing the integer choice variables to continuous ones, i.e. go-
ing from the MILP to the QCQP formulation, affect runtime, and is there
a difference when isolating the non-convex constraints, i.e. going from the
QCQP to the QCQP-L formulation? How does solving these different For-
mulations using GUROBI compare to our custom algorithms on small to
medium-sized instances?

27

2. How do our custom algorithms (Spatial Branch and Bound, Spatial
Branch and Benders, and breakpoint exact algorithm) compare to solving
the QCQP-L formulation directly with GUROBI on instances with an
increased number of draws?

3. What is the highest number of draws we can solve instances for (up to an
optimality gap of up to 5%), within a time limit of 72 hours, using the Spa-
tial Branch and Benders or breakpoint exact algorithm? Will the solution
values converge at a certain number of draws?

4. How do the different solution methods fare when the number of prices is
increased?

To investigate these four issues we perform the tests described in Table 1, where N
denotes the number of individuals considered and R the number of scenarios gen-
erated. For the rest of this section, we will use "MILP", "QCQP-L", and "QCQP"
to express when we use a mathematical solver to directly solve the problems given
in Formulation 4, 5 and 6 respectively. Furthermore, "BEA" refers to the break-
point exact algorithm presented in Section 4, "B&B" to the Spatial Branch and
Bound algorithm presented in Section 5, and lastly, "B&BD" refers to the Spa-
tial Branch and Bound with the addition of solving each node using a Benders
decomposition as presented in Section 6.

Table 1 – Summary of Tests

Test 1 Test 2 Test 3 Test 4

JPSP 1 0, 1 0, 1 0, 1, 2, 3
JPUP 1 1 1 1, 2, 3
N 50 50 50 50, 20
R 200, 300, 400,

500
1,000, 2,000,
. . . , 7,000

2,000, 4,000,
. . . , 30,000,
100k, 500k, 1m

200

Time limit 72 hours 24 hours 72 hours 24 hours
Methods MILP, QCQP,

QCQP-L,
B&B, B&BD,
BEA

QCQP-L,
B&B, B&BD,
BEA

B&BD, BEA QCQP-L,
B&B, B&BD,
BEA

Optimality
tolerance

0.01% 0.01% 5% 0.01%

28

The bounds for all prices are defined to be 0e for the lower bound and 2e for
the upper bound. When optimizing one price only, we fix the price of PSP to be
0.6e. The accelerated cut generation discussed in Section 6 is applied with a time
limit for the Benders Master problem that is dependent on the number of scenarios
and set to R/10. All experiments are performed using GUROBI 10.0.3 (Gurobi
Optimization, LLC, 2021) with one thread, on a computational cluster node with
two 2.4 GHz Intel Xeon Platinum 8360Y processors, where we utilize 16 cores
with a total of 64 GB of RAM. We use GUROBI’s hyperparameter tuning tool to
maximize the performance of all methods (see Appendix B.2). All runtimes are
reported in seconds. Whenever the time limit is reached, we report the achieved
relative optimality gap instead.

7.4 Results and analysis
For each of the four test series, we present the runtimes, optimal prices pi,
i ∈ {1, . . . , J}, and objective values of the solution (i.e., the attained profit).
Table 2 shows the runtime and results respectively for Test 1, where we optimize
two prices with the integer formulation (MILP) vs. the ones with continuous
choice variables. Compared to the MILP, we get a speed-up factor of up to 7x for
the QCQP, 9x for the QCQP-L, 30x for the B&B, and 20x for the B&BD. Here
we see that for lower numbers of draws, the Benders decomposition, due to its
sizable overhead, does not bring further improvement over the Branch and Bound
approach. The breaking point exact algorithm (BEA) outperforms all methods
with a speed-up of factor up to 3519x over the MILP. In general, we see that
the relative increase in runtime for the MILP is much greater than for the other
methods, implying that the larger the instance, the bigger the improvements in
performance. The optimal prices and profit are identical for all methods.
For Test 2, Table 3 depicts the results for one-price optimization with large num-
bers of draws, and Tables 4 and 5 show the results when optimizing both prices
simultaneously. When optimizing the price of PUP only, we achieve a speed-up
factor over GUROBI (using the QCQP-L formulation) of up to 9.8x with the B&B
and up to 12.7x with the B&BD method. For the BEA, it is hard to measure the
speed-up factor because it is of several magnitudes. The largest measurable factor
is for 5000 draws, where the QCQP-L takes 83651 seconds and the BEA finds the
optimal solution in 0.05 seconds, giving a speed-up of factor 1.6 ∗ 106. For two-
price optimization, the B&BD method solves instances to ∼ 1% optimality for up
to 4000 draws, and from there, it manages to get a significantly smaller optimality
gap as well as superior feasible solutions within the time limit when compared to
the B&B, and drastically smaller gaps when compared to the GUROBI methods.
Indeed, for 4000 draws and above, GUROBI does not find a first feasible solution
within the time limit. The BEA manages to solve all instances to optimality in

29

less than a quarter of the time limit.
Tables 6 and 7 show the results for one-price and two-price optimization respec-
tively in Test 3 (exploring the highest possible number of draws we can solve
instances with). With the B&BD method, we are able to solve one-price instances
with up to 20000 draws to 5% optimality in less than 3.5 hours, and instances
with two prices and up to 10000 draws within the time limit of 72 hours. The
BEA solves instances with only one price within a fraction of a second, which is
why additional instances were added with R = 100k, 500k, 1m to show the way
the runtime scales. What we see is that we can solve instances with one million
draws in 77 seconds, again outperforming the state-of-the-art and any other pro-
posed method by several orders of magnitude. For two prices, the BEA solves
all instances to optimality significantly faster than the B&BD method, allowing
for an increase of the number of scenarios of up to 22k (for which we no longer
invoked the B&BD method).
Comparing the prices and objective values directly we could not observe conver-
gence for either the one-price or two-price case. However, when using the highest
number of draws as a baseline to evaluate the other prices, i.e. compute the profit
that each price would have generated for the instance with the highest number
of draws, we see a convergence in objective value for the one-price case starting
from 6000 draws. For two prices, although the objective value is very consistent,
we could not observe convergence to three significant digits.
Finally, Table 8 depicts the results for Test 4, when the number of prices is in-
creased. The prices reported in the table are in each case taken from the method
that reported the best lower bound on the profit. It is evident that for one and
two prices, the BEA drastically outperforms both the B&B and B&BD methods.
However, for three prices, the B&B algorithm performs slightly better, and at four
prices and above, the BEA is not capable of solving even very small instances
within the 24-hour time limit. To further investigate the runtime difference be-
tween the B&B methods and the BEA we additionally consider two very small
instances (N = 20, R = 100 and N = 20, R = 50) with a large time limit of
72 hours, in the hopes of getting a termination from the BEA, however, that did
not occur, proving that Branch and Bound methods both strongly outperform the
BEA for higher numbers of prices, with observed speed-up factors of up to 14x
for the B&B and 20x for the B&BD approach when optimizing four prices simul-
taneously.
A last additional series of experiments conducted within Test 4 (see Table 9),
comparing the B&B and B&BD approaches on instances with four prices, low
numbers of customers and draws, and a 24h time limit, shows that the addition of
a Benders decomposition to the B&B leads to improved results starting already
from 500 draws, compared to 1000 draws for two prices and 3000 draws for one
price. A possible explanation for this behavior is that we are projecting out ηinr

30

Table 2 – Test 1: Results for two-price optimization (small-scale instances)

N R MILP QCQP QCQP-L B&B B&BD BEA p1 p2 Profit

50 200 9,042 4,195 3,403 1,386 3,015 11 0.546 0.679 26.992
50 300 42,804 9,503 7,951 2,998 5,418 24 0.565 0.670 27.119
50 400 112,335 22,567 19,283 6,378 11,858 41 0.556 0.665 27.172
50 500 242,877 32,886 25,030 7,963 12,064 69 0.568 0.678 27.158

Table 3 – Test 2: Results for one-price optimization (large-scale instances)

N R QCQP-L B&B B&BD BEA p1 Profit

50 1,000 2,435 287 412 0 0.545 23.931
50 2,000 11,018 1,247 1,301 0 0.550 23.946
50 3,000 25,986 2,859 2,521 0 0.555 23.976
50 4,000 53,072 5,234 4,711 0 0.556 23.960
50 5,000 83,651 8,516 6,550 0 0.554 23.945
50 6,000 - 10,785 7,984 0 0.555 23.923
50 7,000 - 14,782 10,556 0 0.551 23.939

and ωinr variables, whose number grows polynomially with the number of prices,
N and R, and replace them with NR variables of type P. Hence, the larger the
number of prices, the more variables are removed in the solving of the LPs in
each node of the spatial branching.

We summarize our findings as follows: Rewriting the problem in a continuous
way (QCQP and QCQP-L) already leads to a substantial speed-up over the inte-
ger formulation (MILP). When optimizing instances with two prices or fewer, the
BEA is by far the best choice, outspeeding other methods by several magnitudes.
Conversely, when dealing with three or more prices, the Branch and Bound meth-
ods exhibit superior performance. Furthermore, the higher the number of draws,
the larger the additional benefit of employing a Benders decomposition within the
Branch and Bound approach. Lastly, the larger the number of prices, the lower
the number of draws needed for the Spatial Branch and Benders Decomposition
method to surpass the pure Spatial Branch and Bound algorithm.

31

Table 4 – Test 2: Runtime results for two-price optimization (large-scale instances)

QCQP-L B&B B&BD BEA

N R Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%)

50 1,000 58,132 0.00 32,963 0.00 21,960 0.00 294 0.00
50 2,000 - 3.60 - 0.57 - 0.05 1,244 0.00
50 3,000 - 20.68 - 10.57 - 0.24 3,005 0.00
50 4,000 - - - 33.65 - 1.04 5,834 0.00
50 5,000 - - - 40.60 - 3.42 8,931 0.00
50 6,000 - - - 55.06 - 5.97 13,568 0.00
50 7,000 - - - 67.94 - 3.85 21,133 0.00

Table 5 – Test 2: Numerical results for two-price optimization (large-scale
instances)

QCQP-L B&B B&BD BEA

N R p1 p2 Profit p1 p2 Profit p1 p2 Profit p1 p2 Profit

50 1,000 0.573 0.670 27.031 0.573 0.670 27.031 0.573 0.670 27.031 0.573 0.670 27.031
50 2,000 0.584 0.797 26.208 0.592 0.682 26.918 0.564 0.664 27.100 0.564 0.664 27.100
50 3,000 0.532 0.783 22.553 0.584 0.736 26.893 0.571 0.677 27.144 0.564 0.672 27.144
50 4,000 - - - 1.242 0.766 25.707 0.567 0.677 27.139 0.567 0.677 27.139
50 5,000 - - - 1.041 0.939 21.988 0.554 0.715 27.012 0.572 0.670 27.182
50 6,000 - - - 1.004 1.732 18.915 0.590 0.726 26.929 0.571 0.670 27.131
50 7,000 - - - 1.339 1.986 18.997 0.572 0.696 27.081 0.569 0.667 27.112

32

Table 6 – Test 3: Convergence results for one-price optimization ∗(within 5% optimality gap)

N R B&BD BEA Price p1 Profit based on R = 1m

50 2,000 608∗ 0 0.550 23.946 23.916
50 4,000 1,759∗ 0 0.556 23.960 23.918
50 6,000 3,248∗ 0 0.555 23.923 23.920
50 8,000 4,368∗ 0 0.555 23.910 23.920
50 10,000 5,883∗ 0 0.555 23.922 23.920
50 12,000 6,412∗ 0 0.550 23.924 23.920
50 14,000 7,871∗ 0 0.555 23.912 23.920
50 16,000 9,300∗ 0 0.555 23.911 23.920
50 18,000 10,733∗ 0 0.554 23.921 23.920
50 20,000 11,994∗ 0 0.553 23.926 23.920
50 100,000 5 0.554 23.926 23.920
50 500,000 32 0.554 23.920 23.920
50 1,000,000 77 0.553 23.920 23.920

Table 7 – Test 3: Convergence results for two-price optimization ∗(within 5% optimality gap)

N R B&BD BEA p1 p2 Profit Profit based on R = 22k

50 2,000 10,699∗ 1,244 0.565 0.664 27.100 27.107
50 4,000 42,612∗ 5,834 0.567 0.677 27.139 27.100
50 6,000 113,907∗ 13,568 0.571 0.670 27.131 27.104
50 8,000 170,053∗ 27,749 0.565 0.671 27.112 27.109
50 10,000 206,411∗ 45,096 0.569 0.667 27.115 27.104
50 12,000 57,760 0.566 0.668 27.080 27.108
50 14,000 82,679 0.567 0.669 27.100 27.105
50 16,000 108,539 0.567 0.671 27.114 27.106
50 18,000 163,748 0.568 0.665 27.098 27.103
50 20,000 184,679 0.567 0.672 27.119 27.106
50 22,000 235,602 0.564 0.668 27.110 27.108

33

Table 8 – Test 4: Results for increasing the number of prices

QCQP-L B&B B&BD BEA

N R JPSP JPUP Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) p1 p2 p3 p4 p5 p6 Profit

50 200 0 1 82 - 19 - 47 - 0 - 0.550 23.959
50 200 1 1 3,574 - 1,413 - 3,077 - 12 - 0.546 0.679 26.991
50 200 1 2 46,389 - 34,340 - 54,748 - 39,636 - 0.555 0.648 0.640 26.535
50 200 2 2 - 6.91% - 1.27% - 1.13% - - 0.559 0.569 0.647 0.643 26.611
50 200 2 3 - 48.80% - 7.29% - 4.97% - - 0.559 0.569 0.648 0.644 0.635 26.699
50 200 3 3 - 120.20% - 22.31% - 15.45% - - 0.559 0.570 0.576 0.660 0.644 0.644 26.778
20 100 2 2 - 5.00% 12,478 - 37,395 - - - 0.550 0.526 0.587 0.577 10.308
20 50 2 3 - 48.00% 119,946 - 65,359 - - - 0.573 0.572 0.629 0.629 0.626 10.588

Table 9 – Test 4: Results for four prices and N = 20 customers

B&B B&BD BEA

N R JPSP JPUP Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) p1 p2 p3 p4 Profit

20 100 2 2 12478 0.00 37395 0.00 - - 0.550 0.526 0.587 0.577 10.308
20 200 2 2 29213 0.00 57229 0.00 - - 0.565 0.578 0.618 0.622 10.496
20 300 2 2 - 0.19 - 0.41 - - 0.571 0.548 0.632 0.635 10.511
20 500 2 2 - 1.42 - 0.88 - - 0.559 0.561 0.620 0.625 10.352
20 1000 2 2 - 5.48 - 2.14 - - 0.549 0.557 0.621 0.619 10.414

34

8 Conclusions
We proposed the breakpoint exact algorithm (BEA) as well as a Spatial Branch
and Bound (B&B) and Spatial Branch and Benders Decomposition (B&BD) ap-
proach to tackle the uncapacitated choice-based pricing problem, where demand
is captured by an advanced discrete choice model. The procedure can be applied
to any choice-based optimization problem and any random utility model, as long
as the utilities are linear in the price. The stochasticity in the demand is dealt
with using simulation, which leads to a large MILP formulation that is difficult
to solve. We show that some properties of the model can be exploited to derive
more efficiently solvable versions. The BEA proves to be highly efficient for two
prices or fewer, where it drastically outperforms the state-of-the-art as well as the
other proposed methods, but is surpassed by the B&B approaches when increas-
ing the number of prices to three or more. Furthermore, the larger the number of
simulation scenarios, the bigger the benefit of employing a Benders decomposi-
tion within the Spatial Branch and Bound algorithm, with the necessary number
of draws for the benefits to show decreasing as the number of prices increases.
For future research, it would be an interesting avenue to expand both the B&B
algorithms and the BEA to tackle more complex problems. Capacity constraints,
for example, would have to be formulated in a way that does not add new products
to the formulation and, crucially, maintains integrality. The investigation of col-
umn generation methods could prove to be fruitful in that regard. Currently under
development is an efficient heuristic based on the BEA, that is able to deal with
large numbers of prices as well as draws and customers, with preliminary results
showing great potential. In addition to that, it would be interesting to tackle other
choice-based optimization problems, like facility location, revenue management,
or equilibrium problems.

References
Akçay, Y., Natarajan, H. P., & Xu, S. H. (2010). Joint dynamic pricing of multiple

perishable products under consumer choice. Management Science, 56(8), 1345–1361.

Bertsimas, D., Sian Ng, Y., & Yan, J. (2020). Joint frequency-setting and pricing op-
timization on multimodal transit networks at scale. Transportation Science, 54(3),
839–853.

Bortolomiol, S., Lurkin, V., & Bierlaire, M. (2021). A simulation-based heuristic to
find approximate equilibria with disaggregate demand models. Transportation Science,
55(5), 1025–1045.

35

Gallego, G., & Wang, R. (2014). Multiproduct price optimization and competition un-
der the nested logit model with product-differentiated price sensitivities. Operations
Research, 62(2), 450–461.

Gilbert, F., Marcotte, P., & Savard, G. (2014). Mixed-logit network pricing. Computa-
tional Optimization and Applications, 57, 105–127.

Gurobi Optimization, LLC. (2021). Gurobi Optimizer Reference Manual. Retrieved from
https://www.gurobi.com

Hanson, W., & Martin, K. (1996). Optimizing multinomial logit profit functions. Man-
agement Science, 42(7), 992–1003.

Ibeas, A., Dell’Olio, L., Bordagaray, M., & Ortúzar, J. d. D. (2014). Modelling parking
choices considering user heterogeneity. Transportation Research Part A: Policy and
Practice, 70, 41–49.

Labbé, M., Marcotte, P., & Savard, G. (1998). A bilevel model of taxation and its appli-
cation to optimal highway pricing. Management science, 44(12-part-1), 1608–1622.

Li, H., & Huh, W. T. (2011). Pricing multiple products with the multinomial logit and
nested logit models: Concavity and implications. Manufacturing & Service Operations
Management, 13(4), 549–563.

Li, H., & Webster, S. (2017). Optimal pricing of correlated product options under the
paired combinatorial logit model. Operations Research, 65(5), 1215–1230.

Li, H., Webster, S., Mason, N., & Kempf, K. (2019). Product-line pricing under dis-
crete mixed multinomial logit demand: winner—2017 msom practice-based research
competition. Manufacturing & Service Operations Management, 21(1), 14–28.

Liberti, L. (2008). Introduction to global optimization. Ecole Polytechnique.

Marandi, A., & Lurkin, V. (2020). An exact algorithm for the static pricing problem under
discrete mixed logit demand. arXiv preprint arXiv:2005.07482.

McCormick, G. P. (1976). Computability of global solutions to factorable nonconvex pro-
grams: Part i—convex underestimating problems. Mathematical programming, 10(1),
147–175.

McFadden, D., & Train, K. (2000). Mixed MNL models for discrete response. Journal
of applied Econometrics, 15(5), 447–470.

Paneque, M. P., Bierlaire, M., Gendron, B., & Azadeh, S. S. (2021). Integrating advanced
discrete choice models in mixed integer linear optimization. Transportation Research
Part B: Methodological, 146, 26–49.

36

https://www.gurobi.com

Rahmaniani, R., Crainic, T. G., Gendreau, M., & Rei, W. (2017). The Benders decom-
position algorithm: A literature review. European Journal of Operational Research,
259(3), 801–817.

Schlicher, L., & Lurkin, V. (2022). Stable allocations for choice-based collaborative price
setting. European Journal of Operational Research, 302(3), 1242–1254.

Song, J.-S. J., Song, Z. X., & Shen, X. (2021). Demand management and inventory
control for substitutable products. Available at SSRN 3866775.

Sumida, M., Gallego, G., Rusmevichientong, P., Topaloglu, H., & Davis, J. (2021).
Revenue-utility tradeoff in assortment optimization under the multinomial logit model
with totally unimodular constraints. Management Science, 67(5), 2845–2869.

Talluri, K., & Van Ryzin, G. (2004). Revenue management under a general discrete
choice model of consumer behavior. Management Science, 50(1), 15–33.

Train, K. E. (2009). Discrete choice methods with simulation. Cambridge university
press.

van de Geer, R., & den Boer, A. V. (2022). Price optimization under the finite-mixture
logit model. Management Science, 68(10), 7480–7496.

Violin, A. (2016). Mathematical programming approaches to pricing problems. Springer.

Wolsey, L. A. (2020). Integer programming. John Wiley & Sons.

Zhang, D., & Lu, Z. (2013). Assessing the value of dynamic pricing in network revenue
management. INFORMS Journal on Computing, 25(1), 102–115.

Zhang, H., Rusmevichientong, P., & Topaloglu, H. (2018). Multiproduct pricing under
the generalized extreme value models with homogeneous price sensitivity parameters.
Operations Research, 66(6), 1559–1570.

37

A Discrete choice model in Ibeas et al. (2014)
In this section we present the discrete choice model specification of the parking
choice case study taken from Ibeas et al. (2014) as well as a table with estimated
coefficients. The choice set consists of three services: paid on-street parking
(PSP), paid parking in an underground car park (PUP), and free on-street park-
ing (FSP). The utilities of the three alternatives are defined as follows:

UPSP,n = ASCPSP + βTD · TDPSP + γAT ·ATPSP + γFEE · FEEPSP

+ βPSP
FEE,LI · LIn · FEEPSP + βPSP

FEE,RES · RESn · FEEPSP + εPSP,n,

UPUP,n = ASCPUP + βAGEveh3 ·AGEveh3n + βTD · TDPUP + γAT ·ATPUP

+ γFEE · FEEPUP + βPUP
FEE,LI · LIn · FEEPUP + βPUP

FEE,RES · RESn · FEEPUP

+ εPUP,n,

UFSP,n = βTD · TDFSP + βOINT ·OINTn + γAT ·ATFSP + εFSP,n,

where εPSP,n, εPUP,n, εFSP,n
iid
∼ Gumbel(0, 1), and γAT and γFEE are normally dis-

tributed random variables, making the choice model a mixed logit (ML), while the
coefficients β are constants.
The explanatory variables include the following socioeconomic characteristics:
trip origin (if outside town, it affects the utility of free street parking), age of the
vehicle (if less than three years old, it affects the utility of paid underground park-
ing), the income of the driver (if low, it affects the utility of paid alternatives), area
of residency of the driver (if in town, it affects the utility of paid alternatives). Ad-
ditionally, the following attributes of the alternatives are considered: access time
to destination (the time it takes from the parking space to a user’s real destina-
tion), access time to parking (the time it takes a user to find an empty space in the
parking area and park) and parking fee. The estimated parameters are shown in
Table 10.
To extend the choice set to more than two prices, we duplicate the existing PSP and
PUP alternatives but add one more minute of travel time to the desired destination
per duplicate. This corresponds to increasing the size of the parking facilities. The
attributes of the extended PSP and PUP alternatives are defined as:

xPSPinkAT := xPSPnkAT + (i− 1) ∀i ∈ {1, . . . , JPSP}

xPUPinkAT := xPUPnkAT + (i− 1) ∀i ∈ {1, . . . , JPUP}

where kAT defines the index of the arrival time attribute, which is encoded in
minutes. The rest of the attributes remain untouched, i.e.:

xPSPink := xPSPnk ∀i ∈ {1, . . . , JPSP} ∀k ̸= kAT

xPUPink := xPUPnk ∀i ∈ {1, . . . , JPUP} ∀k ̸= kAT

38

Table 10 – Utility parameters reported in Ibeas et al. (2014)

Parameter Value
ASCFSP 0.0
ASCPSP 32.0
ASCPUP 34.0
Fee (e) [γFEE] ∼ N(−32.328, 14.168)
Fee PSP - low income (e) [βPSP

FEE,LI] -10.995
Fee PUP - low income (e) [βPUP

FEE,LI] -13.729
Fee PSP - resident (e) [βPSP

FEE,RES] -11.440
Fee PUP - resident (e) [βPUP

FEE,RES] -10.668
Access time to parking (min) [γAT] ∼ N(−0.788, 1.06)
Access time to destination (min) [βTD] -0.612
Age of vehicle (1/0) [βAGEveh3] 4.037
Origin (1/0) [βOINT] -5.762

B Implementation with GUROBI
In this section, we describe relevant details when implementing the Branch and
Benders algorithm using the mathematical solver GUROBI.

B.1 Efficiently adding Benders cuts
In each iteration of the Benders decomposition algorithm, we are adding NR cuts
to the master problem, where N is the number of customers and R the number
of draws in the Monte Carlo simulation procedure. GUROBI’s latest version 10
introduced a concise matrix notation, allowing us to add many constraints by only
accessing the model once, thus minimizing the computational expense. In our
coding example, we are using GUROBI with the gurobipy python package.
All variables in the master problem (see Formulation 8) are defined as matrix
variables:

1 import gurobipy as gp
2 m = gp.Model()
3 p_vars = m.addMVar(shape=J, lb=-inf, ub=inf)
4 obj_nr_var = m.addMVar(shape=N * R, lb=-inf, ub=0)
5 obj_var = m.addMVar(shape=1, lb=-inf, ub=0)

We then add the relevant constraints:
1 m.addConstr(p_vars[i] >= lowerbound[i])

39

2 m.addConstr(p_vars[i] <= upperbound[i])
3 m.addConstr(obj_var == np.ones(N * R) @ obj_nr_var)
4 m.addConstr(obj_var >= obj_lowerbound)
5 m.addConstr(obj_var <= 0)

It is important to mention that for the Benders decomposition, we transform the
problem from a maximization to a minimization problem, resulting in the objec-
tive variables being bounded by 0 from above. Finally, assuming we have com-
puted the dual variables of a subproblem in an array phi of shape J×NR, as well
as an array profit of shape 1 × NR with the corresponding achieved profits
for each customer and scenario, we can add all NR Benders cuts with one matrix
constraint:

1 m.addConstr(obj_nr_var - phi @ p_vars >= profit - phi @ p)

We do not need to invoke callbacks for this procedure, as we solve a continuous
problem relaxation at each node of the Spatial Branch and Bound method.

B.2 Hyperparameter optimization
We make use of GUROBI’s automatic hyperparameter tuning tool to optimize
the performance of all solution methods that invoke it. We ran the tuning tool
on each formulation with an instance of three prices (JPSP = 1, JPUP = 2) and
N = R = 50 with 10 random tune trials per parameter set and a tune time limit of
12 hours. The reported optimal parameters that were used in the final experiments
are the following:

• MILP (Formulation 4)

– ScaleFlag 1

– SimplexPricing 0

– NormAdjust 1

– Heuristics 0

– MIPFocus 2

– Cuts 0

– AggFill 1000

– Threads 1

• QCQP and QCLP (Formulations 5 and 6)

– ScaleFlag 0

– SimplexPricing 2

40

– NormAdjust 0

– MIPFocus 3

– Cuts 0

– NonConvex 2

– Threads 1

• McCormick Relaxation and Benders Subproblem (Formulations 7 and 9)

– ScaleFlag 1

– PrePasses 2

– Presolve 1

– NormAdjust 1

– SimplexPricing 2

– AggFill 1000

– PreDepRow 1

– PreDual 0

– NumericFocus 1

– Threads 1

• Benders Master Problem (Formulation 8)

– ScaleFlag 1

– SimplexPricing 3

– NormAdjust 1

– PreDual 1

– NumericFocus 1

– PreDepRow 0

– Presolve 1

– Threads 1

GUROBI reported being unable to improve on the baseline parameter set for the
Benders subproblem (Formulation 9). This is likely due to its small size, mak-
ing the effects of different hyperparameters numerically insignificant. Applying
the same hyperparameters as for the McCormick relaxation led to small improve-
ments in computational speed nonetheless, which is why we kept them for the
experiments.

41

	Introduction
	Problem definition
	Problem formulations and properties
	MILP formulation
	Restriction to fixed prices
	Continuous reformulation
	Breakpoints

	Breakpoint exact algorithm (BEA)
	Spatial Branch and Bound algorithm
	Branching strategy
	Dominating and dominated alternatives
	Enumeration strategy
	Finding an initial solution
	Utilizing breakpoints

	Benders decomposition
	Numerical results
	Case study
	Extension to more than two prices
	Description of experiments
	Results and analysis

	Conclusions
	Discrete choice model in ibeas2014modelling
	Implementation with GUROBI
	Efficiently adding Benders cuts
	Hyperparameter optimization

