
Uncertainty Feature Optimization: an implicit
paradigm for problems with noisy data

Niklaus Eggenberg, Matteo Salani, Michel Bierlaire ∗

August 18, 2009

Abstract

Optimization problems due to noisy data solved using stochastic
programming or robust optimization approaches require the explicit
characterization of an uncertainty set U that models the nature of the
noise. Such approaches depend on the modeling of the uncertainty set
and suffer from an erroneous estimation of the noise.

In this paper, we introduce a framework that considers the uncer-
tain data implicitly. We define the concept of Uncertainty Features
(UF), which are problem-specific structural properties of a solution.
We show how to formulate an uncertain problem using the Uncertainty
Feature Optimization (UFO) framework as a multi-objective problem.
We show that stochastic programming and robust optimization are par-
ticular cases of the UFO framework. We present computational results
for the Multi-Dimensional Knapsack Problem (MDKP) and discuss the
application of the framework to the airline scheduling problem.

1 Introduction

Nowadays, Operations Research tools are widely used to optimize real world
problems. The major difficulty the modelers are faced with is the noisy
nature of the data most of the problems are due to. As shown by Birge
and Louveaux (1997), Herroelen and Leus (2005) and Sahinidis (2004), a
deterministic approach, i.e. an approach neglecting the uncertain nature of
the data, leads to unstable solutions: either feasibility is lost or the solution’s
performance is poor when data is revealed. The ability of a solution to
remain feasible with respect to data changes is called the robustness of the
solution. In the case the solution is not robust, we define the recoverability
of the solution as the average performance of the solution including both

∗TRANSP-OR laboratory, École Polytechnique Fédérale de Lausanne, CH-1015 Lau-
sanne, Switzerland

1

original costs and the costs incurred when modifying the solution to retrieve
feasibility, which are called the recovery costs; by convention, we assume
that a solution that cannot be recovered has infinite recovery costs. The
operations of repairing a solution are computed by a recovery algorithm.

We distinguish two classes of methods to solve noisy problems: reactive
and proactive methods. The former are also called on-line algorithms, and
re-compute solutions whenever data changes. The latter compute an a priori
solution before data is deterministically revealed, which requires predictions
on the future data outcome modeled by an uncertainty set, denoted by U.
Proactive methods are sub-divided into two sub-classes: expected-mean and
worst-case methods. On the one hand, expected-mean methods seek the
solution performing best in average over an explicit set U provided with
a probabilistic distribution. On the other hand, worst-case based methods
seek the most conservative solution, i.e. the one performing best in the
worst possible scenario. For both methods, an appropriate model of U is
the key to the solution’s quality; unfortunately, this is a difficult task and, as
we show in this paper, an erroneous estimation of U might have significant
consequences in terms of solution quality.

The concept of Uncertainty Feature Optimization (UFO) is different from
on-line, expected-mean and worst-case approaches: it aims at finding a
proactive solution without the explicit characterization of an uncertainty
set. The fact that the problem is due to noisy data is considered implicitly
using Uncertainty Features (UF), which are structural properties of the so-
lution improving its robustness or recoverability. The structural properties
are problem specific and, in case recoverability is considered, also depend
on the chosen recovery strategy. As uncertainty features do not provide
any a priori information on the quality of the solution, a reasonable way to
validate an UF’s efficiency is to evaluate the outcomes by simulation, as we
do in this paper.

The initial motivation for UFO comes from the airline scheduling prob-
lem, see Kohl et al. (2007) for a general survey. Airline scheduling requires
a proactive method, because of the early publication deadlines of the sched-
ule. In addition, due to many unpredictable influencing factors, modeling an
explicit uncertainty set is a difficult task. Several contributions in the litera-
ture attempt to model an uncertainty set, see for example Lan et al. (2006),
Shebalov and Klabjan (2006), Policella (2004). The main conclusions of the
works adopting robust approaches are that the obtained solutions exhibit a
particular property such as the number of plane crossings (Klabjan et al.
(2002), Bian et al. (2005)), a reduced length of plane rotations (Rosenberger
et al., 2004) or increased idle time (Al-Fawzana and Haouari, 2005). Re-
markably, models aiming at an increase of the solution’s recoverability draw
the same conclusion: the stochastic model with recourse of Yen and Brige
(2006) addresses the crew scheduling problem. Their solutions exhibit pair-
ings with a reduced number of plane changes. The UFO framework is meant
to directly optimize these structural properties, modeling them as UFs.

In this work we show that UFO is a general framework for optimization
under uncertainty, which does not require the explicit modeling of the un-
certainty set. The consequence is a gain of stability of the solution with

2

respect to changes in the noise’s nature. Furthermore, we prove that UFO
is a generalization of existing proactive methods for a particular choice of
UFs. Finally, we present the validation of the framework by simulation.

The structure of the paper is as follows: section 2 summarizes the litera-
ture on methods for optimization under uncertainty and discusses their ben-
efits and drawbacks. Section 3 presents the Uncertainty Feature Optimiza-
tion (UFO) framework and section 4 demonstrates how to derive existing
proactive methods from the UFO framework. In section 5, we show practical
examples of UFO: we present simulation results on the Multi-Dimensional
Knapsack Problem (MDKP) and we discuss the application of UFO to air-
line scheduling in section 6. Finally, section 7 concludes the paper with some
future research issues.

2 Optimization under Uncertainty

For general surveys on optimization under uncertainty we refer to Herroelen
and Leus (2005) and Sahinidis (2004) and references therein.

In the literature, we identify three classes of approaches to problems due
to noisy data: reactive, stochastic and worst-case (or robust).

Reactive Algorithms Reactive or on-line algorithms are based on the
wait-and-see strategy, i.e. the solution is updated whenever required. The
benefit of such methods is that it eventually provides, if it exists, a globally
feasible solution. However, the solution is unstable, since it depends on the
data realization. Furthermore, as most often the solution has to be updated
in real time, the decision policy limits most often to fast greedy heuristics.
Finally, it is hard to estimate the quality of a solution, which is usually
measured by the competitivity ratio, comparing the obtained solution to the
deterministic optimal solution. In real world applications, on-line algorithms
perform at acceptable ranges in terms of optimality deviation, but one can
usually find scenarios for which the algorithms perform poorly. For a survey
on reactive algorithms, we refer to Albers (2003).

Stochastic Programming Stochastic optimization is a widely studied
field and a standard approach to deal with uncertainty, see Birge and Lou-
veaux (1997). The main objective is to optimize the expected value of the
objective over the whole set of uncertain data, i.e. the uncertainty set U:
this implies the knowledge of a probabilistic measure on U. The clear ben-
efit of the approach is that the obtained solution is the one that performs
best in average: if the solution is carried out many times, then the average
cost tends to the expected cost. The drawback is the requirement of an
explicit uncertainty set provided with a probabilistic measure. In addition,
the approach must evaluate a solution on the whole set U to determine its
expected cost, which is, in general, computationally hard. Finally, the com-
puted expected cost is only an estimator on the possible solution’s outcome:
one cannot guarantee that the real cost matches the expected cost on a sin-
gle scenario realization. The expected cost is a good indicator only when the

3

obtained solution is implemented many times under the same conditions.
In stochastic optimization with recourse or multi-stage stochastic opti-

mization (Birge and Louveaux (1997), Kall and Wallace (1994), Herroelen
and Leus (2005)), a recourse strategy that defines the reaction to take when
information on a scenario is revealed is considered. The major advantages
of this approach is that two levels of information are considered, namely the
a priory knowledge and the possible data outcomes along time: the solution
thus also provides the action to take in case of significant information gain.
The benefit of the approach is that the two decisional levels lead to the best
expected solution, including recourse costs, which is a much better approx-
imation on the real cost than the only expected cost (without the recourse
costs). The drawbacks are the needs of the probabilistic uncertainty set and
the additional computational complexity : the recourse problem has to be
solved for each realization in U in order to get a single solution’s expected
recourse cost, and all solutions must be considered to determine the one min-
imizing the total expected cost (the sum of first level and recourse costs).
For large scale problems where individual evaluation for each scenario is not
realistic, the method requires either a closed form for the recourse costs or
a formulation of the recourse problem as an underlying problem. In the
case of a discrete uncertainty set for which the recourse problem can be
expressed as a set of m linear functions given a solution, we get a problem
with at least n×m constraints, where n is the number of decisional stages
at which recourse has to be taken. In such cases, sampling techniques are
necessary tools to deal with the dimension of the deterministic equivalent of
the stochastic formulation, resulting in approximate approaches (Linderoth
et al., 2006).

Worst-Case Based Approaches The class of worst-case based approaches
is mainly composed of methods leading to robust solutions, i.e. solutions
that are feasible even in the worst possible scenario. Many contributions
deal with robust optimization; Soyster (1973) was the first to introduce a
formal approach of robustness, and Bertsimas and Sim (2004) and Ben-Tal
and Nemirovski (2001) give a more formal framework for different classes
of problems. The main advantage of a robust solution is that, if the uncer-
tainty set is exhaustive and a robust solution exists, then the methodology
provides an upper bound on the cost. Moreover, as it is a worst case based
method, it does not require a probability distribution on the uncertainty set
(although its characterization is still needed). The considered uncertainty
set plays a crucial role, since it determines the level of protection of the
solution. But this is a major drawback, since if all scenarios are considered,
the solution might be way too conservative and lead to a solution with high
costs for most of the possible outcomes; neglecting part of the possible out-
comes leaves the possibility for the solution to become unfeasible. In this
case, the cost of the solution is no longer an upper bound, and then the
question arises whether the additional costs on the considered outcomes are
worth it. The trade-off between conservatism and performance is addressed
in Bertsimas and Sim (2004): the solution is ensured to be feasible for a

4

bounded worst-case, as opposed to the unbounded worst-case; the authors
show some bounds on the probability of the solution to be infeasible given
a worst-case bound, but do not specify how to set the bounds on the worst
case.

This leads to another type of worst-case based approach, namely the
risk management methods, see Kall and Mayer (2005). For these methods,
a probabilistic measure on the uncertainty set is required, and the optimal
solution is the one that has the best trade-off between expected cost and
probability to be infeasible. The probability to be infeasible is modeled
using quantile functions, which return bounds on variables ensuring that the
probability of these variables to have values lower or equal to that bound
is a chosen constant. The optimal solution is the one with lowest expected
cost given a specific value of the probability bound, that is then called the
protection level of the solution. The benefit of the approach is to find the
solution with lowest expected cost and provide a probabilistic measure of
infeasibility. The method suffers, however, from the needs of a probabilistic
uncertainty set as does stochastic programming. Moreover, the obtained
problem is computationally hard, such that only particular problems are
solvable. Note that risk management also fits into the class of stochastic
methods.

Lately, Fischetti and Monaci (2008) introduce the concept of light ro-
bustness, which can be seen as an extension of Bertsimas and Sim (2004).
The aim of a light robust solution is to minimize the constraint violation
within a determined maximal deviation from the deterministic optimal so-
lution. The quality of a solution is defined as the worst violation in the
basic Light Robustness (LR) and the deviation from the average violation
in the Heuristic Light Robustness (HLR) approach. In this work, the au-
thors fix a maximal optimality deviation from the deterministic optimum
within which the LR or HLR measures of robustness have to be optimized.
The study limits to integer linear problems with the uncertainty set defined
by Bertsimas and Sim (2004).

In both the (light) robust and the risk management methods, the user
invests some additional costs in order to gain feasibility within a determined
set of outcomes. Bertsimas and Sim (2004) call it the price of robustness.

We learn from the literature that all existing methods have some draw-
backs: deriving an uncertainty set is a difficult problem; erroneous uncer-
tainty sets may significantly impact the solution’s performance in reality;
only few a priori information is known about the real outcome. Additionally,
stochastic programming approaches lead to computationally hard problems
(Birge and Louveaux, 1997) and robust solutions might be too conservative.

The Uncertainty Feature Optimization (UFO) framework do not need
the estimation of the uncertainty set which is the main drawback of other a
priori approaches. This reduces the modeling effort of the characterization of
the uncertainty set U, makes the approach more stable against errors in the
noise’s nature estimation and does not significantly increase the complexity
of the original problem. The inconvenience is that no a priori guarantee
about future outcome is possible: only simulation allows to test the perfor-
mance of the solution. Moreover, the problem of determining the UFs is

5

problem specific.

3 UFO Framework

The main idea of Uncertainty Feature Optimization (UFO) is to save the
modeling effort to derive an uncertainty set U by considering the uncertainty
implicitly with Uncertainty Features (UF)s. An UF is a structural property
of the solution that is proven to ameliorate the solution’s robustness (capac-
ity to remain feasible) or recoverability (reduction of recovery costs when
solution is infeasible). Without loss of generality, we suppose the UF has to
be maximized in order to increase the solution’s robustness or recoverability.

Consider the general deterministic optimization problem (P):

zP = min f(x) (1)
α(x) ≤ b (2)
x ∈ X (3)

Additionally, we suppose that (P) is prone to noise in the data, whose
nature is unknown and is neglected in formulation (P). Indeed, the optimal
solution of (P) might be unfeasible when exposed to the realization of the
data.

An Uncertainty Feature (UF) is a function µ : Rn → R that maps x into
a scalar µ(x). Let M be the number of considered uncertainty features.

We reformulate (P) as a multi-objective optimization problem by adding
the uncertainty features µ(x). Objective (1) becomes:

[zP, z1, . . . , zM] = [min f(x),max µ1(x), . . . , max µM(x)]. (4)

The obtained problem is then transformed into the following problem
(P ′):

zP ′ =[max µ1(x), . . . , max µM(x)] (5)
α(x) ≤ b (6)
f(x) ≤ (1 + ρ)f∗ (7)
x ∈ X (8)

where f∗ is the optimal solution of the deterministic problem (P), and ρ

is a scalar of the same sign than f∗ and is called the budget ratio. We call
constraint (7) the budget constraint. It limits the optimality gap with respect
to the deterministic optimal solution f∗.

Remarkably, the feasibility of solution x according to (P) remains: any
feasible solution of (P ′) is also feasible for (P). The noisy data the problem
is prone to is implicitly considered when maximizing the UFs, since the UF
is chosen such that solutions with a high UF value are performing better in
the noisy environment.

We solve the multi-objective optimization problem (4) using the relax-
ation of the initial objective in a budget constraint. Other possibilities of

6

solving such a problem are the exploration of the Pareto frontier or to opti-
mize a weighted combination of the different objectives. Although the choice
seems arbitrary at this point, we show in the next section that the budget
constraint is particularly convenient: first of all, it is an intuitive approach
for practitioners as it allows a clear understanding of the additional costs,
and it allows us to derive existing a priori methods as particular cases of the
UFO framework.

We assume that an increase of µ(x) implies a better performance of
the solution x under noisy data: there is a significant (inverse) correlation
between µ(x) and f(x) which is a guideline to identify potential efficient UFs.
When using several UFs, then (P ′) is still a multi-objective optimization
problem. We suggest, at this stage, to solve a weighted combination of the
UFs, normalizing them according to their respective correlation with the
original objective.

The methodology to find UFs is to consider a specific problem’s struc-
ture, the practitioner’s knowledge and, if any, the recovery policy to deter-
mine intuitive UFs, and then use trial and error simulations to measure this
correlation.

4 UFO as a Generalization

In this section we show that stochastic and robust optimization formulations
can be derived from the UFO framework using appropriate uncertainty fea-
tures. We assume, for this section, that the uncertainty set U is provided.

4.1 Stochastic Programming

Consider the following uncertainty feature:

µStoc(x) = −EU(f(x)),

where EU(f(x)) is the expected value of f(x) over the uncertainty set U.
Applying the UFO framework, we get the following problem:

zStoc = min EU(f(x)) (9)
α(x) ≤ b (10)
f(x) ≤ (1 + ρ)f∗ (11)
x ∈ X (12)

When ρ = 0 and a feasible solution exists, the solution space reduces to the
deterministic optimal solutions only, and the value z∗Stoch is the expected cost
of the deterministic solution. When ρ → ∞, all feasible solutions are consid-
ered: the solution is the one minimizing the expected cost, i.e. the solution
of the corresponding stochastic expected cost minimization problem.

Suppose that we are provided with a recovery (or recourse) strategy: for
each solution x, let g(x, ξ) be the recovery (fixed recourse) costs for solution
x when the observed data outcome is ξ ∈ U. The corresponding Determin-
istic Equivalent Program (D.E.P.) (Birge and Louveaux, 1997) formulation

7

of a two-stage stochastic program with fixed recourse is:

zRec = min f(x) + EU(g(x, ξ)) (13)
α(x) ≤ b (14)
x ∈ X (15)

We define the following UF:

µRec(x) = − [f(x) + EU(g(x, ξ))] ,

Applying the UFO framework, we obtain formulation (13)-(15) with the
additional budget constraint f(x) ≤ (1+ρ)f∗. Again in presence of a feasible
solution, ρ = 0 means only deterministic optimal solutions are considered,
whereas ρ → ∞ finds the solution of the D.E.P. (Birge and Louveaux, 1997).

4.2 Robust Optimization

Consider the following problem for linear robust optimization:

z∗ROB = min cTx (16)∑
j=1,...,m

aijxj + βi(x, Γi) ≤ bi ∀i = 1, . . . , n (17)

l ≤ x ≤ u (18)

In this problem, only the matrix coefficients A vary; the vectors l and u
are lower and upper bounds for the variables, respectively. The uncertainty
set U is characterized by the sets Ji containing the indexes of the uncertain
coefficients for each row i = 1, . . . , n. Each coefficient satisfies aij ∈ [aij −

âij, aij + âij].
Given a solution x, the worst coefficient realization at row i is given by

βi(x, Γi) = max
{Si∪{ti}|Si⊆Ji,|Si|=bΓic,ti∈Ji\Si}

∑
j∈Si

âij | xj | +(Γi − bΓic)âiti
| xti

|

 ,

(19)

where Γi is an upper bound on the number of coefficient allowed to vary
simultaneously. With this notation, formulation (16)-(18) is equivalent to
the problem considered in Bertsimas and Sim (2004)1

We define the complementary function of βi(x, Γi) as

βi(x, Γi) = min
{Si∪{ti}|Si⊆Ji,|Si|=bJi−Γic,ti∈Ji\Si}

∑
j∈Si

âij | xj | +(Ji − Γi − bJi − Γic)âiti
| xti

|

 ,

which, given a solution x, corresponds to the value of the Ji − Γi coefficients
that contribute least to the total deviation

∑
j=1,...,m âij | xj |.

1Bertsimas and Sim (2004) use a maximization problem; we transform it to a mini-
mization problem to match our framework, and replace the yj variables, −yi ≤ xj ≤ yj

by | xj |, ∀j = 1, . . . , m

8

To illustrate the two functions, consider the example with a unique con-
straint (n = 1), 3 variables (m = 3) and J1 = {1, 2, 3}, i.e. all coefficients are
changing. Now, suppose Γ1 = 1.4, x = (2, 3, 1)T and that â1j = (2, 0.5, 1.2)T .
The worst scenario for the current solution and Γ1 is β(x, 1.4) = 4.6 (using
S1 = {1} and t1 = {2}) and the best scenario when J1 − Γ1 = 1.6 coefficients
take value aij + âij is β(x, 1.4) = 2.1 (using S1 = {3} and t1 = {2}). We see
that β(x, 1.4)+β(x, 1.4) = 6.7 = β(x, 3) = β(x, 0). This example illustrates
the following complementarity theorem.

Theorem (Complementarity)
Given βi and βi defined as above, then

βi(x, Ji) = βi(x, Γi) + βi(x, Γi).

The proof of the theorem is in Appendix A. Note also that both βi and βi

are positive valued functions.

In the next two paragraphs we address two cases when using formulation
(16)-(18). The former considers the problem of finding a robust solution with
given values of the parameters Γi, and we show that a tighter formulation
can be obtained using the UFO framework. The latter is to determine values
of the parameters Γi such that a robust solution exists, and we show that,
using the framework, we are able to derive an algorithm to determine a lower
bound for Γi that guarantee the existence of a robust solution.

Equivalent UFO formulation We suppose for now that the parameters
Γi are given and fixed and that a robust solution satisfying (16)-(18) exists.
We focus first on the feasibility of the solution for all possible scenarios in
U, we apply the framework to this feasibility problem and show that an
appropriate choice of UF and ρ lead to an equivalent formulation to (13)-
(15) .

Let (F) be the following feasibility problem:
(F) z∗F = minx∈X {g(x)}

= minx∈X {maxi=1,...,n (gi(x))}

= minx∈X

{
maxi=1,...,n

(∑m
j=1 aijxj + βi(x, Ji) − bi

)}
g(x) is the value of the most violated constraint in the worst scenario

when all the Ji coefficients of row i vary, i.e. the unbounded worst-case;
the set of feasible solutions X describes the set of solutions defined by (17)-
(18). A solution with g(x) ≤ 0 is a solution that is feasible on the whole
uncertainty set U.

If z∗F ≤ 0, i.e. at least one robust solution exists, we set the budget
constraint as g(x) ≤ 0 and UFO leads to the robust solution that has lowest
cost, which is what is sought. If z∗F < 0, it does not make sense to restrict
the search space to a subset of the set of all robust solutions, i.e. by setting
the budget constraint to be strictly negative, and we still adopt the budget
constraint g(x) ≤ 0.

We assume that z∗F > 0, i.e. no robust solution exist on U and we
denote the optimal solution of (F) by x∗. We apply the UFO framework

9

using µ(x) = −cTx, i.e. the original cost function with negative sign as
UF. As required, µ and g are inversely correlated because of the price of
robustness (Bertsimas and Sim, 2004). Additionally, maximizing µ increases
the performance of the solution: the cost is decreased. We then apply the
budget constraint on each function gi(x) individually, i.e. adding constraints

gi(x) ≤ (1 + ρi)z
∗
F ∀i = 1, . . . , n

where (1 + ρi)z
∗
F depends on the value of βi(x∗, Γi):

(1 + ρi)z
∗
F =

{
min{k|βk(x∗,Γk)>0}

{
βk(x, Γk)

}
if βi(x∗, Γi) > 0

0 if βi(x∗, Γi) = 0

Note that there is at least one i such that βi(x∗, Γi) > 0: indeed, if
βi(x∗, Γi) = 0 ∀i, we obtain from the complementarity theorem:

gi(x∗) =

m∑
j=1

aijxj + βi(x, Ji) − bi =

m∑
j=1

aijxj + βi(x, Γi) − bi.

Now, as we supposed a solution to (16)-(18) exists, there is at least one
solution such that

∑m
j=1 aijxj + βi(x∗, Γi) − bi ≤ 0, which contradicts the

optimality of x∗ as z∗F > 0.
If non-zero, (1+ρi)z

∗
F corresponds to the lowest constraint violation due

to the unbounded worst case with respect to the bounded one, i.e. the
additional Ji − Γi simultaneously varying coefficients. Concretely, adding
these budget constraints extends the solution space for all constraints that
do not satisfy the bounded worst-case, i.e. they restrict the worst case by
limiting the number of simultaneously varying coefficients.

We thus obtain the UFO formulation (F’):

z∗F ′ = min cTx (20)∑
j=1,...,m

aijxj + βi(x, Ji) − (1 + ρi)z
∗
F ≤ bi ∀i = 1, . . . , n (21)

x ∈ X (22)

For all i such that βi(x∗, Γi) = 0, it is clear that βi(x, Ji) ≥ βi(x, Γi)

as Γi ≤ Ji; therefore, solutions satisfying constraint (21) always satisfy con-
straints (17). Furthermore, for constraints i such that βi(x∗, Γi) > 0, using
the theorem, we get:

βi(x, Ji) − min
{k|βk(x∗,Γk)>0}

βk(x, Γk) ≥ βi(x, Ji) − βi(x, Γi) = βi(x, Γi).

(F ′) is thus a tighter formulation than problem (16)-(18) since it is robust
for a larger uncertainty set.

Determining parameters Γi The approach of Bertsimas and Sim (2004)
assumes values Γi as given parameters. It is however not easy to determine
values that provide a sufficient protection level while guaranteeing the exis-
tence of a solution. Using UFO allows to derive an algorithm to determine,

10

in a finite number of iterations, a lower bound on values of Γi such that a
bounded robust solution exists or leads to the proof that the solution set X

defined by constraints (17)-(18) is empty.
At each iteration k of the algorithm, we consider the problem

z
(k)∗

F = ming(x)

g(x) ≤ (1 + ρ(k−1))z
(k−1)∗

F

x ∈ X

We denote the optimal solution at iteration k by x∗k (or (xj)
∗
k for a single

variable).
For the algorithm, we use a different definition for 1 + ρ(k−1) than pre-

viously: we replace min by max to get the following definition:

1 + ρ(k−1) =


maxi=1,...,n

{
β

(k−1)
i (x,Γ

(k−1)
i)

}
z

(k−1)∗
F

if z
(k−1)∗

F > 0

0 otherwise
The value of (1+ρ(k)) is then determined using the following parameters:
Γ

(0)
i = 0;

Γ
(k)
i = sup

{
0 ≤ Γ ≤ Γ

(k−1)
i | βi(x∗k, Γ) ≥ z

(k)∗

F

}
, k 6= 0.

We then iterate over k.
This algorithm leads either to the proof that X = ∅ or to values of Γ

(k)
i ,

i = 1, . . . , n such that at least one robust solution exists. The proof of
convergence is reported in Appendix B. In the case Γi are integers, the
method converges in at most m× n iterations.

When used to derive the approach of Bertsimas and Sim (2004), the
UFO framework has similarities with the light robustness of Fischetti and
Monaci (2008): both methods adopt a budget constraint. The objective of
light robustness, however, is based on an uncertainty characterization: it
aims at finding the solution with lowest constraint violation in the worst
case. UFO is a generalization of the approach, as the LR and HLR viola-
tion methods proposed in the paper can be formulated as UFs. The main
difference is that Fischetti and Monaci (2008) start from the original cost
minimization problem, aiming at minimizing the constraint violation, and
characterize the worst violation, i.e. the worst scenario, according to the
optimal solution of the deterministic problem. We believe that this is not
correct in general, as the characterization of the worst scenario depends on a
solution and should be evaluated for each of them independently, as it is the
case in Bertsimas and Sim (2004): the worst scenario is characterized by the
function βi(x, Γi), which clearly depends on solution x; with this notation,
Fischetti and Monaci (2008) characterize the worst scenario as βi(x∗, Γi)

for each solution x ∈ X, x∗ being the optimal solution of the deterministic
problem; their worst scenario is constant with respect to changing solutions
x. The methodology leads to a heuristic way to compute maximal values of
Γi such that, if it exists, a bounded worst-case robust solution exists.

11

5 Illustration on the Multi-Dimensional Knapsack
Problem

In this section, we show the complete process of applying the UFO frame-
work to a commonly used benchmark problem: the Multi-Dimensional Knap-
sack Problem (MDPK). We first briefly describe the problem and its equiva-
lent UFO formulation using different UFs. We then describe the performed
simulations, which compare the deterministic optimal solution, robust solu-
tion using the formulation of Bertsimas and Sim (2004) and four different
UFs; we also test solutions obtained when using different UFs (including the
robust formulation) simultaneously. The tests are set up to highlight the ef-
fects of erroneous uncertainty estimation and the consequences of additional
budget. We finally perform a validation of the different UFs according to
the obtained results, i.e. we show that some UFs are indeed improving the
solutions.

5.1 UFO applied to the Multi-Dimensional Knapsack Prob-
lem (MDKP)

We apply the UFO framework to the MDKP, which is commonly used as a
benchmark problem for stochastic and robust optimization. The problem is
formulated as:

z∗MDKP = maxpTx
m∑

j=1

aijxj ≤ bi ∀i = 1, . . . , n

xj ∈ Z+ ∀j = 1, . . . ,m

The xj variable corresponds to the number of times object j is taken in
the solution, pj ≥ 0 is its revenue and aij, i = 1, . . . , n are the different
volumes of the object j. The optimal solution of (MDKP) is denoted by
x∗ = {x∗j }

m
j=1, and has value z∗; we also refer to x∗ as the deterministic

solution of the problem.
We suppose that all coefficients aij may vary, i.e. the set varying coeffi-

cients is Ji = {1, . . . ,m}, ∀i = 1, . . . , n.
Using a general UF µ(x) and applying the UFO framework, we obtain

the following problem (MDKP’):

z∗MDKP ′ = max µ(x)
m∑

j=1

aijxj ≤ bi ∀i = 1, . . . , n

pTx ≥ (1 − ρ)z∗

xj ∈ Z+ ∀j = 1, . . . ,m

MDKP is a maximization problem and consequently the budget con-
straint require a greater or equal sign. Additionally, z∗ is multiplied by
(1 − ρ), i.e. the budget constraint bounds a maximal loss of revenue.

12

We derive four different UFs for the problem:
µMTK(x) = 1 − maxj=1,...,m{

xj

maxk=1,...,m{x∗
k} } the Maximal Taken object;

µDIV(x) =
∑

j=1,...,m(
min{xj,1}

m)
the Diversification of the
taken objects;

µIR(x) = 1 − maxj=1,...,m{
aijxj

bi
}

the maximal Impact Ratio
of a taken object;

µ2SUM(x) = 1 − maxi,j6=k{
aijxj+aikxk

bi
}

the maximal size of two
objects in a same con-
straint;

The UFs’ definitions ensure that they all have unconstrained optimal (i.e.
maximal) values at 1.0.

The derived UFs follow intuition: taking many times the same object j

is risky, as if any of its coefficient aij increases, the solution becomes more
likely to be infeasible. The negative sign of µMTK ensures the maximal taken
object is minimized. Having a diversified solution, which is what µDIV(x)

focuses on, is another potentially improving property: we do not expect that
all coefficients increase simultaneously, and the increase of some coefficients
might be compensated by the decrease of some others. Finally, the µIR and
µ2SUM capture an aversion to select objects with higher coefficients.

Notation For simplicity, we refer to each UF using its name only; for
example MTK is used instead of µMTK; DET is the solution of the deterministic
problem (MDKP); ROB refers to the robust MDKP derived from the robust
formulation of Bertsimas and Sim (2004), with a normalized objective such
that its optimal value is 1.

We call a model the combination of one or more UFs, including poten-
tially ROB, and a budget ratio ρ. For example MTK 0.1 is the solution of
(MDKP’) with µMTK(x) and a budget ratio ρ = 0.1; IR DIV 0.2 is the solu-
tion of (MDKP’) when using as objective function the arithmetic mean of
the UFs, i.e. µIR(x)+µDIV(x)

2 . When ρ = 1, the budget constraint is trivially
satisfied, as all revenues are positive and the value of ρ = 1 is not displayed
in a model’s name.

Note that when the model contains ROB, then the budget ratio is al-
ways set to ρ = 1 to avoid conflicts between the budget constraint and the
objective.

5.2 Simulation Description

The simulations are performed using a tool developed in Java and using
the COIN-OR CBC2 library, called Multi-dimensional Knapsack Creator
(MKC)3. We generate a total of 150 instances with the following properties,
and solve each instance with a total of 56 models, as described by Table (1).

2www.coin-or.org
3MKC is a package which includes an instance generator, a solver and a simulator for

the MDKP. It is available upon request to niklaus.eggenberg@epfl.ch

13

Model DET ROB50 ROB10 ROBU10 MTK DIV IR 2SUM

DET X
ROB50 X X X X X
ROB10 X X X X X
ROBU10 X X X X X
MTK R R R
DIV R R R
IR R

2SUM R

Table 1: Summary of the 56 different models solved for each instance; X

means the model is uniquely solved with budget ratio ρ = 1.0; R means the
model is solved with budget ratio ρ ∈ {0.05, 0.1, 0.15, 0.2, 0.25}.

The instance set is as follows:
number of constraints n ∈ {1, 5, 10}

number of objects m = 50

right hand side bi = 4000r, i = 1, . . . , n and r ∼ U[0.8, 1.2]

profit pj = 100r, j = 1, . . . , 50 and r ∼ U[0.8, 1.2]

matrix coefficient
aij = r×0.25pj, i = 1, . . . , n, j = 1, . . . , 50

and r ∼ U[0.8, 1.2]

The parameters we use for the instance generation are based on the
simulations of Pisinger (1995), who shows that profit-weight correlation is
computationally harder because of a higher degeneration of the optimal
solution. The magnitude of the average values p, b, and âij are matching
the values in Bertsimas and Sim (2004); note that in this study, the authors
solve problems with m = 200, but only for a single constraint; we choose
m = 50 to reduce complexity, as we solve problems with up to n = 10

constraints.
Furthermore, when using ROB, the values of the parameters Γi are influ-

encing a solution’s performance. We thus use three different set of values,
as described below:

ROB50 Γi = 50 =| Ji |, i = 1, . . . , n

ROB10 Γi = 10, i = 1, . . . , n

ROBU10 Γi ∼ U[0, 10], i = 1, . . . , n
ROB50 considers 50 simultaneously varying coefficients, and corresponds

to the unbounded worst case when all coefficients are varying simultane-
ously. ROB10 and ROBU10 are restricted to 10 simultaneously varying co-
efficients and a random number between 0 and 10 simultaneously varying
coefficients, respectively. With ROB10, we test the effect on underestimating
the worst-case by limiting the worst-case according to intuition: the optimal
solution of (MDKP) rarely uses more than 10 objects, thus taking Γi = 10

is supposed to be sufficient. The random number of varying coefficients
of ROBU10 corresponds to a random protection level for the different con-
straints. The combined model ROB10 2SUM is the robust solution restricted
to 10 simultaneously varying coefficients, and maximizing the following ob-
jective function:

pTx + µ2SUM(x)

2z∗
.

Thus, ROB50 is the unbounded robust model, whereas ROB10 and ROBU10

14

are bounded cases limiting to 10 simultaneously varying coefficients and
a random number between 0 and 10 simultaneously varying coefficients,
respectively.

For each instance, we set the standard deviation matrix Â used by the
robust models ROB50, ROB10 and ROBU10 to be âij = 0.1aij, as done in
Bertsimas and Sim (2004). The uncertainty set U is thus modeled by matrix
Â.

For the simulation, we generate, for each instance, a certain number
of scenarios. Each of them corresponds to a realization of the coefficient
matrix, which is denoted Ã. We then test, for each model, if the computed
solution is feasible with the new coefficients Ã, i.e. if Ãx ≤ b when x is the
solution of a given model. If the solution is infeasible, we count a failure; if it
is feasible, we compute the optimality gap with respect to the (deterministic)
optimal solution z̃∗ of the scenario, i.e. the solution of problem (MDKP)
where A = Ã.

We use 11 different methods to generate Ã as reported below:
DÂ r ãij = aij + râij, r ∈ {0.75, 1.0} (1 scenario per instance)

UA r
ãij = aij + s, s ∼ U[−raij, raij], r ∈ {0.2, 0.25, 0.3} (10
scenarios per instance)

GA r
ãij = s, s ∼ N(−âij, r), r ∈ {0.2, 0.25, 0.3} (10 scenarios
per instance)

RU r
ãij = s, s ∼ U[(1 − r)25, (1 + r)25], r ∈ {0.1, 0.15} (10
scenarios per instance)

RG ãij = s, s ∼ N(25, 0.1) (10 scenarios per instance)

The names of the simulations come from the uncertainty set charac-
terization (A, Â or purely random) and the used generation type: “D for
deterministic, “U for uniform and “G for Gaussian.

For notational simplicity and brevity, we do not detail the individual
simulations, but we aggregate results for a particular simulation type: DÂ
refers to simulations DÂ 1.0 and DÂ 0.75, UA for UA r, r ∈ {0.2, 0.25, 0.3}, GA
for GA r, r ∈ {0.2, 0.25, 0.3} and RUG for RU r, r ∈ {0.1, 0.15} and RG 0.1.

The DÂ scenarios are deterministic; in this case, Â is exactly or slightly
overestimating the coefficient’s variability for r = 1 and r = 0.75, respec-
tively. In UA, we randomly generate the coefficients in [aij − raij, aij + raij]

with r ∈ {0.2, 0.25, 0.3}; in this case, Â describes correctly the nature of
the noise, but underestimates its magnitude; these simulations are meant to
show the effect of an underestimation of the noise, which is, actually, what
the bounded robust models do.

For GA and RUG, Â is an erroneous characterization of the uncertain
coefficients; in those cases, we simulate the fact that the uncertainty char-
acterization Â is incorrect both in magnitude and distribution. The aim
of these simulations is to show the sensitivity of the different models with
respect to erroneous noise characterization. Note that, as ROB50 is the un-
bounded robust model, we expect all scenarios to be feasible as long as

15

ãij ∈ [aij − âij, aij + âij], i.e. for simulations DÂ; for the bounded robust
models ROB10 and ROBU10, feasibility cannot be guaranteed on any of the
simulations, nor can it for any robust model, bounded or not, for any other
simulations.

In total, we generate 13,800 scenarios, 4600 for each set of instances with
1, 5 and 10 constraints, respectively.

5.3 Simulation Results

This section summarizes the simulation results; the complete results are
available on request4.

Global Results Tables 2, 3 and 4 report results for representative models
for all 150 instances, with a total of 4600 generated scenarios for 1, 5 and
10 constraints, respectively. The tables show, for each model, the UF value
(when pertinent), the number of scenarios for which the solution is infea-
sible, the percentage of infeasible scenarios, the average optimality gap of
feasible scenarios compared to the scenario’s optimum z̃∗, the maximal ob-
served optimality gap and the average computation time on the 150 solved
instances.

Model DET ROB50 ROB10 ROBU10 MTK 0.25 DIV 0.25 IR 0.25

UF Value - - - - 0.9820 1.0 0.9784
infeasible scenarios 2346 1095 1082 1119 1883 1322 34
Infeasiblilty Percentage 51.00 23.80 23.52 24.33 40.93 28.74 0.74
Average gap [%] 12.62 22.37 22.53 21.93 23.42 30.05 44.50
Maximal gap [%] 99.5 99.55 99.55 99.55 99.60 99.62 99.63
Average CPU time [s] 0.1 0.7 8.5 6.0 0.1 0.1 0.5

Model 2SUM 0.25 DIV 2SUM 0.25 MTK IR 0.25 ROB50 MTK

UF Value 0.9569 0.9785 0.9799 0.7895
infeasible scenarios 43 81 106 78
Infeasiblilty Percentage 0.93 1.76 2.30 1.86
Average gap [%] 44.04 42.48 42.03 35.18
Maximal gap [%] 99.64 99.63 99.62 99.59
Average CPU time [s] 13.2 16.2 0.8 22.1

Table 2: Simulation results for selected models for instances with n = 1

constraint with 4600 scenarios.
4Please contact the corresponding author for the complete results by email:

niklaus.eggenberg@epfl.ch

16

Model DET ROB50 ROB10 ROBU10 MTK 0.25 DIV 0.25 IR 0.25

Average UF Value - - - - 0.9670 1.0 0.9774
infeasible scenarios 4151 1823 1648 1969 2146 1158 4
Infeasiblilty Percentage 90.24 39.63 35.83 42.80 46.65 25.17 0.09
Average gap [%] 1.08 9.27 10.21 8.64 12.77 22.91 33.96
Maximal gap [%] 38.05 52.21 52.55 50.42 56.34 60.2 62.95
Average CPU time [s] 0.1 2.1 24.8 14.7 0.1 0.1 1.4

Model 2SUM 0.25 DIV 2SUM 0.25 MTK IR 0.25 ROB50 MTK

UF Value 0.9554 0.9776 0.9721 0.7772
infeasible scenarios 2 6 8 54
Infeasiblilty Percentage 0.04 0.13 0.17 1.17
Average gap [%] 34.11 32.26 32.14 24.01
Maximal gap [%] 62.77 61.18 61.13 56.44
Average CPU time [s] 238.9 241.0 1.1 72.8

Table 3: Simulation results for selected models for instances with n = 5

constraints with 4600 scenarios.

Model DET ROB50 ROB10 ROBU10 MTK 0.25 DIV 0.25 IR 0.25

Average UF Value - - - - 0.9580 1.0 0.9770
infeasible scenarios 4469 2061 1640 2285 2598 1192 0
Infeasiblilty Percentage 97.15 44.80 35.65 46.67 56.48 25.91 0.00
Average gap [%] 0.21 6.80 8.70 6.02 8.22 20.71 32.07
Maximal gap [%] 19.04 32.51 33.05 28.79 36.63 44.95 48.54
Average CPU time [s] 0.3 9.1 98.3 75.0 0.2 0.1 6.5

Model 2SUM 0.25 DIV 2SUM 0.25 MTK IR 0.25 ROB50 MTK

UF Value 0.9550 0.9774 0.9674 0.7716
infeasible scenarios 0 3 2 57
Infeasiblilty Percentage 0.00 0.07 0.04 1.24
Average gap [%] 32.22 29.7 29.64 21.62
Maximal gap [%] 48.09 49.54 49.53 40.66
Average CPU time [s] 519.9 598.6 3.3 165.3

Table 4: Simulation results for selected models for instances with n = 10

constraints with 4600 scenarios.

Looking at Tables 2, 3 and 4, we clearly see that some of the UFs are out-
performing even the unbounded robust solution ROB50 in terms of feasibility.
Interestingly, we observe that the deterministic solution DET is increasingly
bad with an increasing number of constraints, which is actually also the case
for the robust models, but not necessarily the UF models. This shows that
the more the problem is constrained, the more sensitive it becomes to per-
turbations. In the case of the MDKP this is intuitive: with more constraints,
a same object is more likely to have one of its coefficients increased.

Similarly to the deterministic solutions, the robust solutions tend to
take many times a same object. Instead of taking the object with highest
marginal benefit, it grabs the one with lowest variability in Â. In that case,
if Â is a poor approximation, there is a higher likelihood that at least one
of the coefficients exceeds the upper bound characterized by Â.

We also observe that the optimality gaps are significantly smaller for
models with high failure rates; the reason is that for such models, only
scenarios being close to the original instance are feasible, meaning that the
optimal solution is similar to the model’s solution. Looking at the average

17

computation times, we see that the models using 2SUM are the most time
consuming, which comes from the quadratic number of variables required to
linearize the UF. The robust models are the second most time-consuming in
average.

Sensitivity to noise changes Let us consider the results for the different
simulations for some of the models, especially the robust ones. Table 5
shows the percentages of failures for a selection of models for 1, 5 and 10
constraints.

n 1 Constraint 5 Constraints 10 Constraints

Simul Type DÂ UA GA RUG DÂ UA GA RUG DÂ UA GA RUG

ROB50 0.00 30.07 31.93 11.00 0.00 42.60 68.20 10.73 0.00 47.93 80.20 9.27
ROB10 0.00 29.60 31.47 11.07 0.00 37.80 62.27 9.20 26.00 33.60 68.67 5.33
ROBU10 52.00 35.60 33.00 12.53 85.00 41.73 61.13 17.73 93.00 50.20 75.40 20.53
ROB50 MTK 0.00 0.33 4.87 0.00 0.00 0.13 3.47 0.00 0.00 0.00 3.80 0.00
ROB10 IR 83.00 3.40 11.87 0.33 95.00 5.80 1.40 0.27 88.00 6.53 29.00 0.40
ROBU10 DIV 53.00 12.07 21.07 3.60 43.00 9.93 33.33 2.07 51.00 11.60 33.80 3.53
IR 0.25 19.00 29.93 0.93 0.00 3.00 0.00 0.13 0.00 0.00 0.00 0.00 0.00
2SUM 0.25 24.00 21.33 1.20 0.00 1.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00
MTK IR 0.25 55.00 23.33 2.93 0.00 5.00 0.00 0.20 0.00 1.00 0.00 0.07 0.00

Table 5: Percentage of infeasible solutions obtained by different models for
four simulations on problems with n = 1, 5 and 10 constraints.

Looking at Tables 5, we see that, as expected, the unbounded robust
model ROB50 achieves 100% feasibility for the simulations DÂ, but this is not
true for the bounded robust methods ROB10 and ROBU10. Interestingly, the
UF solutions increase in performance for increasing number of constraints in
the DÂ simulations. Now, in the case Â is an underestimation of the noise’s
magnitude, we see that the performance of the robust models is dramati-
cally decreased. Remarkably, it appears that ROB10 is increasingly better in
terms of feasibility than ROB50: in the 10 constraint case with simulations
GA, model ROB50 is clearly the worst, with more than 80% of infeasible sce-
narios. This implies an important fact, namely that focusing uniquely on
robustness when using an erroneous uncertainty characterization might ac-
tually be worse than using a bounded worst-case approach. In other words,
the absolute robustness (the solutions seeking robustness at all costs) should
be used as objective if and only the used uncertainty characterization is re-
liable.

Tables 5 show two additional properties of UFO. The first is that the
UFO solutions are able to compete with the robust models even when the
robust model disposes of the perfect information, and are clearly able to out-
perform the robust models when these use an erroneous uncertainty charac-
terization. However, the robust solutions, when disposing of an accurate un-
certainty characterization, are much better in terms of optimality gaps than
the UF models (ROB50 has an optimality gap of 1.2% in DÂ with 5 constraints
instances, whereas, for example, IR 0.25 has an optimality gap of 20.72%).
Additionally, when combining the robust solution with an UF, we signif-
icantly reduce the sensitivity of the solution to the erroneous uncertainty

18

characterization, although the performance of the solution is decreased in
the perfect information cases DÂ.

Sensitivity to the budget ratio We report on the influence of the bud-
get ratio on a solution’s performance. Figure 1 shows the evolutions of the
percentage of infeasible solutions and the UF value for increasing budget
ratios, using the values of the 13,800 scenarios. Figure 2 shows the evolu-
tion of the optimality gap with respect to the deterministic optimum of each
scenario for increasing budget ratio ρ.

50 00
60.00
70.00
80.00
90.00

en
ar
io
s
[%

]

Budget ratio vs Infeasibility percentage

0.00
10.00
20.00
30.00
40.00
50.00

0 0.05 0.1 0.15 0.2 0.25 0.3

In
fe
as
ib
le
 s
ce

Budget ratio

IR

Div

MTk_2Sum

0 9400
0.9600
0.9800
1.0000
1.0200

lu
e

Budget ratio vs UF value

0.8400
0.8600
0.8800
0.9000
0.9200
0.9400

0 0.05 0.1 0.15 0.2 0.25 0.3

U
F
va

Budget ratio

IR

Div

MTk_2Sum

Figure 1: Evolution of the percentage of infeasible scenarios and the UF
value for increasing values of the budget ratio ρ on the entire set of 13,800
scenarios.

25.00
30.00
35.00
40.00

lu
e

Budget ratio vs Average Optimality gap

0.00
5.00
10.00
15.00
20.00

0 0.05 0.1 0.15 0.2 0.25 0.3

U
F
va

Budget ratio

IR

Div

MTk_2Sum

Figure 2: Evolution of the optimality gap between the models’ solution and
the deterministic optimum z̃∗ of each scenario for increasing values of the
budget ratio ρ on the entire set of 13,800 scenarios.

Figure 1 clearly shows the increasing performance of the UF models for
increasing budget ρ; however, we also see that the optimality gap increases
as shown in Figure 2. Interestingly, the budget ratio and the optimality
gap increase at similar rates, which allows to consider the budget ratio as a
rough estimator on the average loss of revenue.

Another remarkable fact is that, due to the high degeneration of the
near-optimal solutions, the model DIV reaches the optimum 1.0 even with a
small budget of 0.1. This means that all the solutions with higher budget
ratio are actually equivalent, however, the failure in feasibility percentage
still decreases. There are two possible explanations for this: either the
model DIV is not an efficient UF, or the cost-reduction is, in itself, an UF
that increases the robustness of the solution. We show in the next paragraph

19

that DIV is improving the robustness of the solution, which means that sub-
optimality is, in itself, increasing robustness; this observation corresponds
to the price of robustness as observed by Bertsimas and Sim (2004).

5.4 UF Validation

Our results show that there is an evident gain in terms of feasibility for
some of our UFs. Figure 3 shows the histograms of feasible and infeasible
solutions for the different UFs independently for the 10 constraint scenarios:
we discretize the UF value interval [0, 1] into 100 intervals, and display, for
each interval, the number of scenarios for solutions with UF value within the
interval. The histograms show the total number of feasibility tests performed
in our experiments, that is a total of 257,600 observations. The infeasible
solutions are displayed in black and the feasible ones in white. For visual
evidence, we discard the last 5 intervals; Table 6 summarizes, for each UF,
the cumulated number of infeasible and feasible scenarios observed in the
discarded interval, i.e. in UF values within [0.96, 1.0]. Note that no solution
has UF value greater than 0.95 for the 2Sum model.

Model MTK DIV IR

Feasible Infeasible Feasible Infeasible Feasible Infeasible
observations 27,643 6,653 86,672 26,948 108,737 26,319

Table 6: Cumulated number of feasible and infeasible observations for the
UF intervals [0.95, 1.0] for the four UFs.

25000

30000

35000

40000

MTK Histogram

0

5000

10000

15000

20000

5000

0
0.
05 0.
1

0.
15 0.
2

0.
25 0.
3

0.
35 0.
4

0.
45 0.
5

0.
55 0.
6

0.
65 0.
7

0.
75 0.
8

0.
85 0.
9

0.
95

Feasible

Infeasible

5000

6000

7000

8000

DIV Histogram

0

1000

2000

3000

4000

5000

0
0.
05 0.
1

0.
15 0.
2

0.
25 0.
3

0.
35 0.
4

0.
45 0.
5

0.
55 0.
6

0.
65 0.
7

0.
75 0.
8

0.
85 0.
9

0.
95

Feasible

Infeasible

20000

25000

30000

IR Histogram

0

5000

10000

15000

0
0.
05 0.
1

0.
15 0.
2

0.
25 0.
3

0.
35 0.
4

0.
45 0.
5

0.
55 0.
6

0.
65 0.
7

0.
75 0.
8

0.
85 0.
9

0.
95

Feasible

Infeasible

50000

60000

70000

2SUM Histogram

0

10000

20000

30000

40000

0
0.
05 0.
1

0.
15 0.
2

0.
25 0.
3

0.
35 0.
4

0.
45 0.
5

0.
55 0.
6

0.
65 0.
7

0.
75 0.
8

0.
85 0.
9

0.
95

Feasible

Infeasible

Figure 3: Histogram showing the repartition of feasible and infeasible solu-
tions for the four used UFs.

First, note the large infeasibility peak for MTK for UF value 0. Actually,
model DET has always UF value 0, and it might also occur that a solution

20

has a negative value if the most taken object in that model has higher value
than the deterministic model (in this case, the UF value is mapped into
the interval [0, 0.01)). Next note that both number of feasible and number
of infeasible solutions grow for large UF values, which is due to the fact
that we are optimizing these values with the models. Clearly, the UFs are
inter-correlated, as the largest number of observations always occur for the
highest UF values. Note that in the DIV histogram, this is not evident. The
reason is that we discarded the solutions with value 1.0, i.e. for which all
objects are used, and the total number of observations with value 1.0 is over
100,000, i.e. almost 40% of the observations.

Looking at the histograms in Figure 3, our intuition is that the feasibility
rate significantly increases for all UFs but the DIV one. In Table 7 we
compare the feasibility rates for the cumulative number of observations in
UF interval [0, 0.80] and compare it with the value in interval (0.80, 1.0].

Model MTK DIV IR 2SUM

≤ 0.8 (0.8, 1.0] ≤ 0.8 (0.8, 1.0] ≤ 0.8 (0.8, 1.0] ≤ 0.8 (0.8, 1.0]
observations 60,216 194,609 100,004 157,596 51,612 205,988 63,756 193,844
feasibility [%] 45.74 72.06 54.95 71.16 47.10 69.32 43.99 59.70

Table 7: Cumulative feasibility rates for the different UFs and the number
of observations.

The cumulative feasibility rates show that there is indeed a correlation
between the robustness of the solution and the four proposed UFs. However,
it appears that some of the UFs, mainly DIV and MTK, are not efficient when
used alone. Their combination with another UF or even the robust formula-
tion often increases the performance of each model individually, sometimes in
an impressive way, as, for example, the combination of ROB50 and MTK 0.25.
The individual is feasible in 64% and 60% of the scenarios, respectively, and
when combined, model ROB50 MTK is feasible in 98% of the scenarios.

6 Extension to Airline Scheduling

The Airline Scheduling Problem (ASP) is a complex planning problem in-
volving many regulations, see Kohl et al. (2007) for a survey. The many
facets of the problem (route choice, fleet assignment, tail assignment, crew
pairing and crew roistering) represent a combinatorial challenge for opera-
tions research scientists (Clausen et al., 2009). The additional problem is
that the computed schedules have to be carried out in a rapidly varying
environment influenced by many factors such as weather, human factors
(strikes, illness, . . .) and economical factors. The complexity of the envi-
ronment makes it extremely difficult, if not impossible, to derive a complete
and correct characterization of its behavior.

Being already a hard problem in its deterministic form, ASP is extremely
challenging when tackled with proactive methods: it is a good candidate for
the UFO framework. This does not hold uniquely for the ASP problem:
Fischetti and Monaci (2008) successfully apply light robustness, which is

21

computationally similar to UFO, to the train timetabling problem, showing
impressing computational time savings, in addition to competitive solutions
in terms of robustness.

As discussed in section 1, some possible uncertainty features to increase
robustness of an airline schedule are idle time, plane crossings or number of
plane routes matching the worker’s union constraints. As it is unlikely that
a robust solution exists, it is appealing to search for increased recoverability
as well.

In Eggenberg et al. (2008), the authors present a Column Generation
(CG) algorithm to solve the Aircraft Recovery Problem. The advantage of
the technique is that it is flexible enough to be applied for either aircraft,
crew or passenger recovery problems. The algorithm is based on recovery
networks, encoding each unit ’s (aircrafts, crew or passengers) feasible route.
The performance of the recovery algorithm is directly linked with the struc-
ture of the recovery networks. This can be exploited at the ASP phase,
using UFs based on the recovery networks’ structure in order to increase
recoverability.

UFO is a promising framework for computationally hard problems due
to uncertain data such as the ASP for two reasons: the first is that, as long
as the used UFs are of the same nature than the original objective function,
then the computational difficulty is equivalent to solving twice a problem
of same difficulty than the initial problem: once to get the lower bound f∗

and once to solve the UFO problem (5)-(8). The second reason is that the
characterization of uncertainty sets for such problems is a crucial but hard
problem that is not required for general UFs.

7 Conclusion

In this paper, we address the problem of optimization of problems prone to
noisy data. Unlike most of the existing methods, the Uncertainty Feature
Optimization framework does not require the explicit characterization of an
uncertainty set, i.e. the possible outcomes of the data: the UFO framework
considers the uncertainty implicitly. An UF is any feature expected to
improve the solution’s performance in reality, and it is left to the user to
decide the complexity and computational effort to invest in the estimation of
the future outcome. Additionally, we demonstrate how to combine different
UFs, resulting in a general multi-optimization problem.

We show that existing methods such as stochastic optimization or robust
optimization are special cases of UFs, supposing that an uncertainty set
is provided. The proof of the generalization for the robust approach of
Bertsimas and Sim (2004) leads to an algorithm computing upper bounds
on the method’s parameters to guarantee a robust solution exists; to our
knowledge, the only approach providing such bounds is given by the heuristic
method of Fischetti and Monaci (2008).

Computational results on the Multi Dimensional Knapsack Problem
(MDKP) show that the UFO approach is competitive against the robust
approach. The results show that the UFO approach is more stable to varia-

22

tions in the nature of the noise a problem’s data is due to, unlike the robust
approach of Bertsimas and Sim (2004): the exact knowledge of the noise’s
nature is beneficial, but when the nature is erroneously approximated, it
might annihilate the method’s efficiency. Thus, methods using uncertainty
sets should be applied only when the used characterization is sufficiently reli-
able. Additionally, as show our results, the only knowledge of the noise’s na-
ture is not sufficient for the robust approach: the parameters of the method
clearly influence the performance of a robust solution. We also observe that
the budget ratio used in the UFO framework is a rough estimate of the av-
erage solution’s optimality gap compared to each scenario’s optimum, and
that the obtained results are consistent with the principle of the price of ro-
bustness of Bertsimas and Sim (2004), i.e. that feasibility comes at a certain
cost. Furthermore, we demonstrate how to combine different UFs (and even
the robust model) using a normalization procedure; the results show that
the solutions of the combined models are globally better than the solutions
of the individual ones. When combining an UF with robust optimization,
we observe that the sensitivity issues related to erroneous uncertainty char-
acterization is reduced. Finally, we show that the UFs are indeed correlated
with the solution’s robustness, i.e. solution with higher UF values are more
robust.

References

Al-Fawzana, M. and Haouari, M. (2005). A bi-objective model for robust
resource-constrained project scheduling, International Journal of Pro-
duction Economics 96: 175187.

Albers, S. (2003). Online algorithms: A survey, Mathematical Programming
97: 3–26. Invited paper at ISMP 2003.

Ben-Tal, A. and Nemirovski, A. (2001). Lectures on Modern Convex Op-
timization, Analysis, Algorithma, and Engineering Applications, MPS-
SIAM Series on Optimization.

Bertsimas, D. and Sim, M. (2004). The price of robustness, Operations
Research 52: 35–53.

Bian, F., Burke, E., Jain, S., Kendall, G., Koole, G., Mulder, J. L. S. J.,
Paelinck, M., Reeves, C. and Suleman, I. R. M. (2005). Measuring
the robustness of airline fleet schedules, Multidisciplinary Scheduling:
Theory and Applications, Springer US, chapter 10.1, pp. 381–392.

Birge, J. R. and Louveaux, F. (1997). Introduction to Stochastic Program-
ming, Springer.

Clausen, J., Larsen, A. and Larsen, J. (2009). Disruption management in
the airline industry – review of models and methods, Computers &
Operations Research doi:10.1016/j.cor.2009.03.027.

Eggenberg, N., Salani, M. and Bierlaire, M. (2008). Constraint specific
recovery networks for solving airline recovery problems, Technical Re-
port TRANSP-OR 080828, Ecole Polytechnique Fdrale de Lausanne,
Switzerland.

23

Fischetti, M. and Monaci, M. (2008). Light robustness, Technical report,
DEI, Universit di Padova, Italy.
URL: http://www.dei.unipd.it/∼fisch/papers/light robustness.pdf

Herroelen, W. and Leus, R. (2005). Project scheduling under uncertainty:
Survey and research potentialy, EJOR 165: 289–306.

Kall, P. and Mayer, J. (2005). Stochastic Linear Programming, Models,
Theory and Computation, Springer.

Kall, P. and Wallace, S. (eds) (1994). Stochastic Programming, John Wiley
& Sons, New York, N.Y.

Klabjan, D., Johnson, E., Nemhauser, G., Gelman, E. and Ramaswamy, S.
(2002). Airline crew scheduling with time windows and plane-count
constraints, Transportation Science 36(3): 337–348.

Kohl, N., Larsen, A., Larsen, J., Ross, A. and Tiourine, S. (2007). Air-
line disruption management - perspectives, experiences and outlook,
Journal of Air Transport Management 13(3): 149–162.

Lan, S., Clarke, J.-P. and Barnhart, C. (2006). Planning for robust airline
operations: Optimizing aircraft routings and flight departure times to
minimize passenger disruptions, Transportation Science 40: 15–28.

Linderoth, J., Shapiro, A. and Wright, S. (2006). The empirical behavior of
sampling methods for stochastic programming, Annals of Operations
Research 142(1): 215–241.

Pisinger, D. (1995). An expanding-core algorithm for the exact 0-1 knapsack
problem, EJOR 87: 175–187.

Policella, N. (2004). Robust Scheduling: Analysis and Synthesis of Flexible
Solutions, PhD thesis, Universita di Roma ”la Sapienza”.

Rosenberger, J., Johnson, E. and Nemhauser, G. (2004). A robust fleet
assignment model with hub isolation and short cycles, Transportation
Science 38(3): 357–368.

Sahinidis, N. V. (2004). Optimization under uncertainty: state-of-the-art
and opportunities, Computers and Chemical Engineering 28: 971–983.

Shebalov, S. and Klabjan, D. (2006). Robust airline scheduling: Move-up
crews, Tranportation Science 40(3): 300–312.

Soyster, A. (1973). Convex programming with set-inclusive constraints
and application to inexact linear programming, Operations Research
21(5): 1154–1157.

Yen, J. W. and Brige, J. R. (2006). A stochastic programming approach to
the airline crew scheduling problem, Transportation Science 40: 3–14.

A Complementarity Theorem

Theorem (Complementarity)
Let

βi(x, Γi) = max
{Si∪{ti}|Si⊆Ji,|Si|=bΓic,ti∈Ji\Si}

∑
j∈Si

âij | xj | +(Γi − bΓic)âiti
| xti

|

 ,

24

and

βi(x, Γi) = min
{Si∪{ti}|Si⊆Ji,|Si|=bJi−Γic,ti∈Ji\Si}

∑
j∈Si

âij | xj | +(Ji − Γi − bJi − Γic)âiti
| xti

|

 .

Then the following relation holds:

βi(x, Ji) = βi(x, Γi) + βi(x, Γi).

Proof :
For a fixed vector x and a fixed constraint i ∈ {1, . . . , n}, let S∗i ∪ {t∗i } be

the optimal set maximizing βi(x, Γi) and S
∗
i ∪{t

∗
i } the optimal set minimizing

βi(x, Γi).
We assume, w.l.o.g. that the |Ji| changing coefficients are ordered with

respect to âij | xj |. Then, the bJi − Γic first ones are in S
∗
i and, similarly,

the bΓic last ones are in S∗i and S
∗
i ∩ S∗i = ∅.

When Γi is integer, then S
∗
i ∪S∗i = Ji and the theorem is trivially proved.

We thus assume that Γi is non-integer. In this case, S
∗
i ∩S∗i = ∅ implies that

both indexes of the coefficients considered only as fractionally varying are
the same, i.e. t

∗
i = t∗i ; the fractionally varying coefficient in both cases is the

one at position bJi − Γic+ 1. Additionally, as Γi is non-integer, the following
holds:

bJi − Γic = Ji − bΓic− 1

Let us sum all terms of S
∗
i and S∗i using the previous equality and the

fact that t
∗
i = t∗i and S

∗
i ∩ S∗i = ∅ :

βi(x, Γi) + βi(x, Γi) =

∑
j∈S

∗
i

âij | xj |

 + (Ji − Γi − bJi − Γic)âit
∗
i

| xt
∗
i

|

+

∑
j∈S∗i

âij | xj |

 + (Γi − bΓic)âit∗i
| xt∗i

|

=

 ∑
j∈Ji,j6=t∗i

âij | xj |

 + (Ji − Γi − bJi − Γic+ Γi − bΓic)âit∗i
| xt∗i

|

=

 ∑
j∈Ji,j6=t∗i

âij | xj |

 + (Ji − Γi − (Ji − bΓic− 1) + Γi − bΓic)âit∗i
| xt∗i

|

=

 ∑
j∈Ji,j6=t∗i

âij | xj |

 + âit∗i
| xt∗i

|

=
∑
j∈Ji

âij | xj |

= βi(x, Ji)

�

25

B Convergence Proof

Theorem (Convergence)
Consider the iterative process defined in section 4. With the provided nota-
tion, consider the following algorithm:

1) set Γ
(0)
i = Ji;

2) Solve the problem finding the value of z
(k)∗

F ;
3) IF z

(k)∗

F ≤ 0 STOP:
there exists a robust solution for the given sets of Γ

(k)
i , i = 1, . . . , n;

4) at iteration k, let i∗ ∈ {1, . . . , n} be the index of a function gi(x∗k)

with value z
(k)∗

F , then:
find Γ

(k)
i∗ = sup{0 ≤ Γ ≤ Γ

(k−1)
i∗ | β(x∗k, Γ) ≥ z

(k)∗

F };
5) IF no such Γ exists STOP: the set X = ∅;

ELSE set k = k + 1, and go back to 2).
The proposed algorithm converges in a finite number of iterations.

Proof :
From the complementarity theorem, we get that βi(x, Γ) is a decreas-

ing function for increasing Γ (using the theorem with βi(x∗k, Γ) being an
increasing function for increasing Γ). Moreover, βi(x, Ji) = βi(x, 0), as by
definition βi(x, 0) = 0.

We assume that the algorithm did not converge after iteration k− 1, i.e.
that z

(k−1)∗

F > 0, and i∗ ∈ {1, . . . , n} is an index such that gi∗(x∗k) = z
(k)∗

F

and at least Γ
(k−1)
i∗ > 0.

If no solution exists for

βi∗(x
∗
k, Γ) ≥ z

(k)∗

F , 0 ≤ Γ ≤ Γ
(k−1)
i∗ ,

this holds in particular for the largest possible value of the left-hand-side,
obtained with Γ = 0 as βi∗(x∗k, Γ) decreases for increasing Γ . Therefore,
βi∗(x∗k, 0) < z

(k)∗

F , which implies that

βi∗(x∗k, Ji∗) < z
(k)∗

F =

m∑
j=1

ai∗j(xj)
∗
k + βi∗(x∗k, Ji∗) − bi∗ .

Reordering the previous result, we obtain

m∑
j=1

ai∗j(xj)
∗
k > bi∗ ,

which contradicts x ∈ X, since X is defined by constraints Ax ≤ b, and we
proved that X = ∅.

Let us now prove that the sequence is not stationary by contradiction:
We assume that that Γ

(k)
i = Γ

(k−1)
i for all i: in particular, this is also true

for i∗. As Γ
(k)
i∗ is obtained by Γ

(k)
i∗ = sup{0 ≤ Γ ≤ Γ

(k−1)
i∗ | β(x∗k, Γ) ≥ z

(k)∗

F },
then the following holds:

βi∗(x
∗
k, Γ

(k)
i∗) = βi∗(x

∗
k, Γ

(k−1)
i∗) ≥ gi∗(x∗k),

26

and by reordering the previous inequality:

m∑
j=1

ai∗j(xj)
∗
k + βi∗(x∗k, Ji∗) − βi∗(x

∗
k, Γ

(k)
i∗) ≤ bi∗ .

Using the complementarity problem, this leads to

m∑
j=1

ai∗j(xj)
∗
k + βi∗(x∗k, Γ

(k)
i∗) ≤ bi∗ ,

i.e. the solution is robust for Γ
(k)
i simultaneously changing coefficients and

z
(k)∗

F ≤ 0, and the iterative process converged.
For a non stationary solution, Γ

(k)
i < Γ

(k−1)
i for at least i = i∗. Moreover,

we know that a solution of Γ
(k)
i∗ exists, otherwise we would have proved that

X = ∅.
Finally, at iteration k + 1, all functions satisfy fi(x) ≤ βi∗(x∗k, Γ

(k)
i∗), for

all x ∈ X, the inequality being strict at least for i = i∗. The values of z
(k)∗

F

are thus strictly decreasing as well, for increasing k.
We proved that the method eventually converges either to a solution with

z
(k)∗

F ≤ 0, or we obtain Γ
(k)
i = 0 for all i = 1, . . . , n, meaning no solution for

Ax ≤ b exists.

�

27

