
Constraint-Specific Recovery Network for Solving

Airline Recovery Problems

Niklaus Eggenberg∗ Matteo Salani Michel Bierlaire

TRANSP-OR – ENAC
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Abstract

In this paper, we consider the recovery of an airline schedule after an unforeseen
event called disruption, making the planned schedule infeasible. We present a
modeling framework that allows the consideration of operational constraints within
a Column Generation (CG) scheme. We introduce the general concept of recovery

network, generated for each individual unit of the problem, and show how unit-
specific constraints are modeled using resources. We fully illustrate the concept by
solving the Aircraft Recovery Problem (ARP) with maintenance planning, we give
some insights into applying the model to the Passenger Recovery Problem (PRP)
and we present computational results on real data.
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1 Introduction

Air travel is one of the most frequently used modes of transportation for both
business and leisure. As the airline market is no longer protected both in Europe
and in the US, airlines can decide their own routes and fares. This makes it crucial
for airlines to manage efficiently their operations to provide a high-quality and
reliable service while optimizing their profits.

The strategic and operational decisions of an airline are to choose the destina-
tions to serve, plan routes between them and determine routes for aircraft and crew
members, in order to meet technical constraints for aircraft routes and to comply
with union of workers constraints for crew pairings. The whole decisional process
starts approximately a year before the day of operations.

Unfortunately, the original schedule is rarely executed as planned: in reality,
the schedule often becomes infeasible because of unexpected events called disrup-

tions, such as bad meteorological conditions, unpredicted maintenance requirements
or propagated delays. When a disruption occurs, aircraft, crew and passengers
have to be re-accommodated in order to retrieve the initial schedule, which incurs
huge costs. In the European airline punctuality report 20071, the Association of
European Airlines (AEA) reports that for European flights 21.1% of departures
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and 22.3% of arrivals of the European flights are delayed by more than 15 min-
utes and that the yearly average is increasing. A report released by EuroControl
(EUROCONTROL, 2004) studies four scenario-based forecasts of air traffic demand
for the next 20 years. In the highest growth scenario, the annual demand rises up to
21 million flights a year with more than 60 airports congested, the top 20 airports
being saturated at least 8− 10 hours a day.

Given this forecast it is obvious that a disruption would have deeper operational
and economic consequences. This is a clear signal for airlines to develop fast and
reliable recovery methods.

Recovery decisions are taken at the Operations Control Center (OCC). The
challenge is to determine a new route, called a recovery scheme, for each plane,
crew member and passenger within a certain makespan [0, T ] called the recovery

period ; the disruption is assumed to occur at time 0 and the original schedule must
be recovered within time T .

Each unit (that is, a plane, a crew or a passenger) is associated with an initial

state, which is the first ground location of the unit after the disruption, time t0
being the earliest time at which the unit is ready for action at this location. A
final state is the required location of a unit at time T for the original schedule to
be recovered.

The recovery scheme is then defined as a succession of flights connecting the
initial to the final state for each aircraft, crew and passenger.

The options for OCC operators are to delay or cancel flights, swap planes, re-
assign crew and reroute or cancel passenger itineraries. For canceled itineraries, the
airline must possibly book flight tickets with other companies. The recovery costs
are determined by the airline, which estimates the cancellation cost for a flight, the
delay cost (typically measured in dollars per minute) and other operational costs
such as plane and crew swapping costs.

The underlying difficulty of recovery is to provide recovery schemes that satisfy
all operational constraints: plane recovery schemes must satisfy maintenance con-
straints, crew recovery schemes must comply with all union constraints, and the
individual passenger recovery schemes must ensure arrival at the final destination
within some delay limits, which depends on the length of the original itinerary. We
refer to these constraints as unit-specific constraints. In addition to the unit-specific
constraints, operators must ensure that the aggregated solution of the chosen re-
covery schemes is feasible, i.e. that neither crew nor passengers are assigned to a
canceled flight, connection time for crew and passengers between two consecutive
flights are sufficient, etc. The constraints ensuring that the combination of the
recovery schemes is feasible are called structural constraints.

This paper introduces an original and flexible model to solve airline recovery
problems: the constraint-specific recovery network. The corresponding model is
then integrated within a Column Generation (CG) algorithm that combines the
individual recovery schemes in an optimal way satisfying all structural constraints.
We then illustrate in detail its application to a less studied recovery problem, the
Aircraft Recovery Problem (ARP) with maintenance planning, in which mainte-
nance constraints are explicitly taken into account in the optimization process.
Moreover, we briefly illustrate its application to the Passenger Recovery Problem
(PRP). After a discussion on instance complexity, we provide computational exper-
iments on real-world data.

The structure of the paper is as follows: section 2 summarizes the state of the
art in disrupted airline schedule recovery; section 3 presents a framework based on
the constraint-specific recovery network with definitions, algorithms and an appli-
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cation to the ARP; section 4 provides a computational study for the ARP with
maintenance planning on real data and section 5 reports on preliminary results
for the PRP; finally, in section 6, we present some concluding remarks and future
research directions.

2 Literature survey

The field of recovery algorithms was developed mainly in the past 10 years following
the growth of airline networks and consequently the increase of irregularities: for
each 1% increase in airport traffic it is estimated that there will be a corresponding
5% increase in delays (Schaefer et al., 2005) and additional costs (Shavell, 2000).

For general surveys on airline scheduling in the recovery perspective, we refer
to Kohl et al. (2007) and Clausen et al. (2009).

Teodorvić and Gubernić (1984) are the pioneers of the ARP. Given that one or
more aircraft are unavailable, the objective is to minimize the total passenger delay
by flight re-timing and aircraft swaps. The algorithm is based on a branch-and-
bound framework where the relaxation is a network flow with side constraints.

There are few contributions in which maintenance operations planning is consid-
ered in combination with the ARP. In Stojković et al. (2002) the authors consider
maintenance constraints and provide a real-time algorithm that does not affect rout-
ing decisions. Only Sriram and Hagani (2003) consider maintenance and routing
decisions together, but aircraft maintenance checks can be performed only during
the night. In an unpublished report, Clarke (1997) introduces a model for the ARP
enforcing maintenance operations within a given time slot but, in the reported com-
putational tests, all the flights are constrained to be operated either on time, with
30 minutes delay or are canceled, restricting drastically the degrees of freedom of
the algorithm and thus the overall complexity of the problem.

However, the literature contains several works on different aspects of the recov-
ery problem. Many of them are based on a multi-commodity flow problem solved
on a time-band network, see for example Jarrah et al. (1993), Yan and Yang (1996),
Yan and Young (1996), Argüello et al. (1997), Wei et al. (1997), Yan and Lin (1997),
Yan and Tu (1997), Thengvall et al. (2000), Bard et al. (2001) or Thengvall et al.
(2001).

Jarrah et al. (1993) use two separate approaches to the ARP: cancellation and
re-timing. The problem is modeled with a time-line network and three methods are
reported: the successive shortest path method for cancellations, and two network
flow models for cancellations and re-timings.

Yan and Lin (1997) and Yan and Tu (1997) are related to the same underlying
model, which is a time-line network in which flights are represented by edges. The
network has position arcs corresponding to the potential shortage of an aircraft.
The possibility of flight re-timing is modeled by several arc copies. In Yan and
Lin (1997) an instance of 39 flights is solved. In Yan and Tu (1997) the authors
solve larger instances, up to 273 flights, within a small optimality gap and below
30 minutes of computation.

Argüello et al. (1997) and Bard et al. (2001) use a time-band model to solve
the ARP. In the former article the authors propose a fast heuristic based on a
randomized neighborhood search. The latter article presents a heuristic based on
an integral minimum cost flow in the time-band network. Furthermore, the method
proves to be effective for some medium-sized instances up to 162 flights serviced by
27 aircraft.
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An extension to the network model of Argüello et al. (1997) is presented by
Thengvall et al. (2000). The authors present a model in which deviations from
the original schedule are penalized in the objective function and they allow human
planners to specify preferences related to recovery operations. Computational re-
sults are presented for a daily schedule recovery of two homogeneous fleets of 16
and 27 aircraft. Disruption scenarios are simulated grounding one, two or three
planes.

Thengvall et al. (2001) introduce a multi-commodity flow model based on a
time-band network to solve the ARP after a hub closure. Computational results
for a fleet with 332 aircraft divided into 12 fleets and 2921 flights are provided.
Computational times remain below 450 seconds for instances with up to 1434 flights.

Yu et al. (2003) introduce a decision aid algorithm (CALEB) tested on Conti-
nental Airlines data. The authors test their algorithm on probably the worst day
ever for aviation, namely September 11th 2001. They show impressive results on
how fast the return to normal schedule is achieved when such a severe disruption
happens. The estimated savings for 9/11 are up to $29, 289, 000, almost half coming
from avoided flight cancellations.

Kohl et al. (2007) give a survey of the previous works on airline scheduling and
schedule-recovery. They also develop a crew solver and describe a prototype of a
multiple-resource decision-support system (the Descartes project), which includes
independent algorithms to solve the ARP, CRP and PRPs.

The literature lacks papers that deal with integrated models combining aircraft,
crew or passenger recovery problems. The only relevant article we could find on
integrated aircraft and passenger recovery is Bratu and Barnhart (2006). The
authors present an explicit approach, leading to mixed integer models with an
exponential number of constraints, as all possible passenger itineraries are explicitly
modeled. To control the exponential size of the model, only itineraries with up to
two legs are considered and flight re-timing is restricted to a time window around
the original departure time. The main drawback of this approach is that routing
decisions are taken after the passenger routing, which implies that flight capacities
are not correctly determined at the passenger recovery stage.

Interestingly, even for the airline scheduling problem, where no final location
is imposed in order to recover a baseline schedule, only a few works on integrated
models exist. We refer to Clausen et al. (2009) for a survey on integrated approaches
for both scheduling and recovery.

Mercier and Soumis (2007) present an algorithm based on the Benders’ de-
composition for solving simultaneously the crew pairing and the aircraft routing
problems. The combination of the two problems is done using some linking con-
straints, imposing minimum connection times for crew depending on aircraft de-
parture times.

Weide et al. (2008) extend the model of Mercier and Soumis (2007) and develop
a CG framework similar to that of Cordeau et al. (2001). Indeed, the original
combined formulation is divided into two subproblems corresponding respectively to
the original crew pairing and aircraft routing problems. Each of these subproblems
is then solved at the pricing phase using dual information of the master problem
combining the two formulations. The difference is that all possible connections
for crew are explicitly enumerated in the master formulation. This methodology
cannot be applied to recovery problems, since the connections cannot be explicitly
enumerated because of flight re-timing.

The common weakness of multi-commodity flow models for disruption recovery
presented in the literature is that they are not appropriate to take into account exact
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delays and unit-specific constraints (see Bard et al., 2001): on the one hand, if the
model aims at describing exactly the recovery problem at each point in the network,
then exponentially many constraints (or variables) are required. On the other hand,
approximating delays and constraints satisfaction leads to sub-optimal methods.
Using lower bounds may lead to unfeasible solutions or to cost underestimations;
using upper bounds may lead to discard feasible solutions.

The main advantage of the constraint-specific recovery network model we present
in this paper is that structural and unit-specific constraints are separated and
checked independently. Indeed, all unit-specific constraints, modeled as resources
that are consumed, are handled in each unit’s recovery network, whereas the struc-
tural constraints are considered when combining the different recovery schemes.
When embedded in a CG scheme, the recovery networks are used to solve the
pricing problem for generating new promising recovery schemes, involving the com-
putation of exact resource consumptions.

As a final comment to our literature overview, we note that the largest solved in-
stance reported (Thengvall et al., 2001) involves up to 1434 flights and 332 aircraft.
The tests we perform on the ARP in section 4 show that the difficulty of an in-
stance does not directly depend on the number of flights and/or aircraft. Instead, a
possible way to characterize the complexity of a problem is the ratio flights/planes.
This ratio represents the average length of a recovery scheme, which is directly
associated with the combinatorial nature of the recovery problem. In our study we
solve instances with a flights/planes ratio up to 18.4, while the largest instances of
Thengvall et al. (2001) have a ratio of 4.3, and the biggest ratio reported in the
survey of Clausen et al. (2009) equals 7.2.

3 The constraint-specific recovery network model

In this section we present the constraint-specific recovery network, or recovery net-
work model, which can be seen as an extension of the time-band model by Bard
et al. (2001).

Each unit (that is, a plane, a crew member or a passenger) is associated with a
specific recovery network, which is a set of nodes and arcs, such that each possible
recovery scheme of the unit corresponds to a path. For each unit p, let Fp be the
subset of flights and Sp be the subset of final states that the unit is allowed to cover
within the entire sets of flights and final states F and S.

In addition, each unit-specific constraint is modeled as a resource and an asso-
ciated resource limit. For example, aircraft have limits on the consecutive flown
hours, crew members have limits on the duration of a duty and passengers have lim-
its on the delay of their itinerary. A resource is either consumed (e.g. by flights) or
renewed (e.g. by maintenances). Let r identify a resource and ur be the associated
limit. The vectors of all resources and limits are denoted by R, and U, respectively.

Special resource limits are associated with each final state to ensure the feasi-
bility of the original schedule after time T .

A unit’s recovery network is based on a two-dimensional coordinate system
(A, t). The discrete horizontal A-axis represents the location a of each airport. The
vertical t-axis represents time and is discretized with time intervals of equal size. A
node is characterized by a pair {a, t} in the coordinate system. We distinguish three
types of nodes. The unique source node {a, t0} corresponds to the unit’s initial state.
Sink nodes {a, T } correspond to the possible final states that the unit is allowed to
cover. Finally, all the other nodes are transition nodes and are denoted {a, t}. An
arc ({a, t},{a ′, t ′}) connects two nodes and represents an action of the unit.
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We distinguish four types of arcs ({a, t},{a ′, t ′}) in the networks, corresponding
to four different actions: a flight arc represents a flight performed by the unit
between airports a and a ′; a renewing arc in which the unit performs a renewing
operation before the flight; a termination arc is a vertical arc connecting the source
node or a transition node {a, t} to a sink node {a, T }. A renewing termination arc

is a termination arc for which a renewing operation is performed before the sink is
reached. Flight and renewing arcs are created only if activity and renewing slots
are available at the corresponding airport. Note that several arcs associated with
the same flight may exist, each defining a different departure time or action. Each
arc incurs a cost that is determined by the corresponding action and potential
additional costs such as delay costs or unit swapping costs.

This modeling scheme is sufficiently general and flexible to represent a great
variety of situations. We discuss in the rest of the section how to make this modeling
framework operational.

3.1 Recovery network generation and preprocessing al-

gorithms

The recovery network generation algorithm for each unit is a dynamic programming
algorithm where the nodes and arcs are created iteratively. For a formal definition
of the notation see Appendix A. See Appendix B for a detailed description of the
algorithm dedicated to the ARP.

Each node is associated with a label hr, for each resource r, modeling one unit-
specific constraint and corresponding to the consumed resource when the node is
reached. As several different paths may reach the same node, we compute for each
node the upper and lower bounds h

r
and hr on the resource consumption. A node

j is said to be feasible if and only if Hj ≤ Uj. Accounting for bounds instead
of real resource consumptions allows encoding at construction time of all feasible
recovery schemes plus, possibly, some infeasible ones. We identify a node j with
the associated labels by [{a, t}, {Hj, Hj, Uj}].

The source node is described by [{a, t0}, {H0, H0, U0}], where H0 is the determin-
istically known vector of initial resource consumptions. The sinks are described by
[{a, T }, {H,H,UT}], where UT is the vector of maximal allowed resource consump-
tions at the sink.

A feasible recovery scheme is thus a path from the source node to a sink node
such that the maximal allowed resource consumption is never exceeded.

The generation algorithm can be described as follows:

1. initialize the node set S = [{a, t0}, {H0, H0, U0}];

2. for each non-explored node [{a, tj}, {Hj, Hj, Uj}], consider the four arc types for
flights in Fp departing from a and final states in Sp associated with a;

3. for all arcs check that the resource consumption at destination is respected,
create the destination node and add it to S if it does not exist, or update the
resource consumptions;

4. go to step 2.

The discretization of time guarantees a pseudo-polynomial number of nodes
(Bard et al., 2001). Additionally, we limit the feasible extensions of step 2: a flight
has a maximal allowed delay τ and a maximal waiting time before take-off ψ. The
parameters are used both for flight and renewing arcs. In addition, we consider
the resource consumption upper bound H and we introduce a parameter ρ which
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sets a minimal percentage of resource consumption to permit a renewing operation
to take place. We add a parameter Γ , which sets the earliest time for termination
arcs: at node {a, t}, we must have t ≥ Γ for the arc to be created.

The preprocessing phase follows the generation of the networks in order to
remove proven sub-optimal or infeasible arcs and nodes. We compute, for each
node, the value hr

sink
of a shortest path with respect to resource r from node

[{a, t}, {Hj, Hj, Uj}] to a sink. hr
sink

corresponds to the minimal necessary resource
potential to reach the sink from node {a, t} . If for some resource r, hr

sink
+hr

j > u
r
T,

the maximal allowed consumption at the sink is exceeded: there is no feasible path
from the source to the sink traversing the node. If none of the sinks is reachable,
no feasible path traverses the node, which can be removed.

Finally, all nodes (except the source) that have no predecessor and all nodes
(except the sinks) that have no successor are removed from the network. Each time
a node is removed, all ingoing and outgoing arcs are removed as well.

At the end of the preprocessing phase, each unit’s recovery network contains
only nodes belonging to at least one feasible path, i.e. at least one feasible recovery
scheme for the unit. Notice that some unfeasible paths may remain in the recovery
networks, as we used upper and lower bounds on resource consumption.

3.2 Illustration of ARP with maintenance planning

The ARP with explicit maintenance planning is becoming increasingly relevant
for applications: although an extension of an aircraft maintenance limit can be
obtained through written permission from the authorities, doing so is not a regular
occurrence. Indeed, any airline that continually asks for extensions could be subject
to an audit from the authorities. Airlines usually prefer to operate under the Joint
Aviation Requirement for Operations (JAR-OPS) rules to avoid additional audits
at all costs.

In the ARP a unit is an aircraft and the unit-specific constraints are mainte-
nance constraints. The resources enforcing maintenance are the maximal allowed
flight hours, modeled with label hFlH, the maximal number of take-offs and land-
ings, modeled as hToL, and the maximal absolute time elapsed between two main-
tenances, denoted as hHrs. The renewing operations are clearly maintenances. For
clarity, we rename the renewing and renewing termination arcs as maintenance and
maintenance termination arcs.

The ARP aims at assigning a recovery scheme to each aircraft such that the
original schedule is recovered at T , i.e. that each final state is reached by an aircraft
able to carry out the initial schedule after T ; the global solution of the ARP is called
a recovery plan. The allowed decisions are delaying or canceling flights, swapping
aircraft and re-assign maintenances; early departures are not allowed.

The following example illustrates the ARP. In Table 1 we have a schedule for
planes p1 and p2. We consider the number of take-offs and landings as the single
resource hToL, with an upper bound of uToL = 20 and the initial consumption
hToL0 = 6 for p1 and hToL0 = 10 for p2, corresponding to the state of each plane when
the disruption occurs: plane 1 has already performed 6 take-offs and landings, and
p2 has performed 10. At time t0 = 0905, when p1 lands in AMS, an unplanned
maintenance of two hours is enforced on p1 because of problems during the landing
phase. This leads to a disruption as the schedule cannot be implemented as planned:
p1 cannot take off to MIL at 1000, as it is not ready for take off before 1105.

The initial state for p1 is represented by source node [{AMS,0905}, {20, 20, 20}]
(hToL0 = 20 because maintenance is enforced). The source node of p2 is [{AMS,1000}, {6, 6, 20}],
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as p2 is active until 0930 and requires, say, 30 minutes to prepare for the next
flight. We assume that we want to recover the disrupted situation by T = 1800.
As both planes will undergo maintenance during the night, resource consump-
tion capacity limits at T are hToLT = UToL = 20. We thus define two sink nodes
[{BCN,1800}T , {0, 20, 20}] and [{GVA,1800}T , {0, 20, 20}]. Moreover, we assume a
homogeneous fleet, i.e. p2 can cover the flights initially scheduled for p1 and cover
both final states, and vice versa.

A possible recovery plan is given is Table 2, consisting in swapping the two
planes: flights F2, F3 and F4 are assigned to plane p2 and flight F6 to plane p1.
The resource consumption constraints at the final states are clearly satisfied, as p1

reaches the final state [{BCN,1800}T , {0, 20, 20}] with hToL = 2 < 20 and plane p2

reaches final state [{GVA,1800}T , {0, 20, 20}] with hToL = 18 < 20.
To create the recovery network of p2, we create the source node [{AMS,1000}0, {12, 12, 20}]

and apply Algorithm 1, with the set of flights Fp2
= {F2, F3, F4, F6} (F1 and F5 are al-

ready covered), and the set of sinks Sp2
= {[{GVA, 1800}, {0, 20, 20}], [{BCN, 1800}, {0, 20, 20}]}.

Activity slots and minimum connection time are Oa = [0700, 1800] and mcta = 30

for all airports a; the only maintenance slot isMa = [0900, 1800], with maintenance
duration dma = 60 minutes for a = AMS. The generated recovery network is shown
in Figure 1 (we remove flights delayed by more than τ = 240 minutes).

The recovery network enables us to identify the possible recovery schemes. Each
of them corresponds to a path from the source to a sink. In Figure 1 we identify
eight feasible paths from the source to a sink, i.e. eight different recovery schemes;
the path corresponding to the recovery scheme of plane p2 in Table 2 is the suc-
cession of the nodes {AMS,1000}0, {MIL,1200}, {BCN,1410}, {GVA,1620} and
{GVA,1830}T . The succession of flight arcs corresponds to flights F2, F3 and F4,
respectively.

In this example, there is no maintenance termination arc, as there is no main-
tenance slot at GVA nor at BCN, the locations of the final states. Notice that
there are several arcs, both flight or maintenance, associated with the same flight
at different times.

3.3 Column Generation algorithm

In this section, we briefly describe a CG algorithm designed to exploit the constraint-
specific recovery networks. For a detailed description of CG algorithms see De-
saulniers et al. (2005), Lübbecke and Desrosiers (2005) or Vanderbeck (2005a). Let
Ω be the set of all possible single-unit recovery schemes. The structural constraints
are modeled in the following Master Problem (MP):

min zMP =
∑

r∈Ω

crxr +
∑

f∈F

cfyf (1)

∑

r∈Ω

bf
rxr + yf = 1 ∀f ∈ F (2)

∑

r∈Ω

bs
rxr = 1 ∀s ∈ S (3)

∑

r∈Ω

bp
rxr ≤ 1 ∀p ∈ P (4)

xr ∈ {0, 1} ∀r ∈ Ω (5)

yf ∈ {0, 1} ∀f ∈ F (6)
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Each recovery scheme r has a cost cr, which can be uniquely determined by
operational and delay costs, and is associated with a binary variable xr that is
equal to one if it is considered in the solution, 0 otherwise. A recovery scheme
is described by the binary coefficients bf

r, b
s
r and bp

r , which form a column of the
constraint matrix. Those constants take value one if scheme r covers flight f, ends
with final state s and is associated with unit p, respectively.

Constraints (2) ensure that each flight is either covered or canceled; constraints
(3) ensure that each final state is covered, i.e. the schedule is recovered at time
T . Finally, constraints (4) ensure that each unit is associated with at most one
recovery scheme. Constraints (5) and (6) ensure the integrality of the variables.

The pricing problem of finding negative reduced cost columns corresponds to
finding the (feasible) recovery scheme with minimal reduced cost. We thus have
to solve a pricing problem for each unit and determine which recovery scheme is
optimal. Recall that a unit’s recovery scheme corresponds to a path in its associated
constraint-specific recovery network. To solve the pricing, we solve a Resource
Constrained Elementary Shortest Path Problem (RCESPP) on each unit’s recovery
network to determine the minimal reduced cost column.

To solve the RCESPP, we use the algorithm proposed by Righini and Salani
(2006). The algorithm creates labels associated with nodes; a label encodes a
feasible path to reach the node it is associated with. If several labels are active
at a same node, it is possible to eliminate some of them that are dominated, i.e.
that cannot lead to an optimal path. If a label is not eliminated by dominance, it
is extended through all feasible arcs (j, k) to a new label at node k. The optimal
solution is encoded by the label with lowest cost at the sinks.

The same flight can be associated with different arcs in the network to model
delay decisions. Although the network is acyclic, the elementarity of the used flights
must be enforced, as it cannot be ensured by the only cost minimization objective of
a resource constrained shortest path. To enforce elementarity, we use the method of
Beasley and Christofides (1989), adding a dummy vector of binary resources, one for
each flight. To tackle the computational effort issued by the additional elementarity
constraint we exploited the Decremental State Space Relaxation (DSSR) technique
introduced by Righini and Salani (2008).

As most of the unfeasible paths in the recovery networks are removed in the
preprocessing phase, the number of labels generated by the pricing algorithm is
reduced. Furthermore, the available bounds on the minimal required resource con-
sumption to reach a sink from each node allow to detect infeasible paths earlier.

3.4 Implementation issues

The algorithm is implemented in C++ exploiting BCP, an open source framework
implementing a Branch&Cut&Price algorithm, provided by the Computational In-
frastructure for Operations Research (COIN-OR, 2008) project. Tests are run on
a computer with a 2GHz processor and 2GB memory.

To control the number of non-dominated labels in the RCESPP algorithm, re-
source consumption is discretized as we do for time: resource consumptions falling
into the same interval are considered as equivalent.

We introduce a logarithmic resource discretization controlled by a parameter θ.
It corresponds to the number of logarithmic intervals resources are divided into,
with the length of the intervals being proportional to log(θ). The intervals for re-
source h are denoted by Ihj , j = 1 · · · θ. The idea of the logarithmic discretization is
that resource-renewing operations are unlikely to occur for low resource consump-
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tions. As a consequence of resource discretization dominance criteria are applied
by comparing the interval indices j instead of the exact resource consumption; all
pairs of labels falling into the same interval are compared based on the remaining
resources only, so that more labels are dominated with respect to the exact dynamic
programming algorithm.

Notice that in a linear discretization, two labels might belong to the same or to
different intervals for increasing values of θ. In the logarithmic case however, this
does not occur: the example in Figure 2 illustrates this phenomenon for increasing θ
with linear interval lengths on the left and with logarithmic lengths on the right for a
resource h and resource limit Uh = 100. We see that the two labels corresponding to
resource consumption 49 and 51, represented by l, always fall in different intervals
in the logarithmic case for θ ≥ 2. In the linear case however, they are in the same
interval for odd θ and they are not for even θ, as long as the gap between the two
values is larger than 1

θ
. Figure 2 also shows the saturation effect in logarithmic

discretization when θ grows too large, i.e. intervals for big θ become infinitely
small.

In the implemented algorithm, CG is done only at the root node of the search
tree: we solve the linear relaxation of the root node to optimality and obtain a valid
lower bound. An integral solution is then obtained by branching without generating
new columns. The obtained algorithm is therefore an optimization-based heuristic
with an a posteriori guarantee on the optimality gap.

Moreover, CG is known as a primal method: primal feasibility of the linear
relaxation of the Restricted Master Problem (RLMP) is guaranteed, whereas the
feasible dual vector is searched by adding valid dual cuts in the dual space. Indeed
each cut corresponds to a feasible column in the primal space. It is known that for
an efficient implementation of CG methods (see for example Vanderbeck, 2005b),
one needs to provide a relevant set of columns to obtain a good estimation of the
dual vector and to prove its optimality at the end of the generation.

As the dual vector estimation during the early iterations of the method is poor,
it is common practice to solve the pricing problem heuristically to produce quickly
negative reduced cost columns. We derive three pricing heuristics from the exact
dynamic programming method using two relaxations. In the first relaxation we
keep the elementarity constraint during the construction of partial paths but we
relax it in dominance tests. This increases the possible number of dominated labels,
and thus accelerates the algorithm.

The second method consists in ordering the labels by increasing reduced costs
and bounding the number of active labels for each node by a constant. Thus, thanks
to time discretization, the resulting heuristic is polynomial in time and space since
both the number of nodes and the number of labels are bounded by a polynomial
function.

We combine the two relaxations to obtain a third and fast heuristic applied first.
If this heuristic fails in finding new columns, we apply the heuristic with a fixed
number of labels for each node. The heuristic in which we relax the elementarity
dominance criteria is applied next. If none of the heuristic methods returns a
column with negative reduced cost, we resort to exact pricing.

Finally, we add to the master problem all the new columns with negative re-
duced cost found in the heuristic phase to accelerate the convergence of CG; useless
columns are then removed from the LP by variable fixing based on reduced costs.
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3.5 Illustration of PRP

In the PRP, all passengers must be brought to their final destination within a
maximum delay limit that depends on the original itinerary length. Passengers
can either be rerouted on the available flight network or canceled, which implies
the booking of a ticket with another airline. In the proposed framework, each unit
corresponds to a single passenger or a group of passengers with the same itinerary,
and the unit-specific constraints are the maximal allowed delay for a passenger and
the maximal number of flights to which a passenger can be allocated. In our case,
recovery schemes with more than η flights are discarded, where η is the parameter
limiting the maximal number of flights. The input of the PRP is the output of
the ARP, i.e. a feasible recovery plan; the objective is to operate the maximal
number of passengers to their final destination while minimizing the total delay
and canceling costs. In the recovery network, we create an additional cancellation

termination arc from the source to the sink to model the itinerary cancellation.
The structural constraints of the PRP are:

1. the number of assigned passengers cannot exceed the aircraft capacity;

2. each passenger must be assigned to exactly one recovery scheme.

Finally, since the network is acyclic, the pricing problem is a Resource Con-
strained Shortest Path Problem (RCSPP), i.e. elementarity constraints do not
need to be enforced as with the ARP. The DSSR technique we have adopted for
pricing takes advantage of this. In section 5 we report on computational results for
the PRP.

The general concept of units allows the application of the modeling framework
also to crew recovery: a recovery scheme for a crew is also a succession of flights and
we can define a unique initial state and a final state for each crew corresponding to
its base. Swaps within crew teams might be allowed, and then the subsets Sp are
used to model possible crew swaps at the end of the recovery period. Moreover,
crew-specific constraints can be modeled as resources: contract constraints are
measured in terms of maximal duty time without breaks, maximum time spent
away from a base, etc. Renewing operations are thus rest periods. Thus, also for
crew recovery, the same method and algorithms hold.

4 Computational results for the ARP

The data used in the computational tests have been obtained from Thomas Cook
Airlines (TC). TC is a medium-size airline relying on a heterogeneous fleet of 16
aircraft and operating around 250 flights a week. In our instances, the number
of flights varies from 40 to 760 flights; instances with more than 250 flights are
artificially built from the real ones by duplicating schedules, assigning each copy to
a different fleet.

The largest real instance in our tests has 242 flights and 16 aircraft, while the
largest instance has 760 flights and 100 aircraft. These instances are smaller than
the largest reported instance in literature which has 1434 flights and 332 aircraft
(Thengvall et al., 2001). However, our largest instance has a flights/planes ratio of
18.4 compared to a ratio of 4.3 for Thengvall et al. (2001) and 7.2. for the biggest
ratio of an instance reported in the survey of Clausen et al. (2009).

As no disruption is provided in the data, we use the TC schedule of May 2006
and simulate some disruption scenarios using the following experimental setup:

• size of the fleet concerned by the disruptions: 5, 10 and 16 aircraft;
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• recovery period T : from 1 to 7 days;

• 0− 6 delayed planes;

• 0− 6 grounded planes;

• airport closures: 0, 300, 500 minutes or 3 × 100 minutes;

The instances are divided into two classes: the first is composed of more than 20
instances using groundings, delays and combining both. The name of the instance is
related to its size: xD_yAC, where x is the number of days considered in the recovery
period, y is the number of aircraft. The second class is derived from a hub-and-
spoke situation (where the hub airport is Denver) with 10 aircraft and 36 flights
for which we generate 12 different disruption scenarios: scenarios consider either
delayed planes only, grounded planes only, a mixture of delayed and grounded
planes or airport closure(s). The name of each instance describes the simulated
disruption: we denote the number n of grounded planes by ngrd and the number
m of delayed planes by mdel. When the name of the instance is followed by _R, the
initial resource consumption is randomly generated.

Generation and preprocessing algorithms. The statistics of the recovery
network generation and preprocessing algorithms on 49 different instances with
various sets of parameters are as follows: the average computation time for both
generation and preprocessing of the networks is lower than 0.3 seconds. In the
biggest network we get 14,467 arcs and 3,634 nodes. The generation time is 1.344
seconds and the preprocessing phase is done in 0.891 seconds.

In average over the 49 instances, the preprocessing reduced by 20.53% the total
number of arcs (20.22% for flight arcs and 21.96% for maintenance arcs) and by
23.64% the number of nodes. In the best case, it removes up to 63.64% of the arcs
and up to 66.40% of the nodes. The number of nodes and arcs is directly linked with
the computational effort of the pricing problem, since it is a dynamic programming
algorithm that explores each node and extends them through all outgoing arcs.
These results thus show that the use of recovery networks is useful in order to save
computational time, since around 20% of the computation time is saved at each
call of the pricing algorithm.

Interestingly, the more restrictive the time discretization parameters, the fewer
nodes (and arcs) are removed at the preprocessing phase. Indeed, when time dis-
cretization intervals increase, a larger number of paths traverse a same node with
respect to smaller intervals; it is therefore unlikely that none of these paths corre-
sponds to a feasible recovery scheme, explaining why less nodes are removed.

Solvable instances. Table 3 shows the size and the required computation time
for some representative instances. When a schedule can be carried out almost
as initially planned, the algorithm solves the problem to optimality at the root
node within 1.0 second. Only bigger instances require branching, which drastically
increases computation time. We see that the number of flights is not crucial: it is
more difficult for the algorithm to solve instance 7D_16AC with only 242 flights than
2D_100AC with 760 flights. Comparing the flights/planes ratio, we see however that
instance 7D_16AC has a ratio of 15.1, whereas instance 2D_100AC has a ratio of only
7.6.

We report that with the standard settings of parameters, instance 7D_16AC fails
because of memory excess. The results presented for this instance are obtained
with more restrictive values for the delay and inactivity time parameters (τ and
ψ).
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Impact of disruptions. To measure the impact of a disruption on a solution,
we use the Denver data (10 aircraft, 36 flights) with 12 different scenarios. The
instances 3x100 and 1x300 simulate a closure of the hub airport, i.e. Denver. In
the first instance, Denver airport is closed during 3 periods of 100 minutes, with a
gap of 100 minutes between each closure. The second instance simulates a longer
closure of 300 minutes in a row. We also simulate a storm affecting several local
airports. In instance Storm1 four airports are closed for 300 minutes and in instance
Storm2 the same airports are closed for 500 minutes.

Table 4 shows the results for the different instances. The second line reports
the number of flights directly involved by the disruption without any forecast on
disruption propagation; it thus represents the minimum number of flights on which
the planner must take a recovery decision. It is evident (see for example instance
6grd) that the final number of affected flights is more important because of de-
lay propagation: 18 flights are canceled or delayed while the minimum number is
estimated to be 16.

We see from Table 4 that a grounded plane more often incurs flight cancellation
than a delayed plane. This follows intuition, as when a plane is grounded, the
original schedule must be recovered with one plane less than when a plane is simply
delayed and can still operate. In the instances combining grounded and delayed
planes, the effects of cancellations due to grounded planes and delays incurred by
delayed planes are combined. This is a direct consequence of the network density,
meaning that if there are not enough available planes, the other planes’ schedules
do not permit the insertion of supplementary flights.

In general, we see that the bigger the number of directly affected flights, the
higher the delay or cancellation rates, except for the two Denver closure scenarios.
Even though instance 3x100 has more affected flights, the solution is better than
for 1x300. The explanation is that the closure is split and covers more take-offs
and landings at Denver, but the slots between closures allow for planes to leave
and start rotations from Denver. Landing and take-off at other airports are then
possible even during the hub closure. In the 1x300 instance, planes located at
Denver when the closure occurs must wait the whole 300 minutes before taking
off. We see from Table 4 that the closure of the hub airport has, as expected,
dramatic impact due to delay propagation. Surprisingly, for the storm instances,
all the flights are covered, inducing however huge delays.

Sensitivity to parameters. The sensitivity tests with respect to the different
parameters show that the approach is stable. Increasing time discretization signif-
icantly decreases computational time both at generation and pricing phase. The
resulting loss of optimality is, however, rather small.

One sensitive parameter is the estimated delay cost per minute cd, which de-
termines the trade-off between delays and flight cancellations. The lower the delay
cost, the more the algorithm tends to cover all the flights regardless of the produced
delay. Reversely, if the delay cost is high, the recovery plan avoids delays, canceling
more flights if necessary. Since our approach does not consider repositioning flights,
a single cancellation rarely occurs alone.

Finally, we test the logarithmic resource discretization against the linear one.
Solutions computed with the logarithmic resource discretization are better than
those obtained by the linear one for a number of intervals up to θ = 10. For
θ > 10, solutions obtained from the linear discretization are globally better, but
the improvement is not necessarily homogeneous as discussed in section 3.4.

A low number of discretization intervals is favorable to control the memory
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usage, making the logarithmic resource discretization more attractive.

Maintenance scheduling. We want to test the added value of maintenance
planning. To this extent we compare different recovery approaches that can be
implemented at Operations Control Centers (OCCs). The first approach is to
neglect maintenance planning, focusing only on resource consumption limits. We
consider three possible resource extensions: 5%, 10% and 20% extension on Uh. We
refer to these approaches by NM+y% (for No Maintenance), where y is the allowed
percentage of consumption excess.

The second approach, which is probably closer to human planner behavior, is to
schedule a maintenance as soon as resource consumption gets critical. We refer to
it as the Greedy Maintenance (GM) algorithm. This approach is achieved by setting
parameter ρ to a high value (ρ is set to 0.9 in our tests, meaning maintenance
can be performed when at least 90% of the resource is consumed). Finally, the
third approach is Maintenance Optimization (MO), where the algorithm plans the
maintenances in an optimal way (ρ = 0).

We compare the approaches on a set of 10 instances derived from instance
4D_10AC with 147 flights, allowing maintenances at any time at half of the airports.
The initial resource consumption has been randomly generated. We show the results
in Table 5.

Even when allowing up to 20% more resource consumption, we get a massive
cancellation rate and huge delays. However we mention that NM+20% finds a better
solution than MO for 1 of the 10 instances, where actually this 20% increase is
sufficient to perform the whole schedule without any maintenance. In this instance,
the only additional costs in the solution of MO are the maintenance costs; neither
delay nor flight cancellation is required. Remarkably, even with the 20% increase
in resource capacity, only 7 solutions out of the 10 instances are feasible, i.e. cover
all the final states.

The GM algorithm clearly outperforms the NM+5%, NM+10% and NM+20% algorithms,
reducing the average cost by one order of magnitude. However, GM computes solu-
tions whose cost is 7.5% higher than those given by MO. The main savings are made
thanks to delay reductions: GM finds the same solutions as MO for 3 out of the 10
instances, but never finds a better one.

We see from these results that considering maintenances is not only necessary to
ensure feasibility of the recovery scheme. Indeed, the solution may be significantly
improved (mainly by reducing delays) when maintenance operations are resched-
uled. The results show that NM+y% approaches, i.e. an extension of y% of the
resource consumption, is not efficient to solve the recovery problem: the computed
solutions are not necessarily feasible and, when they are, the costs are one order of
magnitude higher. Furthermore, airlines must obtain the permission from the au-
thorities to extend resource consumption limits, which involves further negociations
and an exposure to a possible expensive audit.

Sensitivity analysis for T . We show in Table 6 the different solutions when in-
creasing the recovery period T . We solve instance 5D_10AC with one plane grounded
up to time 2160, and compute a solution for increasing recovery periods, going from
720 minutes up to 6480 minutes. Table 6 shows the details of the solutions, where
additional costs are the aggregated delay and cancellation costs over the whole
period, assuming that the schedule is recovered at T . Figure 3 shows the Pareto
frontier, i.e. the additional costs against the length of the recovery period. Note
that the solution for T = 5760 and T = 6480 are the same as for T = 5040, ex-
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cept computation time of 76.6 and 183.6 seconds, respectively, and are thus not
presented in Table 6.

For T ≤ 2160, the solutions are infeasible, which is trivial: as one plane is
grounded until time 2160, at least one final state cannot be covered before time
2160.

If a feasible solution exists for a given T (here T > 2160), increasing T leads to a
stable solution, i.e. we generate the same recovery plan even when a longer recovery
period is considered. No additional recovery costs are incurred for a stable solution,
even when T is increased further. Notice that because of computational complexity,
the delay bound is set to 800 minutes, ignoring therefore potential recovery schemes
with longer delays.

Finally, Table 6 and Figure 3 show the conflict between the two objectives of
minimizing T and the recovery costs simultaneously: minimizing T incurs higher
recovery costs.

Summary. The computational results show that the algorithm is efficient, solv-
ing instances of reasonable complexity comparable to the state of the art in low
computation time. We see that the introduced parameters are useful to accelerate
computation without dramatically decreasing the quality of the solution. The re-
sulting recovery plans follow intuition, deleting as few flights as possible by swapping
or delaying planes. Furthermore, we show that scheduling maintenances during the
recovery period significantly improves the solution. Finally, we see that the solution
of the recovery algorithm depends on the initial schedule as much as on the actual
disruption.

5 Preliminary results for the PRP

In section 3.5, we illustrate the application of the framework to the PRP. In this
section, we provide some insight into the benefits of applying the proposed method
without discussing performances nor speed-up strategies.

As remarked by Kohl et al. (2007), conventional airline wisdom is to get back
to the original plan with little modifications, while minimizing additional costs and
passenger inconvenience. Thus, it is common practice that all passenger itineraries
that are still feasible in the new schedule are assigned to their original scheduled
flights. Then, each disrupted passenger is reaccommodated, minimizing cancella-
tion and delay costs mainly. Kohl et al. (2007) also show that a thorough reopti-
mization of all itineraries could improve the quality of the solution.

To validate the framework for the PRP we use eight out of ten A instances of
the ROADEF Challenge 20092, namely instances A01−A04 and A06−A09.

Instances A01−A10 are based on the same daily schedule with 35 airports and
85 planes; A01−A04 and A06−A09 are instances of same size, i.e. 608 flights, with
different number of passengers: A01−A04 have 1,943 OD pairs for 36,010 passengers
in total, whereas instances A06−A09 have 1,872 OD pairs and 46,619 passengers.
Each instance differs in the level of disruption and in the allowed recovery period.
Table 7 reports on the disruptions for each instance.

A cost checker evaluating the quality of the recovery plan is available according
to a specified cost structure. The cost structure is a combination of several ob-
jectives, namely operating costs for the fleet and passenger inconvenience costs for
trip cancellation, delay or downgrading, i.e. change to a lower cabin class on all

2http://challenge.roadef.org/2009/index.en.htm
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or part of the trip. In our implementation we neglect the passenger downgrading
costs.

We use our implementation of the ARP limited to 10 minutes of computation
to obtain a feasible initial solution for the PRP. Table 8 reports on the number of
canceled flights and the total delay of the new schedule with respect to the original
one.

Although a rigorous comparison goes beyond the scope of this illustration, we
implemented a flow-based algorithm called FlowPRP to estimate the potential ben-
efits. It is a two-stage process: first, all passengers whose itinerary is still feasible
in the new schedule are confirmed; then, for each disrupted passenger, alterna-
tive itineraries are computed solving a minimum cost network flow problem on a
flight connection network where residual seat capacity is considered. Passengers are
accommodated sequentially, ordered by decreasing cancellation cost, i.e. starting
from business class.

The same recovery scheme limitations are used for both PRP and FlowPRP,
namely η = 5 and the maximal allowed delay is 800 minutes in both cases.

Table 9 summarizes the results obtained for the 8 instances. Computations are
performed on a 2.53GHz processor with 3GB of memory.

The results show that, on average, using PRP leads to better solutions in terms
of both costs and number of canceled passengers; to achieve this, the number of
rerouted and delayed passengers is increased. We also note that the more canceled
flights in the ARP solution, the more PRP outperforms FlowPRP. This is because
the heuristic algorithm is close to optimal when operations are close to normal;
this happens for instance A01 mainly, where FlowPRP actually gives a solution with
lower cost than PRP. The difference in recovery costs for this instance is only due to
passenger downgrading penalties. The actual implementation of the PRP algorithm
focuses only on cancellation and delay reduction.

On average, PRP reduces the number of canceled passengers by 54.9%, the recov-
ery costs by 51.7%, and the total and average delays by 3.0% and 0.1%, respectively.
We see that the overall solutions are better. From the passengers’ point of view,
although total and average delays are slightly reduced, the number of rerouted pas-
sengers is multiplied by a factor of 4.8. The average computation time for PRP is of
3,102 seconds, against 1.0 second for FlowPRP.

The results are consistent with our expectations: a significant improvement in
the quality of the solutions, at the price of more computational time.

These preliminary results for the PRP show that the constraint-specific network
model is flexible enough to solve the recovery problem for different types of units.
Given that the actual implementation is a prototype, computational times are still
acceptable even with the very large number of units in the PRP case, i.e. more
than 30,000 passengers. Indeed, for PRP, we need to solve multiple pricing problems.
The pricing problem of finding a negative reduced cost route for each passenger is
computationally harder than finding one feasible route in a connection network. In
the actual implementation the pricing problem requires more than 90% of the total
computation time. Finally, thanks to the framework, we can identify non-trivial
solutions.

6 Conclusions and future work

In this paper, we present a general modeling approach to solving airline recov-
ery problems. The general model considers unit-specific constraints using resource
consumption, whereas the use of a CG algorithm ensures feasibility according to
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the structural constraints of the problem, i.e. that the combination of each unit’s
recovery scheme is globally feasible; this approach overcomes the main drawbacks
of usual multi-commodity approaches, that struggle to consider exact unit-specific
constraints. We show the efficiency of the approach by solving successfully with
real data the ARP with maintenance planning and illustrate briefly its application
to the PRP. Furthermore, as units can be either aircraft, crew members or passen-
gers, the formulation is appropriate for the different aspects of the airline recovery
problem.

The constraint-specific recovery network model is also applicable to connection
networks, for which nodes correspond to flights and the time dimension is repre-
sented implicitly in the arcs: the departure of a flight is only determined by the
path reaching its corresponding node. It is thus more difficult to determine de-
parture and arrival times using activity periods as we do in the recovery network
model. Moreover, the concept of renewing arcs and the computation of resource
consumptions for the arcs seems less intuitive in a connection network.

The flexibility of the constraint-specific recovery network allows to easily impose
user-specific constraints: activity and renewing operation slots at the airports allow
to model airport disruptions such as airport closure; subsets Fp and Sp allow unit
type differentiation such as heterogeneous fleet or different crew types, a plane of
one fleet may not be allowed to cover a flight or a final state of another fleet and
a particular crew may not have the required training to operate a specific flight.
It also allows the enforcement of a unit to perform its initial schedule, when Fp

is the set of initially scheduled flights for unit p and Sp contains only the final
state initially allocated to unit p. It is also possible to consider a given set of
repositioning flights: a repositioning flight is similar to any other flight, except it
has zero cancellation and delay costs.

Reserve units (e.g. reserve aircraft) are included in the model as additional
units p. Whether a reserve unit has a final state or not depends on the policy of
the airline; if none is required, we define a dummy final state that is reachable from
any airport and coverable by each unit that is allowed to become reserve.

A disruption making a unit unavailable for some time or even the whole re-
covery period is modeled using the initial state. Unpredicted resource renewing
requirements are modeled by setting the concerned resources to their upper limits.

In terms of instance complexity analysis, we see that considering the number
of flights and aircraft only is not necessarily the best approach. We consider in
this paper the ratio flights/planes, i.e. the average number of flights per plane. A
deeper theoretical analysis to compare efficiently instance complexity would allow a
better understanding of the problem and also lead to a more efficient performance
measure for the existing approaches.

Remaining work on the ARP with maintenance is to extend tests on data from
a bigger airline with a heterogeneous fleet and to implement the full Branch&Price
algorithm. Although repositioning flights are easy to integrate into the model
when they are provided, the problem of generating repositioning flights remains:
generating many repositioning flights increases the instance complexity; considering
a limited number of them decreases the chances of a good repositioning flight to
be generated. Deeper work on repositioning flights is thus certainly a research
direction.

Finally, being an active field for researchers, deriving integrated models dealing
with different types of units simultaneously is definitely a research direction to be
explored and tested. Thanks to the uniform model for different unit types, we
derived an integrated model with a pseudo-polynomial number of constraints. The
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next step is to study this model more closely and eventually implement it to test
its computational efficiency, which requires the model to be applied to crew and/or
passengers as well.
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A Notation

We list here the notation we use through the paper:

• 0, T , the begin and end time of the recovery period;

• t0, time for an initial state (first time on ground after time 0);

• tT, time for a final state (latest time on ground before T);

• Hj, the resource consumption vector at node j (a single resource consumption
is denoted hr

j);

• U, the vector of maximal allowed resource consumptions (upper bound for a
single resource r is ur);

• upper and lower bounds on resource labels:

– h
r

j, the maximal consumed resource r when reach node j,

– hr
j, the minimal consumed resource r when reach node j,

– hr
sink,j, the minimal required amount of resource r to reach the sink from

node j;

• A, the set of airports, and for each airport a ∈ A:

– mcta, the minimal connection time for a unit between two flights,

– Oa, the set of activity slots, which are time intervals when take-off and
landing operations can take place,

– Ma, the set of resource-renewing operation slots, which are time intervals
when resource-renewing operations can take place,

– dma, the duration of resource renewing action;

• P, the set of units, and for each unit p ∈ P:

– [{a, t0}, {H0, H0, U0}], the initial state specified by initial time-location and
initial resource consumption;

• S, the set of final states, where Sp ⊆ S is the set of final states coverable by
unit p ∈ P and for each [{a, T }, {HT , HT, UT}] ∈ Sp:

– UT, the maximal allowed resource consumption at the sink node;

• F, the set of flights, where Fp ⊆ F is the set of flights that can be assigned to
unit p ∈ P and for each f ∈ F:

– sdtf, the scheduled departure time,
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– df, the duration,

– cf, the cancellation cost of the flight,

– edtf, the earliest departure time for flight f ∈ F.

In addition, we define:

• cd: the delay cost per time unit ($/minute);

• ∆: the length of a time discretization interval;

• τ: the maximal allowed delay for a flight;

• ψ: the maximal allowed waiting time before a take-off;

• Γ : the maximal length of a termination or a renewing termination arc;

• ρ: the minimal percentage of a resource to be consumed to perform renewing
operation;

• θ: the number of resource intervals for logarithmic resource discretization;

• η: the maximal number of flights of a disrupted passenger’s recovery scheme.

B Recovery network generation

Algorithm 1 shows the dynamical structure of the recovery network generation
algorithm for the ARP: here, we replace the concepts of units and renewal with
plane and maintenance.

In the algorithm, N represents the set of time-location nodes ordered by in-
creasing time. The way that nodes and arcs are created is described in Table
10. The remaining notational detail are given in Appendix A and the parameters
are introduced in Section 3.4. For notational simplicity, we denote a final state
[{a, T }, {0,HT , UT}] by s.

Tables 11 and 12 give an overview of the different constraints that must be
satisfied in each function (parametrized constraints are labeled by (P)).
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Algorithm 1 Recovery Network Generation for the ARP

Require: Set P of planes, sets Fp of coverable flights, initial states and set Sp of final
states

1: for p ∈ P do

2: INITIALIZATION: Create source node s = [{a, t0}, {H0, H0, U0}], set N = {s}

3: while N 6= ∅ do

4: Select the first node j = [{a, tj}, {Hj, Hj, Uj}] ∈ N
5: for f ∈ Fp where a is the departure of f do

6: if FeasibleForFlightArc(j, f) then

7: [{a ′, t ′}, {Hk, Hk, Uk}] = CreateFlight(j, f)

8: set N← N ∪ [{a ′, t ′}, {Hk, Hk, Uk}]

9: end if

10: if FeasibleForMaintArc(j, f) then

11: [{a ′, t ′}, {Hk, Hk, Uk}] = CreateMaintenance(j, f)

12: set N← N ∪ [{a ′, t ′}, {Hk, Hk, Uk}]

13: end if

14: end for

15: for s ∈ Sp where aj is the airport of s do

16: if FeasibleForTermArc(j, s) then

17: CreateTermination(j, s)

18: end if

19: if FeasibleForMaintTermArc(j, s) then

20: CreateMaintTermination(j, s)

21: end if

22: end for

23: Set N← N \ {j}

24: Sort N by increasing time
25: end while

26: end for
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Figure 1: Recovery network of plane p2 with initial schedule of Table 1 and initial state
[BCN,0740,10].
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Figure 2: Linear (on the left) and logarithmic (on the right) discretization for increasing
number of intervals (θ = 1, 2, 3, 4, 15).

���� ���� ���� ���� ���� �	�� ����

�����

�����

�����

�����

�	���

�����

�
���

�������

Figure 3: Pareto frontier: additional solution costs against recovery period length T
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Plane 1 Flight ID Origin Destination Departure time Landing time
F1 GVA AMS 0830 0905
F2 AMS MIL 1000 1130
F3 MIL BCN 1200 1340
F4 BCN GVA 1415 1550

Plane 2 Flight ID Origin Destination Departure time Landing time
F5 MIL AMS 0740 0930
F6 AMS BCN 1120 1430

Table 1: The original schedule for two planes

Plane 1 Flight ID Origin Destination Departure time Landing time
F1 GVA AMS 0830 0905 (1105)
F6 AMS BCN 1120 1430

Plane 2 Flight ID Origin Destination Departure time Landing time
F5 MIL AMS 0740 0930
F2 AMS MIL 1000 1130
F3 MIL BCN 1200 1340
F4 BCN GVA 1415 1550

Table 2: A recovered schedule for two planes

Instance 2D_10AC 3D_10AC 4D_10AC 5D_10AC 7D_16AC 2D_100AC

# planes 10 10 10 10 16 100
# flights 75 113 147 184 242 760

# delayed planes 2 2 2 1 0 10
# canceled flts 2 2 4 2 0 20
# delayed flts 5 7 1 6 11 40

total delay [min] 989 1146 20 1126 310 9690
max delay [min] 370 370 20 370 45 370

cost 21745(*) 23695(*) 25930(*) 2425(*) 5600 557550(*)
tree size 1 1 1 1 2033 1

run time [s] 1.0 2.9 16.2 24.7 3603 62.9

Table 3: Results for some instances. Costs followed by (*) are proved to be optimal
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Instance 2del 2grd 4del 4grd 2del2grd 6del

# affected flights 1 4 3 8 5 5
# canceled flts 0 2 0 8 4 0
# delayed flts 1 4 7 2 7 13

total delay 10 920 230 380 490 640
max delayed flight 10 275 85 200 200 100

cost 36100(*) 83200(*) 38300(*) 163800(*) 84900(*) 42400(*)
tree size 1 1 1 1 1 41
run time 0.7 0.5 0.6 0.3 0.5 1.6

Instance 6grd 3del3grd 3x100 1x300 St1 St2

# affected flights 16 9 11 7 3 6
# canceled flts 16 6 0 4 0 0
# delayed flts 2 12 11 11 6 6

total delay 380 950 675 2560 350 1550
max delayed flight 200 200 90 385 140 340

cost 251800(*) 127500(*) 42750(*) 125600(*) 39500(*) 51500(*)
tree size 1 1 1 35 1 3
run time 0.2 0.4 0.3 0.8 0.5 0.5

Table 4: Results for different disruption scenarios. Affected flights is the number of flights
affected directly by the disruption without any propagation.

Algorithm NM+5% NM+10% NM+20% GM MO

# canceled flts 52.7 46.7 33.2 2.2 2
# delayed flts 5 4.7 5.5 2.7 1.5
# uncovered final states 1.2 0.7 0.3 0.1 0.1
total delay [min] 851.3 635.7 712.5 89.6 52.3
max delay [min] 271.3 251.5 218.2 37.7 37.1
cost 289462 272067 144388 15881 14683
optimality gap [%] 0.61 0.54 1.27 0.73 0

Table 5: Average results for recovery algorithms with different maintenance operation
handling on 10 randomly generated initial resource consumptions.

Recovery Period T 720 1440 2160 2880 3600 4320 5040
# canceled flts 1 3 5 6 5 5 5
# delayed flts 0 1 3 5 9 9 8
# uncovered sinks 1 1 1 0 0 0 0
total delay [min] 0 3 14 461 636 630 627
max delay [min] 0 3 8 153 153 153 153
additional costs 7000(#) 19555(#) 25415(#) 38910 33960 33900 33870
optimality gap 0% 0% 0% 0% 0.25% 0% 0%
tree size 1 1 1 1 7 9 3
run time [s] < 0.1 < 0.1 0.4 1.7 8.3 25.0 81.8

Table 6: Results for the same instance with different recovery periods T . Cost followed
by (#) correspond to infeasible solutions.
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Instance A01 A02 A03 A04 A06 A07 A08 A09
# flights 608 608 608 608 608 608 608 608
total duration 1680 1680 1680 1680 1680 1680 1680 1680
recovery period 960 720 840 1080 960 720 840 1080
# delayed flts. 63 106 79 41 63 106 79 41
# canceled flts. 0 1 4 0 0 1 4 0
# resting planes 0 0 1 0 0 0 1 0
# mod. capacity slots 0 0 0 4 0 0 0 4

Table 7: Description of the A instance set of the ROADEF Challenge 2009.

Instances # canceled flights total flight delay [min]
A01 0 1390
A02 2 900
A03 8 939
A04 14 7602
A06 0 1390
A07 2 900
A08 8 909
A09 14 7807

Table 8: Number of canceled flights and cumulated flight delays - ROADEF dataset.
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Instance A01 A02 A03 A04

Algorithm FlowPRP PRP FlowPRP PRP FlowPRP PRP FlowPRP PRP

# canceled passengers 41 33 196 79 499 293 196 116
# rerouted passengers 235 2848 587 2468 900 3092 1875 6431
# delayed passengers 8664 7852 10430 9969 8798 8569 15612 14365

total delay [min] 280312 259133 581312 557593 511026 523042 1004023 841422
average delay [min] 32.3 33.0 55.7 55.9 58.1 61.0 64.3 58.6

recovery costs 89477 111351 342267 219789 703928 451378 289384 185004
run time [s] 0.66 3155 0.95 1806 1.17 2425 1.84 3755

Instance A06 A07 A08 A09

Algorithm FlowPRP PRP FlowPRP PRP FlowPRP PRP FlowPRP PRP

# canceled passengers 44 10 441 148 954 579 1161 334
# rerouted passengers 243 2779 445 2462 843 3167 1206 7427
# delayed passengers 11293 10469 13007 12997 10898 11323 18892 19367

total delay [min] 350257 332786 700504 715910 653078 678746 1154229 1171478
average delay [min] 31.0 31.8 53.9 55.1 59.9 59.9 61.1 60.5

recovery costs 99893 64859 632736 268534 1363047 775285 1459473 330232
run time [s] 0.47 3781 0.72 2562 0.97 3363 1.20 3973

Table 9: Results for the PRP - ROADEF dataset.
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CreateFlight([{aj, tj}, {Hj, Hj, Uj}], f) Given depart node {aj, tj}, computes the destina-
tion node {ak, tk}, and the flight arc ({aj, tj}; {ak, tk})f, where ak is destination airport,
and tk is the earliest departure time at airport ak. To compute this, first compute edtf,
the earliest departure time for the flight f according to the activity slots and the sched-
uled departure time sdtf, then tk = edtf+df+mctak

. Labels Hk and Hk of node {ak, tk}

are updated according to Hj, Hj and the consumed resources during flight f.

CreateMaintenance([{{aj, tj}, Hj, Hj, Uj}], f) Similar to CreateFlight(j, f), it computes
the maintenance time and the cost of the maintenance arc.

CreateTermination([{aj, tj}, {Hj, Hj, Uj}], s) Given depart node {aj, tj} and a sink node
s, it creates the termination arc ({aj, tj}; {aj, T }).

CreateMaintTermination([{aj, tj}, {Hj, Hj, Uj}], s) Given depart node {aj, tj} and a sink
node s, it creates the maintenance termination arc ({aj, tj}; s). By convention, the first
available maintenance slot is used.

Table 10: Functions used in Algorithm 1
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FeasibleForFlightArc([{aj, tj}, {Hj, Hj, Uj}], f) The flight arc can only be created if flight
is actually departing from airport aj and if feasible departure and landing times are
available at airports aj and ak. The following constraints are checked:

• ∃ etdf ≥ max{sdtf, tj} such that

1. ∃ oaj
∈ Oaj

such that etdf ∈ oaj

2. ∃ oak
∈ Oak

, such that etdf + df ∈ oak

• delay ≤ τ (P)

• edtf − tj ≤ ψ (P)

where τ and ψ are representing the maximal delay bound and the maximal waiting bound,
respectively.

FeasibleForMaintArc([{aj, tj}, {Hj, Hj, Uj}], f) The maintenance arc can only be created
if there is a maintenance slot available at airport aj. tM is the starting time of the
maintenance if feasible, i.e. if we find a feasible departure time for take-off in aj and
landing in ak. The following constraints are checked:

• ∃ tM ≥ tj,maj
∈Maj

such that tM ∈ maj

• ∃ etdf ≥ max{sdtf, t
M + dmaj

} such that

1. ∃ oaj
∈ Oaj

such that etdf ∈ oaj

2. ∃ oak
∈ Oak

, such that etdf + df ∈ oak

• delay ≤ τ (P)

• edtf − tj − dmaj
≤ ψ (P)

• Hj ≥ ρUj

where τ and ψ are the same as in FeasibleForFlightArc(j, f) and ρ is the parameter
of minimal resource consumption ratio before considering maintenance.

Table 11: Feasibility functions for flight and maintenance arcs used in Algorithm 1
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FeasibleForTermArc([{aj, tj}, {Hj, Hj, Uj}], s) A termination arc can be created between
{aj, tj} and the sink node s if the airports are matching, if there is at least a feasible path
reaching the sink with respect to resource consumption (Hj ≤ UT for all resources) and
if the required time tT is not yet reached. A parameter Γ is used to bound the grounding
time needed to reach the sink from {aj, tj}.

• tT − tj ≤ Γ (P)

where Γ is the grounding time bound.

FeasibleForMaintTermArc([{aj, tj}, {Hj, Hj, Uj}], s) Similarly a maintenance termination
arc can be created between {aj, tj} and the sink node s if there is a maintenance slot
available.

• ∃ tM ≥ tj, maj
∈Maj

s.t. t ∈ maj

• tM + dmaj
≤ tT

• tj ≤ tT

• tT − tj ≤ Γ (P)

• Hj ≥ ρUj

where Γ is the grounding time bound and ρ the resource consumption proportion.

Table 12: Feasibility functions for termination and maintenance termination arcs used in
Algorithm 1
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