)
s TRANSP-OR ECOLE pg!wﬂwqug

FEDERALE DE LAUSANNE

Sample and Pixel Weighting Strategies for
Robust Incremental Visual Tracking

Javier Cruz-Mota Michel Bierlaire
Jean-Philippe Thiran Y

October 27, 2011

Report TRANSP-OR 111027
Transport and Mobility Laboratory
Ecole Polytechnique Fedérale de Lausanne
transp-or.epfl.ch

Transp-OR, Ecole Polytechnique Fedérale de Lausanne, CH-1015 Lausanne, Switzer-
land, javier.cruz@ep .ch, michel.bierlaire@ep .ch
YLTSS5, Ecole Polytechnique Fedérale de Lausanne, CH-1015 Lausanne, Switzerland,
jp.thiran@ep .ch



Abstract

In this paper we introduce the Incremental Temporally Weigh ted
Principal Component Analysis (ITWPCA) algorithm, based on SVD
update, and the Incremental Temporally Weighted Visual Tra cking
with Spatial Penalty (ITWVTSP) algorithm for robust visual tr ack-
ing. ITWVTSP uses ITWPCA for computing incrementally a robust
low dimensional subspace representation (model) of the tra cked ob-
ject. The robustness is based on the capacity of weighting the con-
tribution of each single sample to the subspace generation, in order
to reduce the impact of bad quality samples, reducing the ris k of
model drift. Furthermore, ITWVTSP can exploit the a priori kno wil-
edge about important regions of a tracked object. This is done by pe-
nalising the tracking error on some prede ned regions of the tracked
object, which increases the accuracy of tracking. Several ests are per-
formed on several challenging video sequences, showing the robust-
ness and accuracy of the proposed algorithm, as well as its superior-
ity with respect to state-of-the-art techniques.



1 Introduction

Visual Tracking (VT) is a core problem in many Computer Vision (C V)

applications, such as Human-Computer Interaction (HCI) (Polat et a |.,
2003; Santis and lacoviello, 2009; An and Hong, 2011), traf c monitoring

(Reinartz et al., 2006; Semertzidis et al., 2010), video-survélance (Huang

et al., 2008; Baseggio et al., 2010) or Augmented Reality (AR) (Mirimon

and Ebrahimi, 2007). The main task of a tracking algorithm is to as sign
consistent labels to tracked objects along all the frames of a video sequence.
Given a video sequence S composed of image frames |y, i.e.

S=flijk2K Ng; (1)

where k is a temporal index, a tracking algorithm estimates for every
tracked object |, a time series

x = fxDjk2 K Ng; (2)

j 2 J, where J denotes the set of objects being tracked. Each elemenk(k”
of the time series x() denotes the state of objectj at time k and de nes its
trajectory over time.
From a bottom-up point of view, a VT algorithm can be roughly de-

ned by describing three main blocks (Yilmaz et al., 2006; Mag gio and
Cavallaro, 2010): the feature extraction block, the object represntation
block and the object localisation block. A generic VT algorithm can be seen
as the application of these three blocks according to the schematic repre-
sentation in Figure 1. Given a frame of a video sequence, the rst bl ock
performs a feature extraction on its captured visual information. Fea ture
extraction de nes the space where the object of interest will be de ned,
i.e. the space where the characteristics of the tracked object will be de-
ned, such as colour, motion, edges or interest points. The object locali-
sation block takes information from the object representation mod el and
the features to estimate the new state of the object of interest. In general,
localisation is performed under the hypothesis of a smooth change of po-
sition, shape and appearance. Object localisation algorithms can compute
the target state analytically, as the solution of an optimisation probl em
where a cost function is minimised (Lucas and Kanade, 1981; Tomasi and
Kanade, 1991; Comaniciu et al., 2003; Haj et al., 2010; Kalaét al., 2010),
or by evaluating simultaneously multiple candidate tracks (hypothesi s)
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Figure 1. Schematic view of a general VT algorithm.

per object of interest per time step using Particle Filters (PF) (Isard and
Blake, 1998; Zhou et al., 2004; Ross et al., 2008). PF validate ¢kse hy-
pothesis against visual information and motion models and their m ain
advantage is their capacity to deal with multi-modality and therefore  with
clutter.

All these object localisation methods use the information supplied by
the object representation model. This model contains informatio n about
the shape and/or the appearance of the object of interest. A wide va-
riety of techniques are employed in the literature for computing them,
such as Principal Component Analysis (PCA) (Cootes et al., 2001; Lee
et al., 2005; Ross et al., 2008), mixtures of Gaussians (Stauffermal Grim-
son, 1999; Papadourakis and Argyros, 2010), histograms (Bird eld and
Rangarajan, 2005; Peng et al., 2005), bayesian networks (Plkrand Ag-
garwal, 2004) or boosting techniques (Grabner et al., 2006; Iwdori et al.,
2008). The critical point is that the appearance of the tracked object is
continuously changing, and the model needs to be either built for dea ling
with these changes or to have the capacity of being adapted to them. In
the rst option, the changes have to be predicted and taken into accoun t
in the model estimation process, which is performed a priori or d uring an
initialisation period. In the second one, the model is constantly a dapted to
the tracked object with new data coming from the tracking, which kee psiit
permanently adapted to the object of interest and their current cond itions.
This makes this strategy more effective in terms of adaptability, si nce the
type of changes that the model has to handle does not need to be known
beforehand. However, the adaptation procedure is very sensitive due to
the possibility of corrupting the model with bad samples of the objec t of



interest, causing a model drift and the consequent loss of track.

PCA is a well-known and commonly used technique for dimension-
ality reduction (Pearson, 1901), usually employed for computing ob ject
representation models. It consists of projecting the data onto the eigenvec-
tors with biggest eigenvalues of the data covariance (or autocorrel ation)
matrix. In spite of its popularity and good performance, PCA prese nts
two main problems: computational cost and sensitivity to outliers. Th e
computational cost can be split by considering data incrementall y (Hall
et al., 1998; Levy and Lindenbaum, 2000; Brand, 2006; Ross etla 2008).
This way, instead of computing a big PCA on a big data matrix, a PCA is
performed on a small sub-matrix. This PCA is afterwards updated wi th
new elements of the remaining dataset. Incremental procedures are also
interesting when the whole dataset is not available at the beginni ng. In
(Levy and Lindenbaum, 2000), the sequential computation of PCA is tac k-
led by updating an existing PCA with the components of the new data
that are orthogonal to the previously generated subspace. Indeed, the
process starts by computing, for the rst block of data, its Singular V alue
Decomposition (SVD), which is an ef cient way of computing the pr inci-
pal components of a matrix. Then, for each new block of data, the upd ate
process is based on a QR factorisation and a SVD of a small matrix. Their
results, correctly combined, provide the principal components o f the con-
catenation of the old and the new data matrices. Computation by blocks
is considerably more computationally ef cient than updating the PC A for
every new data sample, which makes methods based on (Levy and Lin-
denbaum, 2000) more ef cient than those based on (Hall et al., 1998) (see
(Huang et al., 2009) for comparison details).

With respect to outliers, two strategies arise in a PCA computation pro-
cedure for minimising their effect on principal components. Th e rst op-
tion is to discard samples that are supposed to be outliers. This forces to
have a good outlier detection approach, in order to do not discard g ood
samples. For instance, in (Jackson and Chen, 2004) a minimum vdume
ellipsoid is tted to data in order to discard, in the PCA computation,
the samples that are outside; and in (Hubert et al., 2005) and (Hubert
et al., 2009), samples are discarded according to their projecion in a sub-
space computed using a robust covariance estimation. The second ogion
is to weight the contribution of each value of the data matrix according
to a measure of con dence. In this kind of approaches, the PCA comp u-
tation is still dependent on the outlier detection method, but its depen-
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dency is considerably weakened since all received data is considered. In
(Kriegel et al., 2008), the authors use a weighted covariance matrix for
computing the principal components. The weight values are computed
using a distance function to clusters of points of the dataset. In (Skocaj
et al., 2007), two kinds of weights are considered, temporal wei ghts and
spatial weights. Temporal weights adjust the contribution of each ob serva-
tion (a column in a data matrix), while spatial weights adjust the contr ibu-
tion of each variable (individual elements of each column). In (S kocaj and
Leonardis, 2008), an incremental weighted PCA algorithm is intr oduced.
The drawback of this algorithm is that it is based on the incrementa | PCA
algorithm introduced in (Hall et al., 1998) and therefore updates th e exist-
ing PCA for every single new sample. As commented before, this s trategy
is less ef cient than updating the PCA with blocks of data.

In this paper we introduce an incremental PCA algorithm with tem-

poral weights, the Incremental Temporally Weighted Principal C ompo-
nent Analysis (ITWPCA) algorithm. It is based on SVD update (Lev y and
Lindenbaum, 2000) and therefore can compute the incremental step using
blocks of new data instead of individual samples, which makes the algo-
rithm more computationally ef cient. Then, a robust VT algorithm ba sed
on a particle Iter approach and the ITWPCA algorithm for object r epre-
sentation computation is also introduced. This VT algorithm computes
an object representation model of the tracked object using a PCA on rect-
angular templates. The use of the ITWPCA algorithm for computing the
PCA allows, on the one hand, to maintain the object representation m odel
constantly adapted to the tracked object, and on the other hand to reduce
the impact on the PCA of bad quality samples of the target. The last is
achieved by computing a measure of the quality of every tracked sampl e,
which modulates their contribution to the computed PCA. Furthermore,
a strategy for spatial weighting of samples, directly on the particl e weight
computation, is also introduced. This spatial weighting allows to as sign
more importance to some prede ned regions of the tracked object, p ro-
ducing a higher accuracy on the tracking.

Let us note that a common preliminary operation to tracking is objec t
detection, although some algorithms perform a simultaneous detection
and tracking (Czyz et al., 2007; Breitenstein et al., 2009). Inced, when
a tracking algorithm is intended to follow some precise objects, th ese ob-
jects need to be previously detected. In this paper we do not deal with
this problem and will always consider that the starting bounding bo x for
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every tracked object is given. The interested reader in object detection
algorithms is referred to (Yang et al., 2002; Mundy, 2006; Enzweiler and
Gavrila, 2009; Galleguillos and Belongie, 2010; Gebnimo et al., 2010) and
references inside them.

This paper is organised as follows. In Section 2, an incremental PCA
algorithm that considers temporal weights is introduced. Then, in Sec-
tion 3, a VT algorithm that employs this PCA algorithm for updating the
object representation model is described in detail. This algor ithm also con-
siders spatial weights that can increase the importance of a region of the
target, increasing the tracking accuracy. In Section 4, numerous testsare
performed, showing the superiority, in terms of accuracy and stabi lity, of
the proposed approach compared to state-of-the-art techniques. Finally, in
Section 5 conclusions and future lines of research are derived.

2 Incremental PCA with Weighted Samples: the
ITWPCA Algorithm

In (Levy and Lindenbaum, 2000), an incremental PCA algorithm ba sed
on SVD update is introduced. At each iteration, the algorithm updates
the existing PCA with information from the orthogonal components, w ith
respect to the subspace generated by the PCA matrix, of the new data. In
(Ross et al., 2008), this algorithm was adapted to consider a charging mean
of the data. Here, we add to this last algorithm the capacity of consid ering
weights on data samples, i.e. temporal weights.

sample is represented as a vectorz 2 RM, and a weight matrix with posi-
tive elements 2 RM N the goal of weighted PCA is to compute the pro-
jection matrix U 2 RM K K N, that minimises the weighted squared
reconstruction error

o

)\ X b4 '
= Ly By Up  Ugply 3)

i=1 j=1 p=1 =1

e

where ay,. represents the element at row b and column c of matrix A, and

? is the matrix obtained by subtracting the temporally weighted mean to
each column of Z. The elements of the temporally weighted mean vector,



i, are computed as

1 X
= Py iz, (4)
j=1 70 j=1
andso =[ q;:::; mI”-

If only temporal weights are considered, i.e. ! =1 8i;k 2 [1;:::;M];] 2
[1;:::; N], then the weights can be expressed by avector!! =[! 4;:::;1y]2
RN and Eq. (3) can be rewritten as

|
X X oW 2
€= B Up  UgpBy (5)
i=1 j=1 p=1 o1
where 8; = p!_,-nj . Then, the matrix U that minimises €is composed

by the K biggest eigenvalues of the covariance matrix of @, and can be
computed by performing Singular Value Decomposition on this matrix

ie. SVD(@) = U V7, asintroduced in (Skocaj et al., 2007).
For introducing the incremental version, let us rst note that a scatte r
temporally weighted matrix Sz, de ned as

X
S:=  lim Nz )7 (6)
i=1
differs frqgn the weighted covariance matrix by only a scalar multi ple,
equal to 1, !i. Therefore, eigenvectors of both matrices are the same
and eigenvalues are scaled by this scalar multiple. This makes equivalent
to work with the covariance matrix or the scatter matrix, in terms of PCA

Let us now introduce the following lemma:

Lemma 1. Letz® = [z{V;:::;2) 1andz@ = [2¥?;:::;2%), ] be two data
matrices! @ = [1 ;0001 ,(“121)] and!! @ =1 @0 ,(\1222)] the weights cor-

responding to each sampleZi) andZ @, respectivelyz*? = [ZzWZ @] the
concatenation of matriced® andz®@; and @, @ and @ the weighted
means according t6 @ and!! @ ofz® Z®@ andz®?, respectively. Then, the



weighted scatter matrix &2, S, . ), can be computed as

S;a9 = Sz + Sz
K @kt @,
kil Wk, + ki @k,

( (1) (2))( (1) (2))>;

(7)

whereS, s andS, are the weighted scatter matriceszdP andzZ @, respec-
tively, andk k; denotes the 1-norm.

Its proof is simple and can be found in the Appendix. The results of
Lemma 1 tell us how to express the temporally weighted scatter matrix of a
big matrix by means of the weighted scatter matrices of two sub-matrice s.
Basically, the new scatter matrix is the sum of the other two, plus a rank- 1
perturbation that depends on the difference of means. This rank-1 per-
turbation can be taken into account by adding a new column to the data
matrix. Therefore, the IPCA algorithm (Ross et al., 2008) can beadapted
to consider temporal weights as expressed in the Incremental Temp orally
Weighted PCA (ITWPCA) algorithm described in Algorithm 1.

3 Temporal and Spatial Weights in Visual Track-
ing: the ITWVTSP Algorithm

In VT, object representations computed a priori, or with some starti ng
snapshots of the object of interest, are not robust against changes along
time on the appearance of the tracked object. In (Ross et al., 2008)the
authors introduced the Incremental Visual Tracking (IVT) algorithm ,a VT
algorithm where the object representation, built using PCA on gray scale
templates, is constantly updated with the samples of the object of inter -
est obtained by the tracker. Following the same philosophy, we in troduce
here the Incremental Temporally Weighted Visual Tracking with Sp atial
Penalty (ITWVTSP) algorithm. This VT algorithm exploits the capa city of
the ITWPCA algorithm (introduced in Section 2) for considering tem poral
weights for the samples added to the incremental PCA computation. The

considered temporal weights are a measure of the quality of the tracke d
sample. This allows to decrease the impact on the PCA of bad quality
tracked samples, which reduces the risk of model drift and makes the
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Algorithm 1 Incremental Temporally Weighted PCA (ITWPCA) . Given
ud, @ ki Wk, a forgetting factor f, and a new data matrix Z®, with
its corresponding weights ' @ ITWPCA computes U®? and 2 from
the total set of data.

_ FNe @, e
1: Compute @ = (o5 D) 1 @2 and
1;2) = fktr @ kq @ + ki1 @k, @)
T OFK Okt @ kg TR D kg ki @ kg
2: Compute
5" e @ e
= [ 7 )it 1 & x@,
C K @Gk @k
D) mogrmegt P @)
@) (@) )
3: Compute ? B o= orth(ﬁ uoy®>9% ) 3
@
f @ uw>%
4: Compute R = 4 > -0 o
? Wyw>P
o 2 (® uou )
5. Compute SVD(R) = U° ¢
@
6: Then, U®2 = [U®W - JUand @2 = 0O

tracking more robust. Furthermore, we introduce spatial weights in or -
der to favour accuracy in some prede ned regions of the tracked obj ects,
which increases tracking accuracy as will be seen in the tests. If gatial
weights are not considered, which is equivalent to x them to one, th e
Incremental Temporally Weighted Visual Tracking (ITWVT) algo rithm is
obtained. We start by introducing this algorithm in Section 3.1 for a fter-
wards introduce the “Spatial Penalty” capacity in Section 3.2.

3.1 The Incremental Temporally Weighted Visual Tracking
(ITWVT) Algorithm

A probabilistic interpretation of PCA (Tipping and Bishop, 1999 ) allows to
combine the object representation of a target, computed using PCA, wi th
a particle lter approach for object localisation. The most app ropriate ap-
pearance representations for this setup is a rectangular template, consider-
ing as the state-space the six parameters of an af ne transformation: trans-
lation (2 parameters), rotation angle, scale, aspect ratio and skew direction.



The particles, that are placed in this 6-dimensional space, represent a sam-
ple of the posterior density function of the state given the observation s.
Their behaviour is de ned by two models: the dynamical model and the
observation model. The dynamical model de nes the dynamics be tween
states and the observation model the weights of particles.

Let us denote by xi a point in the state-space at time k. If no particular
assumption about the allowed motion of the particles is taken, a Brown -
ian motion can be considered. Hence, the dynamical model, p(XxjXx 1), IS
de ned as

P(XkjXk 1) N(Xk; Xk 15 ) ; (8)
where is a diagonal covariance matrix containing the variances of the
af ne parameters (translation, rotation, scale, aspect ratio and skew direc-
tion).

In the context of PCA, the observation model gives a measure of how
likely an image region, expressed as a vectorz' 2 RM, belongs to the sub-
space generated by the projection matrix U, i.e. Span(U). A similar ap-
proach to Condensation (Isard and Blake, 1998) is adopted here,assigning
as weight to the particles directly their likelihood. Therefore, given anim-
age patch z', a projection matrix U, a mean and a diagonal matrix of
eigenvalues |, then

logp(z' 2 Span(U)) /  (d; + dy); 9
where di is the Euclidean distance of z! to the subspace SparfU), and
d;, is the Mahalanobis distance within the subspace, i.e. the symmetric
bilinear form de ned by the inverse of the auto-covariance matrix  of the
data. These two distances can be computed as

1 .

d= @ )0 uu )z ) (10)
where | denotes the identity matrix, and

d,=(Z )Yu W ). (11)

Note that since the principal components de ne a basis where the da ta is
uncorrelated, the auto-covariance matrix reduces to the diagonal matr ix of
eigenvalues . The 2term can be seen as the average variance lost in the
projection:

(12)



In this last equation, Ny denotes the index of the last considered eigenvec-
tor, N the total number of eigenvectors and ; the eigenvalue correspond-
ing to the | -th eigenvector. Therefore, the weight of particle i at time step
k before normalisation is de ned as

w =exp[ (d+ dy)]: (13)

For reducing the impact of bad samples of the tracked object, the ITW -
PCA algorithm is used for updating the PCA matrix. Let us introduce two
measures of the quality of a tracked sample. Given a tracked patch ex-

tion error (according to the PCA matrix at this time step) gives infor mation
about the distance between the tracked patch and the subspace generated
by the PCA. The difference between this patch and the PCA mean gives
also information about how far is the new sample from the PCA subspa ce.
Then, let us de ne the con dence on the tracked patch at time step Kk, ¢,

as ( P P
o Lowoimf@ it ht@n v (14)
0; otherwise ’
where " 2 [0;1], 2 R™ and two different options for f (z;"), namely
1; if-Zi i Zi. "
f@n)=fa@n= — "M& D oal T (15)
0; otherwise
and
1, ifjz ij "
F(z:") = fu(z:") = b (16)

0; otherwise

being z the i-th component of the vector z = UU” (z ). The measure
proposed in Eq. (14) gives more importance to the number of pixels with

a signi cant error ( ") than to the amount of the error itself. Furthermore,

samples with more than 129 of the pixels with more than " error are dis-
carded (! = 0). This strategy tries to penalise samples containing big re-
gions with a signi cant amount of error (reconstruction error or d istance
to the mean). Indeed, this is the typical situation when for instance a r e-
gion of the tracked object is occluded by another object. The neutral value
of = 2 has been adopted in all the tests, i.e. samples with more than
50% of the pixels with a signi cant error are not considered in the PC A
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computation. Depending on the context of the application, this value ¢ an
be increased, with the risk of being too restrictive and therefore b ecoming
unadapted to the object of interest.

3.2 Adding Spatial Weights: the ITWVTSP Algorithm

In a VT application, all the sensors that feed variables (pixel s ensors) are
supposed to be identical, which makes spatial weights in the PCA esti -
mation process not as easy to interpret as temporal weights. Indeed, this

weighting would give more importance to some pixel than to others, wh ile
all sensors are supposed to be identical. In fact, in VT the importan t thing

is the accuracy in the tracking of certain regions of the object of in terest,
not the accuracy of the model for these regions. For instance, if a face is
being tracked, special care must be taken in order to correctly track the
regions containing more information (eyes, nose and mouth), buta correct
delimitation of the cheek is not as important, in general.

A higher tracking accuracy on this important regions, which trans lates
to a higher tracking accuracy, can be achieved by penalising the contri-
bution of important pixels to the distances in Egs. (10) and (11), i.e. by
applying a spatial penalty to hypothesis. Let us de ne a vector of po si-
tive values 8! 2 RM as the desired spatial weights, i.e. pixel weights. The
higher the value applied to a pixel, the higher the penalty applied to this
pixel and therefore more importance assigned to this pixel, sinc e hypothe-
sis tting better these more penalised pixels will be favoured. Thus , let us
rede ne Egs. (10) and (11) by considering spatial weights as

d; iz(z YS(1 uuU)(z ) (17)

du = (z )Ys U Wws(z ) (18)

where S = diag(S! ) is a diagonal matrix with the spatial weights, and 2

is de ned in Eq. (12). The expression in Eq. (17) computes a weighted
Euclidean distance to the subspace generated by the PCA, while Eq. (18)
computes a weighted Mahalanobis distance within this subspace.

Using these equations for computing particle weights considers the i m-
portance given beforehand to every pixel of the tracked region. T his im-
plies that the values of individual pixels of every hypothesis hav e different
importance in the computation of the particle weight. However, animp  or-
tant thing to take into account is that an excessive increase of the weight
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applied to certain pixels can render the tracking algorithm unstabl e (as
will be shown in Section 4).

In Algorithm 2, a detailed description of the complete proposed vi sual
tracking algorithm with incremental temporally weighted PCA and s pa-
tial error penalty is shown. Note that by xing 3! = 1y ;, we obtain the
ITWVT algorithm. We denote by “/R” the use of Eq. (15) and by “/M”
the use of EqQ. (16), i.e. for instance we denote by ITWVT/M the ITWVTS P
algorithmusing fy (z;")and®! = 1y ;.

Algorithm 2 Incremental Temporally Weighted Visual Tracki ng with
Spatial Penalty (ITWVTSP) . The target region (image of the object in the
rst frame) is denoted by zy; N ® denotes the size of the processed blocks;
f denotes the forgetting factor; and K denotes the maximum number of
considered eigenvalues.

1. =2zop,n=1,andU® @O 7@ and!l @ are empty

2. Set®! to the desired spatial weights (by default, ! = 1, 1)

3: for every frame of the video do

4.  Draw particles according to the dynamical model (Eq. (8)) and the
weight distribution of particles.

5.  For each particle, compute its weight according to the observation
model and spatial weights (Eq. (17) and Eq. (18)).

6: Store in Z® the image region corresponding to the most likely par-
ticle, and in '! @ its PCA weight (Eq. (14))

7:  if there are N@ stored images in Z® then

if n<K then

[(e]
S
I
-
@
I
[EEN
Z

B8

10: Apply Algorithm 1 with k!l Mk, = n, discarding the eigenvectors
that exceedK .

11: Setu® = y®2a @ = @2 gndn=fn + k! @k,

12: Empty Z@ and t1 @

4 Tests and Results

We have performed several tests to the ITWVT and the ITWVTSP algo-
rithms on several video sequences. For showing the improvement ob-
tained by the weighting strategy, the results are compared with the resul ts
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obtained by the IVT algorithm introduced in (Ross et al., 2008) . For a
general comparison against state-of-the-art algorithms, we compare also
our results with the results obtained with the TLD algorithm introduced

in Kalal et al., 2010%.

With IVT, ITWVT and ITWVTSP, we use the same parameters than
those proposed in (Ross et al., 2008), i.e600particles, an eigenvector size
of 32 32 pixels, a maximum number of 16 eigenvectors and a block up-
date of 5images. We only increase slightly the forgetting factor (from 0:95
to 0:97) since the temporal weights increase the quality of the model and a
longer memory is bene cial. With these parameters, the implemen tation
of ITWVTSP in MatLab runs at 7 frames per second in a laptop with a
2.0GHz processor.

The standard deviations of the dynamical model (Eq. (8)) in all th e ex-
periments are 9:0px for row and column displacements, 0:05 radians for
rotation, 0:05 for scaling in the x direction, 0:001for scaling in the vy di-
rection and 0:001radians for the scaling angle de ning x and y directions,
which are similar values to those proposed in the implementation of IVT.
By using the same parameters for the three algorithms, the performan ce
improvement due to the temporal and spatial weighting strategy can be
clearly perceived. With TLD, the standard parameters provided i n the
distributed implementation are used.

For visualisation of the tracking results, we use the same template as
in (Ross et al., 2008): the rst row contains the current frame with the
tracked region, the second row contains the mean, the tracked windo w,
the reconstruction error and the reconstructed image, and nally, the third
and fourth rows contain the rst ten eigenvalues. In Figure 2 an examp le
is shown.

The performed experiments are divided in two groups. In the rst
group, there are experiments performed on labelled video sequen ces, i.e.
video sequences with a ground truth. In these experiments, quantitative
performance scores are computed to show the performance of the algo-
rithms. In the second group, the proposed algorithms are applied to sev-
eral unlabelled video sequences in a variety of tracking applica tions, to
show the polyvalence of ITWVT and ITWVTSP.

Limplementation available at http://www.cs.toronto.edu/ d ross/ivt/ (last visited in
october 2011)

2lmplementation available at http://info.ee.surrey.ac.uk /Personal/Z.Kalal/tld.html
(last visited in october 2011)
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4.1 Labelled Video Sequences

First, we have performed a tracking of the face in the Dudek sequence
(Jepson et al., 2003) (see Figure 2) with IVT, TLD, ITWVT and ITWVTSP.
This sequence is a very challenging video with changes in the tracked
object, the camera position and the illumination. The ground truth of 7
manually labelled points on the face is available for this sequence. This
allows to compare quantitatively the obtained results, by computing the
Root Mean Squared Error (RMSE) of the tracked points with respect to
the real ones. Given the implicit stochasticity of the algorithms, te n inde-
pendent runs per algorithm are performed in all the tests. All the run s
producing a RMSE bigger than 10.0px are considered as losses otrack.

The ITWVT algorithm has been tested using Eq. (15) and Eqg. (16),
for 25 different values of " between 0:01 and 0:9. Both variants of the al-
gorithm, ITWVT/M and ITWVT/R, provide similar results, with small
variance among runs for " 2 [0:02 0:12] This is due to the fact that small
values of " produce low temporal weights, avoiding a good adaptation of
the model to the tracked face, and big values of " produce big weights,
making the performance similar to IVT (in terms of RMSE and number of
track losses). For" 2 [0:02 0:12], the compromise between good model
adaptation and corruption avoidance seems to be satis ed for the Dude k
sequence.

According to the obtained results, a reasonable value for the error th resh-
oldis " = 0:07. For this value, ITWVT/M obtains a best RMSE = 5:6537%x
and ITWVT/R a best RMSE = 5:864%x. The best run with IVT obtains
a RMSE = 6:232%x, which shows that the use of temporal weights im-
proves the performance of the tracking. In addition, only one out o f the
ten runs lost the track (RMSE higher than 10.0px) for both, ITWVT/M an d
ITWVT/R, while ve are lost with IVT. This shows the improvement  inthe
robustness of the tracking thanks to the better quality of the model. Perfo r-
mances of ITWVT/R and ITWVT/M are similar, although looking to the
obtained temporal weights, it can be observed that weights obtaine d us-
ing the reconstruction error are more consistent. Indeed, only fra mes with
an occlusion or high out-of-plane rotations of the face, present a clearly
reduced weight.

Let us note that the value of " is application-speci c. Indeed, the ap-
pearance of a rigid object changes slightly, which allows to x a more re-
strictive (smaller) ". On the contrary, a deformable object like for instance

14



Figure 2: Frame of the Dudek sequence where an occlusion of the face s
starting. First row contains the current frame with the tracked regio n. The
second row contains the mean, the tracked window, the reconstruction er-
ror and the reconstructed image. Finally, the third and fourth rows co ntain

the rstten eigenvalues.
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(a) “Spec” spatial weights (b) “Iso” spatial weights

Figure 3: Spatial weights used in the experiments. Brighter regions cor-
respond to high weight values, darker regions to spatial weights e qual to
1:0.

a pedestrian, changes its appearance considerably, which forces to x "
to higher values if we want to avoid unjusti ed small temporal sample
weights. Faces are somehow in between highly deformable objects and
rigid objects, which makes " = 0:07 an appropriate candidate value when
no information about the application is available.

For observing the effect of spatial penalty, we have designed two 3!
vectors. The rst one assigns higher weight values to pixels on i mportant
regions of the face (see Figure 3(a)), we call this the “spec” spatial weights
and denote its use by “-spec”. The second one is a two-dimensional Gaus-
sian shape, centred in the middle of the patch (see Figure 3(b)), we call this
the “iso” spatial weights and denote its use by “-iso”. The “iso” spa tial
weights considers that pixels far from the boundary of the tracked o bject
are more important.

For each variant of the algorithm, i.e. ITWVTSP/M-spec, ITWVTS P/M-
iso, ITWVTSP/R-spec and ITWVTSP/R-iso, the maximum value of the
spatial weight (°! hax) has been varied between 1 and 3:5, launching 10
runs for each value (with " xed to " = 0:07). The minimum value in
the 3! vector is always 1.0. For values of 3! o > 2:0 using “spec”, the
algorithm starts to be unstable, producing more losses of track than cor-
rect tracking among the ten performed runs. For the “iso” spatial we ights,
the gradual transition make the algorithm more stable allowing to go up

16
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Figure 4: Weights applied to each tracked sample of the Dudek sequence
using ITWVTSP/R-Spec with " = 0:07 and 3! ,.x = 1:8. These weights
correspond to the run that gave the best RMSE value (4:596%x, see Table
1). The frames that present an occlusion or the frames where the face is
rotated out-of-the-plane are clearly noticeable (small weights).

to 3! nax = 3:2. Good values for the maximum spatial weights are 1.8 for
“spec” and 3:2 for “iso”, although smaller values can be used if we want
to minimise the risk of loss of track due to excessive spatial penalty .

In Table 1, statistics of values of RMSE obtained with each algorithm
are shown, for the parameter values commented above. As it can be ob-
served, the ITWVTSP algorithm produces a considerable better tracking
performance than IVT with, at the same time, an increased robustness (two
out of ten track losses for ITWVTSP against ve out of ten for IVT). T he
statistics using TLD are not shown in this table because all the runs pro -
duce a RMSE higher than 10.0px. In this case, this is not due to a loss &
track in all the runs. Indeed, TLD tends to enlarge or reduce the tracke d re-
gion on the Dudek sequence, which causes a displacement on the template
of the tracked points and therefore a higher RMSE value. In Figure 4, the
weights applied to each tracked sample for the best run of ITWVTSP/R -
Spec, can be observed.

For testing the algorithms in a real situation with partial occlusions, we
recorded the Rockstar sequence. In this sequence, composed ot 71frames,
a subject in front of the camera is recorded. At a certain moment, th e
subject puts on a pair of sunglasses that he takes off later. These sundasses
generate an occlusion of the eyes of the subject, which is an important part

17
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Algorithm Losses of Track | Mean RMSE | Max RMSE | Min RMSE | StdDev RMSE
IVT 5 6.8702 7.2790 6.2324 0.3964
ITWVT/R 1 6.6765 7.8109 5.8645 0.7013
ITWVT/M 1 6.5527 7.5133 5.6537 0.6473
ITWVTSP/M-iso 2 5.4659 6.2991 4.9586 0.4604
ITWVTSP/M-spec 2 5.2210 5.9466 4.7596 0.3755
ITWVTSP/R-iso 2 5.2135 5.6375 4.6927 0.3145
ITWVTSP/R-spec 2 4.8869 5.4463 4.5969 0.2637

Table 1: Statistics of the obtained results on the Dudek sequence. The paameters are” = 0:07, 5! ,ax = 3:2

for “iso” and S! o = 1:8for “spec”.




of the face, clearly coded in the appearance model. The distancebetween
the face of the subject and the camera, and therefore its size in the image,
remains almost constant during the whole video. This allows to la bel the
ground truth of the sequence by displacing the starting bounding box that
contains the face, in order to keep eyes, nose and mouth centred along the
whole video sequence. This has been done manually for generating the
ground truth.

Ten runs of IVT, ITWVT, ITWVTSP and TLD have been performed
on this sequence. For spatial weights, a conservative approach has been
adopted, taking °! hax = 2:0for “iso” and S! ox = 1:6 for “spec”. Precision
and lost track ratio scores (Maggio and Cavallaro, 2010) have been com-
puted for all the algorithms and the results are shown in Table 2. For
computing precision score, the intersection over union criterion w ith a
threshold value of 0:8 has been used. For the lost track ratio, dice error
with a threshold value of 0.8 has been employed. The results show clearly
the better performance of the family of algorithms introduced. Howe ver,
the negative impact in this case of the spatial penalty can be observed too.
Indeed, the persistence of the partial occlusion in an important re gion, in
terms of spatial weights, seems to have a negative effect in the perfor-
mance, although it is anyway better than with IVT and TLD. These two
algorithms suffer from a displacement of the tracked region whil e the sub-
ject is wearing the sunglasses, which causes the bad precision aml lost
track ratio scores. Some selected frames of the best run using IVT ard
ITWVT/M are shown in Figure 5 and Figure 6, respectively.

4.2 Unlabelled Video Sequences

In Figure 7, several frames of the poster sequence are shown. In this se-
guence, a poster is recorded while several partial occlusions are gener-
ated. The total sequence is composed of585frames, and during the rst
100frames there are no occlusions. In order to see the effect of the tempo-
ral weights, we compute the deviation from the “correct” rst eigenv  ector
due to these occlusions in IVT, ITWVT/R and ITWVT/M. As “correct”
eigenvectors we consider the eigenvectors at frame 100 with a forgetting
factor xed to 1:0 and the temporal weights up to frame 100equal to 1:0.
Note that the rst eigenvector is the one with the highest eigenvalue, and
therefore the most important one for computing particle weights. Th e de-
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Precision Lost Track Ratio

Algorithm Best | Worst | Mean | St.Dev. | Best | Worst | Mean | St.Dev.
VT 0.9064| 0.3392| 0.6526| 0.1877 0.0 | 0.1637| 0.0965| 0.0831
TLD 0.6260| 0.3493| 0.5598| 0.0833 | 0.1053| 0.2398| 0.1632| 0.0671
ITWVT/R 0.9591| 0.3392| 0.8474| 0.1859 0.0 | 0.0117| 0.0012| 0.0037
ITWVT/M 0.9708| 0.7661| 0.9129| 0.0739 0.0 | 0.0760| 0.0111| 0.0241

ITWVTSP/M-iso 0.7895| 0.3509| 0.6018| 0.1239| 0.0 |0.1579| 0.0287| 0.0518
ITWVTSP/M-spec | 0.9532| 0.7602| 0.8111| 0.0753| 0.0 | 0.0877| 0.0322| 0.0391
ITWVTSP/R-iso 0.8187| 0.3333| 0.5468| 0.1752| 0.0 | 0.1579| 0.0503| 0.0744
ITWVTSP/R-spec | 0.9825| 0.6842| 0.7754| 0.0813| 0.0 | 0.1637| 0.0830| 0.0733

Table 2: Obtained results on the Rockstar sequence. The parametersie " = 0:07, 3! o« = 2:0 for “iso”
and ! hax = 1:6for “spec”.
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(d) IVT - Frame #115 (e) IVT - Frame #130 (f) IVT - Frame #150

Figure 5: Results obtained with the IVT algorithm on the Rockstar se-
guence. The eigenvectors show how the sunglasses corrupt the appea-
ance model, avoiding a correct tracking continuation after taking them
off.
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() ITWVT/M - Frame #50 (b) ITWVT/M - Frame #60 (c) ITWVT/M - Frame #80

(d) ITWVT/M - Frame (e) ITWVT/M - Frame (f) ITWVT/M - Frame #150
#115 #130

Weight
T

Frame Number

(g) Weights applied by the ITWVT/M algorithm to every tracked s  ample of the Rock-
star sequence.

Figure 6: Results obtained with the2 %TWVT/M algorithm on the Rock-
star sequence. The eigenvectors show how the information of the sun-
glasses has a low impact on the appearance model, as can be obs®ed in
the eigenvectors. This is achieved thanks to the low weight values f or the
corresponding object samples.



(a) Frame #100 (b) Frame #161 (c) Frame #310

Figure 7: Several frames of the Poster sequence. The total sequencesi
composed of 585frames.

Distance

350
Frame Number

Figure 8: Distances between the rst eigenvector at frame 100and the rst
eigenvector computed using IVT (solid line), ITWVT/R (dashed lin e) and
ITWVT/M (dotted line) at subsequent frames.

viation is computed as the distance between the rst “correct” eigenv ector
and the rst eigenvectors given by each algorithm. In Figure 8, a p lot of
these distances is given, showing that ITWVT/R and ITWVT/M keep the
eigenvectors closer to those before the occlusions start. As commernted be-
fore, ITWVT/M produces smaller sample weights (see Figure 9), wh ich
makes the distances slightly smaller than with ITWVT/R.

Finally, to show the polyvalence of the algorithms presented here , we
have performed several experiments in two other tracking applic ations:
pedestrian tracking and vehicle tracking. The videos do not pre sent par-
ticular dif culties in terms of partial occlusions, which makes that  similar
performances are obtained using ITWVT and ITWVTSP. Here we show
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Figure 9: Weights applied to the samples of the poster in the Poster se-
guence using ITWVT/M and ITWVT/R.
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the results with ITWVTSP/R-iso.

In Figure 10, the tracking of a subject in sequence S1-T1-C of Cam-
era 3 of the PETS2006 Datasétis shown. Given the variability on the ap-
pearance of a pedestrian, mainly due to the legs, we use an “iso” spatial
weighting strategy but with the Gaussian shape displaced toward the up-
per part of the patch. This gives more importance to the body of the pe des-
trian than to his legs. The maximum spatial weight usedis S! ,ox = 3:2and
the noise threshold " = 0:12

In Figure 11 and Figure 12, a vehicle tracking is performed. In the rst
sequence, the tracked vehicle experiences extreme and sudden chages
in its illumination, which can be observed in the temporal weights g o-
ing to zero. In the second sequence, which runs at night, the illumina tion
is considerably bad during the whole sequence, but without any sign i -
cant variation of the conditions. This can also be observed in the weights,
which are around the same values during the whole sequence.

5 Conclusions and Perspectives

In this paper we have introduced an incremental PCA algorithm with
weighted samples, the Incremental Temporally Weighted PCA (ITW PCA)
algorithm. This algorithm can be used in any application requirin g an
incremental computation of a PCA, due to either computational require-
ments or the lack of the whole dataset at the beginning. The capacity of
this algorithm for weighting the contribution of samples can be used f or
minimising the impact of outliers in the computed PCA. Using this al-
gorithm, a robust VT algorithm capable of being constantly adapted to
the tracked object while trying to avoid model drift has been also devel-
oped, the Incremental Temporally Weighted Visual Tracking with S patial
Penalty (ITWVTSP) algorithm. Furthermore, this algorithm allows to con-
sider spatial weights for giving more importance to some regions of the
tracked object, which increases tracking accuracy. The combination of
these two weighting strategies produce an improvement in terms of RM SE
values on the test sequences of around 26% (see Table 1). When comping
Precision and Lost Track Ratio scores, the increase of the robustress given
by these weighting strategies is also clearly noticeable (see Talle 2).

3Available at http://www.cvg.reading.ac.uk/PETS2006/da  ta.html (last visited in oc-
tober 2011)
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(a) Frame #1020 (b) Frame #1039 (c) Frame #1059

(d) Frame #1064 (e) Frame #1069 (f) Frame #1079

Weight

Frame Number

(g) Weights applied to each frame

Figure 10: Example of pedestrian traf ing using ITWVTSP/R-iso (" =0:12
and °! ox = 3:2) on the sequence S1-T1-C Camera 3 of the PETS2006
Dataset.



(a) Frame #1 (b) Frame #100 (c) Frame #200

(d) Frame #300 (e) Frame #500 (f) Frame #650

Weight
T

500 200
Frame Number

(g) Weights applied to each frame

Figure 11: Example of vehicle tracking using ITWVTSP/R-iso ( " = 0:07
and ! nax = 2:0).
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(a) Frame #1 (b) Frame #150 (c) Frame #300 (d) Frame #390

Weight

200
Frame Number

(e) Weights applied to each frame

Figure 12: Example of night vehicle tracking using ITWVTSP/R-is o (" =
0:12and 3! o« = 2:0).
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Several alternatives for the computation of temporal weights and spa -
tial penalty have been introduced, producing a family of VT algori thms.
All the alternatives have been tested on challenging video sequences, show-
ing their good performance compared to state-of-the-art technique s, and
their polyvalence with respect to the scenario of application. In deed, the
algorithms have been applied to face tracking, pedestrian tracki ng, vehi-
cle tracking and on the tracking of a rigid and static object (the pos ter). On
video sequences where the tracked object was labelled, the superbrity of
the proposed approach against state-of-the-art techniques has been clearly
shown by means of RMSE, precision and lost track ratio.

ITWVTSP considers two weighting strategies: the temporal weightin g
of samples and the spatial penalty of hypothesis. With respect to the tem-
poral weighting, a more in-deep interaction between the particle Iter and
the weighting strategy arises as an interesting future line of researc h to be
explored. Indeed, the weights of the particles seems to be a good saurce of
information about the quality of the tracking and therefore could be use d
for modulating the contribution of samples to the PCA. With respect to
spatial weights, in the Rockstar sequence we have seen that changesn
the appearance of the tracked object, in spatially important regio ns, can
decrease the performance of ITWVTSP compared to ITWVT. This suggest
the study of dynamical spatial penalty strategies. Indeed, reconstr uction
error gives valuable spatial information about changes of the obj ect ap-
pearance. This information could be used for adapting dynamical ly the
values of the spatial weights.
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A Proof of Lemma 1

Lemma 1. Letz® = [z{V;:::;2() 1andZ@ = [2?;:::;2%), ] be two data

matricest! @ = [1 ;0001 Szl)] and!! @ =1 @00 522)] the weights cor-
responding to each sampleZi andZ @, respectivelyz*? = [ZzWZ @] the
concatenation of matriced® andZ®; and @, @ and @2 the weighted
means according fo @ and!! @ ofZM 7@ andz®?, respectively.

Then, the weighted scatter matrix 542, S, .., can be computed as

Sz(l;Z) = Sz(l) + Sz(z)
K Wk, @,
K1 Ok, + Kl Ok,

( 1) (2))( 1) (2))> : (19)
whereS,, andS,« are the weighted scatter matricesZzéP andz®, respec-
tively, andk k; denotes the 1-norm.

Proof. Note that

12) - k't Oky W 4 k't @k, @.
ktI Wk, + kil @k, ktI Wk, + kit @k, '

and so

: k1 @k
W 2= ! o @)
Tkt Ok + KU <2>k1( ); (20)

and -
@ @2 - k't Dy

(2) 1)y-
Tkt Wk, + k! (2>k1( ): (1)

Then,

D((l)
Sya = ! i(l)(zi(l) (1?2))(Zi(1) (1:2))>
i=1
D((Z)
2 2 . 2 .
+ | |( )(Zi( ) (1,2))(Zi( ) (1,2))>
i=1
D((l)
- [ I(1) (Zi(l) @4 @ (1;2))

i=1
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(Zi(l) W4y @ (1:2))>
D((Z)
2) (2 .
+ 1 0@ @4 @ w2
i=1
® @i+ @ @2y
= Szo t+ Sz
®
1 : .
+ | |( )( @ (1,2))( 1 (1,2))>
i=1
)
2 : .
+ [ i()( (2) €2y @ (1:2))> (22)
i=1

Applying Egs. (20) and (21) on Eq. (22), we obtain
Sza = Szo + Sze

k' Mk k' @ky
kit Wk, + kil @k,

( 1) (2))( 1) (2))>
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