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Abstract
This work proposes an epidemiological model for the SARS-COV-2 outbreak and
an optimization tool to guide policy decision-making. The model accounts for
the socioeconomic characteristics of the population and combines mobility in-
formation with epidemiological data. We demonstrate the added value of using
disaggregate Susceptible-Infected-Recovered-Dead models (SIRD) for analizing
SARS-CoV-2 spreading and evaluating the potential of these models to study op-
timal policy decision-making. We propose a methodology to couple agent-based
epidemiological models with Activity-Based Models (ABMs) to capture the het-
erogeneous activity-travel behaviors in the population. The heterogeneity allows
for determining the influence of activity-travel behavior on the pandemic spread
and the efficacy of restrictions on specific activities. We compute the probability
of infection by modeling it as a function of the most influencing socioeconomic
variables per individual. The ABM captures the heterogeneity of activity-travel
behavior. Finally, we propose an optimization approach for determining the best
policy of activity restrictions to be applied to maximize economic or medical ob-
jectives. The policy applied by the Swiss government in the Spring of 2020 is
compared with the output of the optimizer, showing how taking actions in the
early stage of the pandemic is of fundamental importance.

1 Introduction
In recent years, COVID-19 has reinforced the importance of epidemiological
models to study of how diseases spread. Analyses of SARS-COV-2 data, to-
gether with projections on the virus’s spread, have driven policy decisions all
over the world. In particular, the pandemic outbreak of SARS-COV-2 drew at-
tention on the link between transportation and epidemiological research since hu-
man mobility is one of the leading causes of the spread of the virus (Tirachini
and Cats, 2020, Douglas et al., 2020). This pandemic has revealed the lack of
literature that combines the epidemiological field with transportation planning,
including activity-travel behavior when studying disease spreading. Coupling mo-
bility and epidemiological data can provide a better spreading model (Tuomisto
et al., 2020). Travel-behavior data is of fundamental importance for planning non-
pharmaceutical interventions (NPIs), including public transportation scheduling
and the partial restriction of people’s daily activities (Tirachini and Cats, 2020,
Douglas et al., 2020,Zheng et al., 2020 ,Lee and You, 2020).

In the 18th century, the first epidemiological model was used to study the mor-
bidity and mortality of smallpox (Heyde and Seneta, 2001). Thenceforth, multiple
models have been developed to explain an epidemic’s spread. These approaches

1



range from elementary compartmental models (e.g Kermack et al., 1927) to net-
work models and the latest and more complex approaches: individual or agent-
based models (see Eubank et al., 2004 amd Mancastroppa et al., 2020). Determin-
istic compartmental models (Kelman, 1985), also known as SIR models, depend
on differential equations. These equations define the flow dynamics between the
different compartments (Susceptible, Infected, Recovered). Deterministic mod-
els are unable to represent the social structure relevant to the disease spreading,
as they are fully aggregated. Network models can partially cover this gap. Be-
ing based on graph theory (Albert and Barabasi, 2002), network models rely of
nodes and links representing hosts and their contacts. However, they neglects the
characteristics of the contacts and of the individuals that took part in it. This in-
formation is captured by agent-based models (Muller et al., 2020), our main focus
in developing the SIRD disaggregate model. Agent-based models work by fol-
lowing people over time at an individual level through the different stages of the
disease. Agents are the unit of analysis, they act on their own and interact with the
environment. Nevertheless, due to the lack of fully disaggregate data, this tech-
nique faces the issue of adding aggregated parameters to the model. This results
in computationally complex models for the level of final disaggregation reached.
For this reason, we study how to couple semi-disaggregate epidemiological and
activity-based models to link epidemics and mobility. To understand human mo-
bility, we need to capture the heterogeneity of behavior in the population, not only
in the mobility model but also inside the epidemiological model. Capturing het-
erogeneity through disaggregating the model allows for determining the influence
of activity-travel behavior on infection, mortality rates, and the efficacy of restric-
tions on specific activities. We start with a simple SIRD model and disaggregate
it to reach the heterogeneity level desired. Multiple authors (see Singu et al., 2020
and Commission, 2020) state the importance of including the influence of indi-
vidual characteristics like age or income on the spread. Other studies analyze the
correlation between positive SARS-CoV-2 tests, mortality rates, and admission
to intensive care with socio-economic position (Riou et al., 2021a). Consider-
ing socio-economic characteristics such as gender and health care information, or
virological characteristics like exposure to the virus, allows a better understand-
ing of the spreading (e.g Commission, 2020). Therefore, it is essential to include
variables in the epidemiological model that capture the heterogeneity of the pop-
ulation’s behavior. The two main challenges when using activity-based models
are, on the one hand, mobility clustering the population to the locations of their
activities which leads to contact and contagion, and on the other hand, accounting
for heterogeneity (Qian and Ukkusuri, 2021). The final goal is to guide public
health authorities in dealing with epidemic situations.

In this work, we propose a model that addresses the heterogeneity issue by
disaggregating a traditional epidemiological model to account for the character-

2



istics of the population. For this reason, we aim to address the following lim-
itations found in the existing literature: (i) to define a clear methodology that
establishes which variables are meaningful for modeling the probability of infec-
tion for an individual (Chang et al., 2021), (ii) to obtain computationally efficient
modeling compared to agent-based models with the equivalent level of disaggre-
gation on the initial dataset (Tuomisto et al., 2020), (iii) to avoid the use of real–
time data-driven interventions and instead rely on model-based solutions (Aleta
et al., 2020), and (iv) to make the probability of transmission time-dependent to
account for the possibility of implementing policies during a specific moment in
time (Mancastroppa et al., 2020). This paper’s scope is to demonstrate the added
value of using disaggregate models for modeling SARS-CoV-2 spreading and to
evaluate the potential of the proposed model-based optimization tool for the im-
plementation of NPIs. We employ a generalized multivariate regression model
to compute the probability of infection depending on the socio-economic charac-
teristics of the individuals and a Variable Neighborhood Search (VNS) to solve a
multi-objective optimization problem to obtain how and when NPIs should be ap-
plied. This method incorporates population heterogeneity, behavior, and contact
patterns.

2 Methodology

2.1 Dataset specification
To determine the influence of activity-travel behavior on the pandemic spread
and the efficacy of restrictions on specific activities, our methodology relies on
a dataset containing each individual:

• Daily activity plans;

• Socio-economic and health-related information.

We propose to capture the influence of human mobility and heterogeneity of the
population’s behavior on the SARS-CoV-2 by linking every human interaction
(i.e., contact) with its location and the information on the individuals that took
part in it. It is out of the scope of this paper to propose a standardized way to
aggregate available data into a suitable dataset. Nevertheless, we discuss in the
results section the procedure followed for this study (considering 25% of the Swiss
population).
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2.2 Activity specification
To capture the influence of human mobility on SARS-CoV-2, we classify con-
tacts between individuals by the type of activity (e.g., leisure, work, education,
shopping). We propose to segment of the population into groups characterized by
specific features, i.e., age, gender, income, or municipality. The choice of the type
and the total number of groups G is twofold. Firstly, the group choice can allow
for a better spreading model, capturing correlations between a specific age group
or income level with the number of infections. Secondly, once the SIRD model is
trained, it is possible to study the implementation of policies for the different pop-
ulation groups. For every activity a, the contacts are represented by the contact
matrix �a (see Equation (1)) such that: A is the total number of considered activ-
ities by the study and the term Cai j = Ca(gi, g j) is to be interpreted as the number
of contacts between individuals of the groups gi and g j ∀i, j ∈ [1,G] . The sum
of all elements in �a is the total number of contacts in a single day, considered
representative of the pandemic period:

�a =


Ca(g1, g1) Ca(g1, g2) · · · Ca(g1, gG)
Ca(g2, g1) Ca(g2, g2) · · · Ca(g2, gG)
· · · · · · · · · · · ·

Ca(gG, g1) Ca(gG, g2) · · · Ca(gG, gG)


a

∀a. (1)

2.3 Probability of infection per individual
Similarly to agent-based models, we model the probability of infection per indi-
vidual. In addition, we include medical and socio-economic characteristics and
evaluate their influence on the SARS-CoV-2 spread through multivariate logistic
regression. We are interested in modeling the probability of contracting the virus
for an individual. As available datasets refer to testing results, we rely on the as-
sumption that all infected people get tested. For each individual i, we consider
his socio-economic characteristics and the characteristics of the environment that
surrounds him. We define the probability of infection as:

P(infection)i ∼ Xm
i · α

m + Xp
i · α

p =

J∑
j=1

αm
j Xm

j,i +

K∑
k=1

α
p
k Xp

k,i , (2)

where:

• Xm
i =
[
Xm

1 , X
m
2 , . . . , X

m
J
]T
i are the socio-economic characteristics of the indi-

vidual i,

• Xp
i =
[
Xp

1 , X
p
2 , . . . , X

p
K
]T
i are aggregated indicators of the surroundings of i,

i.e. of the municipality where i lives,
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• αm =
[
αm

1 , α
m
2 , . . . , α

m
J
]

and αp =
[
α

p
1 , α

p
2 , . . . , α

p
K
]

estimate the variable’s
parameters.

We propose to select the variables Xp
i , X

m
i , α

p, αm by applying the Generalized
Logistic Model Regression (GLM) procedure described by Table 1.

Algorithm 1 Procedure for selecting variables for GLM regression
1: Initialize the Algorithm with an educated guess for the variables Xp

1,2,..., X
m
1,2,...

to consider for the analysis
2: for each variable Xp

1,2,...,J, X
m
1,2,...,K do

3: Compute the Variance Inflation Factor (VIF) and the p-value
4: if p − value < 0.05 & VIF < 5 then
5: Remove the variable and refit the model (line 1)
6: else if all p-values and VIF values are accepted with 95% confidence then
7: Keep the last fitted model (line 5)
8: end if
9: end for

10: Output the results)

2.4 Probability of infection per group
Once the probability of infection per individual i is defined, according to Equa-
tion (2), we aggregate the results to obtain the probability of infection βg per
group g. To obtain βg, we first calculate the probability of entering in contact
with an infected individual P(contact|infection) and the probability of contact
P(contact) from the activity-based model output. From the daily activity schedule
of the population we compute statistics on the contacts inside the different facil-
ities (Equations 3 and 4). To reduce computational complexity, P(contact) and
P(contact|infection) are considered to be constant for all individuals and facilities.
To obtain the probability of infection given a contact per individual βi, we apply
the Bayes theorem as of Equation (5). Finally, we aggregate the result to obtain
the probability of infection per group βg by averaging the probability of infection
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given a contact per individual over the population of the group as in Equation (6).

P(contact) =
number of contacts in all facilities

number of facilities
(3)

P(contact|infection) =
total infected people in all facilities · number of facilities

total number of people
(4)

βi = P(infection|contact)i =
P(contact|infection) · P(infection)i

P(contact)
∀ individuals i

(5)

βg = P(infection|contact)g =

∑
∀i∈g
βi

Ng
∀ groups g (6)

Ng is the total number of individuals that belong to the group g. Equation (6) relies
on the assumption that βi for all the individual in group g are mostly similar. This
depends on the group choice, which therefore affect the accuracy of the model.

2.5 Force of infection
The force of infection λ in SIRD models describes the transition rate from the
compartment of susceptible individuals to the compartment of infectious individ-
uals. We compute it for every group g as follows:

λg(t) = βg

A∑
a=1

Θa,g(t)�a, (7)

where λg(t) is the force of infection of each individual in group g and Θa,g(t) rep-
resents the percentage decrease for every activity due to policy application. This
term is used to model the effect of policies limiting the mobility of the popula-
tion. For example, a policy imposing online schooling for a specific age group, is
represented by ΘEducation, Age group = 0.

2.6 SIRD specification
We introduce λg(t) inside the SIRD model for group g, alongside external param-
eters related to the virus strain, the recovery rate γg, and the probabilities of trans-
mission during contact. The SIRD model predicts the number of cases over time
for each segment of the population (group g) according to the following Ordinary
Differential Equations (ODEs):
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dS g

dt
(t) = −λg(t) Ig(t)T S g(t)

N
, (8)

∂Ig

∂t
(t) = λg(t) Ig(t)T S g(t)

N
− γgIg(t), (9)

∂Rg

∂t
(t) = γgIg(t)(1 − µg), (10)

∂Dg

∂t
(t) = γgµgIg(t). (11)

Where the terms S , I, R, D, and N stand for the susceptible, infectious, recovered
and dead individuals, and the total number of individuals. The ODEs (8)–(11)
system can be solved using the lsoda (Hindmarsh and Petzold, 2005) solver for
ordinary differential equations thanks to its ability to switch between stiff and non-
stiff integration methods automatically. This method allows for computing S , I,
R, and D for each group g ∈ [1, . . . ,G] where G is the total number of groups in
the population P. The process is summarized in Algorithm 2.

Algorithm 2 Summary of the proposed methodology
Require: Dataset with individual information and daily activities schedule

1: Execute the GLM Algorithm
2: Compute the contact matrices �a for all the possible activities a ∈ [1, . . . , A]
3: for each population group g do
4: for each individual i ∈ g do
5: Compute the probability of infection per individual βi with Equation

(2)
6: end for
7: Compute the probability of infection per group βg and torce of infection
λg(t) with Equation (6)-(7)

8: Solve the system of ODEs (8)–(11)
9: end for

10: Output the SIRD model

2.7 Optimal policy control
As discussed in the introduction, the final purpose of disaggregating the SIRD
models is to assess the policy to be applied to maximize economic or medical
objectives. For this reason, we introduced the quantity Θa in Equation (7), repre-
senting the decrease of contacts per activity due to applying a specific policy. In
doing so, we obtained a policy-dependent SIRD model suitable for being used in
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an optimization problem. The decision variables of the problem are the type of
policy to be applied Θ, the starting day of the application tstart , and its duration
∆t. We consider the vector Θ =

[
Θ1,Θ2, . . . ,Θa, . . . ,ΘA

]
as the activity reduc-

tion for the different activities. Each element of the latter can assume any value
between 0, i.e. the strictest policy possible, and 1, i.e. no policy applied. For ex-
ample, the complete closure of schools and universities is represented by imposing
Θeducation = 0. For simplicity, we consider the starting day tstart and the duration
of the policies ∆t to be unique, meaning all the interventions are to be applied at
the time t. Nonetheless, this method can be extended to include the possibility
of applying different interventions at different times. The decision variables are
constrained as follows:

0 ≤ tstart ≤ tend (12)
0 ≤ tend − tstart (13)
0 ≤ Θa ≤ 1 ∀a ∈ [1, . . . , A]. (14)

where tend represents the end of the simulated period. Each policy has a twofold
effect: it helps contain the spread of the pandemic by reducing the number of
contacts but on the other hand, it negatively affects the country’s economy. For
this reason, we target an optimal policy that minimizes two costs:

1. A health cost H, computed as the death toll of the pandemic,

2. An economic cost E resulting from people unemployed due to the lockdown
policy or from people unable to work because infected.

The health cost H can be computed as:

H = sum{D} =
∑
∀g

Dg, (15)

where Dg is the death toll of group g, the output of the SIRD model when subject
to the policy vector Θ, as described in Equation (11). The economic cost E is
modeled as the decrease of the GDP due to diseased and dead workers together
with people unemployed due to the lockdown policy (Colas et al., 2021) by means
of the Cobb-Douglas function:

E = E(I,D) =
1

Tend

Tend∑
t=1

[
Y0 − AKγk

0

(
L(t)1−γk

)] 1
Y0
, (16)

where Y0 is the GDP before the pandemic, the Cobb-Douglas function AKγk
0

(
L(t)1−γk

)
estimates the GDP at any time t during the pandemic and L(t) is the active popula-
tion employed. The constants A, K0, γk, are the exogenous technical progress, the
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initial capital stock and the capital elasticity, respectively. The values for the case
of Switzerland are shown in the result section. To capture the effect of lockdown
policies on the active employed population L(t), we propose to express the latter
as:

L(t) =
[
1 − u(t)

]
· ER · (N −G(t)), (17)

where u(t) is the level of partial unemployment due to the lockdown policies,
G(t) = I(t) + D(t) is the size of the ill or dead population output by the SIRD
model and ER is the employment rate . We relate the variable u(t) to the reduction
of the percentage due to the lockdown policy:

u(t) = (1 −Θ) · c
∆t

365
, (18)

where c is the GDP contribution vector representing the contribution of each ac-
tivity to the national GDP. In particular, for the days t when no policy is applied,
then 1 = Θ and therefore u(t) = 0 since there is no activity reduction. Finally, we
propose to solve the following multi-objective optimization problem:

min
tstart ,∆t,Θ

[
H
E

]
subject to:
Cost functions (15)-(18),
SIRD model (8)-(11),
Decision variable constrains (12)-(14).

(19)

We are interested in obtaining the Pareto frontier for the multi-objective optimiza-
tion problem (19) as we aim to provide the authorities with a set of optimal so-
lutions, to guide the policy choice. We propose to solve (19) using the multi-
objective Variable Neighborhood Search algorithm introduced by Ortelli et al.,
2021, and available in the PandasBiogeme package for Python (Bierlaire, n.d.).
The focus is to use a metaheuristic approach to solve the multi-objective problem.
VNS’s main advantage is the flexibility to define the list of neighborhood struc-
tures. This algorithm starts from a candidate solution and then iteratively moves
to a neighbor solution. A neighborhood is the set of all potential solutions that
differ from the current solution to the minimal possible extent. Therefore the al-
gorithm requires a neighborhood relation to be defined on the search space. For
each element of Θ, we assign an increasing and decreasing operator. Policy’s du-
ration operators work by increasing or decreasing the length of the policy, and by
shifting the policy in time with fixed length. This algorithm searches for a local
optimum for a given neighborhood structure, and when it finds it, it continues with
another structure. The result of the algorithm returns a set of optimal policies that,
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according to the authors, can help guide the authorities responsible for managing a
pandemic crisis or adapting to a post-pandemic situation. In particular, by choos-
ing different points on the Pareto frontier the authorities can prioritize or not the
economical stability of the country over the national health. Nevertheless, while
we want to provide a tool for the authorities to choose the right policy, it is out of
the scope of this contribution to take part in such a choice.

3 Results
The proposed approach is validated on data concerning 25% of the Swiss popula-
tion. We segment the population based on the individual’s age. We estimate the
force of infection by including socio-economic variables of the individuals and
their daily activities. By capturing these two phenomena, we can get information
about the activity-travel behavior of the Swiss population. It allows to:(i) study
the correlation of the probability that an individual gets infected given its socio-e-
conomic characteristics, (ii) evaluate NPIs policies. The dataset requirements as
input for the SIRD disaggregate model include activity and medical information
about the individuals. Since no synthetic population in the literature includes
all the needed features, we compute a matching algorithm to combine different
datasets. The underlying reason is that we need to account for each individual’s
daily activitiy plan, socio-economic characteristics, and SARS-COV-2 medical-
related information. For this reason, we manipulate data from the Federal Office
of Public Health (FOPH) from mid-February 2020 to mid-September 2021 (Riou
et al., 2021b). The dataset contains the positive tests in Switzerland and informa-
tion about the tested individuals. It includes age, gender, municipality, vaccina-
tion doses, hospitalization, and causalities. We include open-source data (of Pub-
lic Health, 2020) from the Swiss municipalities. These variables per municipal-
ity include the median income, the social security rate, the percentage of people
working in the tourism sector, or population density per square meter. Finally,
we match the FOPH and the municipality data with a calibrated MATSim simu-
lation output from ETH Zurich (Horl and Balac, 2021). The final dataset is 2M
individuals and contains three individual socio-economic characteristics (sex, age,
and municipality) and forty-one variables at the municipality level (Office, n.d.).
We merge the FOPH Data with the municipality data to obtain the distribution of
positive tests in Switzerland. This analysis gives an overview of the disparities
in infection in the different municipalities, which makes these variables signifi-
cant to model the positive tests of the individuals. To provide an example of such
variables we show in Figure 1 the population density and the percentage of young
inhabitants per municipality, together with the number of cases per capita.
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Figure 1: Distribution of positive tests against their location in Switzerland, in
addition to some data concerning the municipalities to analyze: (i) the population
density, expressed in number of residents per km square, (ii) the percentage of
people between 20 and 64 years old, (iii) the number of positive tests per capita.

Activity contact matrix
As seen in Equation (7), the force of infection is a vector whose dimension de-
pends on the segmentation of the population. Since Age is the explanatory variable
with the highest correlation to an individual’s infection probability, we stratify the
model into four age groups. PC, which contains individuals younger than 18 years
old, PA1 individuals between 19 and 35 years-old, PA2 individuals between 36 and
55 years old, and PE individuals over 56 years old (G = PC, PA1, PA2, PE). We
consider seven activity categories: (i) home, (ii) work, (iii) leisure, (iv) service,
(v) education, (vi) shop and (vii) car. The policy vectorΘΘΘ, introduced in Equation
(7) will assume the following form:

Θ =
[
Θhome Θwork Θleisure Θservice Θeducation Θshop Θcar

]
. (20)

The contact matrix �a defined in Equation (1) encodes the number of contacts
between and among each of the four age groups g and 7 activities a per time
step. By analyzing the mean of contacts per activity between each age group, we
observe that most contacts occur inside Education. The number of people inside
this facility is very high for a long time (approximately eight hours), explaining
the outlier in this activity. Also, the highest number of contacts among adults
are during work time, for people under 18 during leisure activities, and for elders
during grocery shopping or inside a car.

Parameter estimates
As previously mentioned, we want to: (i) determine the impact that the socio-eco-
nomic variables have on the probability of infection of an individual (P(infection)i),
(ii) select those variables and proceed with parameter elimination, (iii) estimate
the parameters to compute P(infection)i. The GLM algorithm computes the logis-
tic regression where the outcome variable is a binary variable indicating infection
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status. The result reveals that out of the 41 considered variables, six are meaning-
ful for modeling the probability of infection per individual:

P(infection)i ∼ αΛΛ + αχχ + αΥΥ + ακ log(κ) + αϕ log(ϕ) + αϵϵ, (21)

where the variables Λ, χ, Υ, κ, ϕ and ϵ are described in Table 1, together with
their coefficients αΛ, αχ, αΥ, ακ, αϕ and αϵ , their standard error and their p-value.
Specifically, Xm =

[
Λ κ ϵ

]
are the socio-economic characteristics of the indi-

vidual, and Xp =
[
χ Υ ϕ

]
are aggregate indicators of the surroundings (in our

case, the municipality).

Variable Description Coeff. (α) Std err P > |z|
Λ Age -0.0056 0.000 0.000
χ Urban area 0.0501 0.010 0.000
Υ Population density per km2 0.0143 0.008 0.050
κ Household income 0.9325 0.082 0.000
ϕ Percentage of population between 20 and 55 years old 0.0224 0.004 0.000
ϵ Employed 0.3470 0.008 0.000

Table 1: Coefficients using an Iteratively Reweighted Least Squares GLM

Model validation
We structure the validation of our methodology in three blocks to assess the capa-
bility of the proposed model in capturing: (i) the trend of age-dependency in the
probability of infection given contact, (ii) the aggregated daily infections of the
first pandemic wave, and (iii) the dependency of the pandemic on activity-based
behavior. For the first part of the validation, we apply Equations 3-7 and compute
βg and the reproduction rate per group R0g, defined as:

R0g = λg/γg. (22)

By observing the probability of infection given contact per group, also known as
susceptibility in the literature, we can show how our methodology can capture this
parameter’s age dependence. Many studies like Davies et al., 2020, and Goldstein
et al., 2021 present a positive correlation between the age of the individuals and
their probability of infection given contact. In particular, the literature suggests
( see Davies et al., 2020) that the susceptibility to infection in individuals under
20 years of age is approximately half that of adults aged over 20 years, in full ac-
cordance with the results obtained with our methodology. Moreover, it is possible
to observe how the values for the parameters R0 have a similar trend, as also dis-
cussed by many literature contributions ( see Goldstein et al., 2021). The values of
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Age Group Probability of infection given contact per group (βg) Basic reproduction number per group (R0g)
Children (C) 0.172 0.754
Adults1 (A1) 0.341 1.467
Adults1 (A2) 0.440 3.634
Eldery (E) 0.562 4.981

Table 2: Probability of infection and basic reproduction number per group

R0 from Table 2 are in agreement with some authors (Goldstein et al., 2021) and
comparable to the R0 of neighboring countries at the beginning of the pandemic.

To further validate the model, we compare the aggregated number of cases
generated from its output with the registered cases recorded by an external data
service. We initialize the discrete integration process (see Algorithm 2, lines 3
to 10) to obtain the total number of cases per time-step (i.e., day) per population
group. Then, we test our model to represent the infection dynamics observed dur-
ing the COVID-19 pandemic. In particular, the case study focuses on the first
pandemic wave, considering data from 2020 − 02 − 24to 2020 − 04 − 30. The
period object of study is chosen because it has regular social contacts, and the
population is not yet vaccinated. Note that we set some activity restrictions in the
contact matrices �a from mid-march. In particular, the policy vector Θ is applied
with tstart = 16th of March following the activation of the restrictions by the Swiss
government (Molloy et al., 2021,of Public Health, 2020). The values of Θ are
chosen according to the implemented measures. For example, the complete clo-
sure of schools and universities is represented by imposing Θeducation = 0. Finally,
we plot the cumulative cases over the same period from the Epidemiology table
from Google COVID-19 Open Data (Google Covid data, n.d.) in Figure 2. The
numbers obtained by our epidemiological model are initialized accordingly with
the initial values of infected individuals from official public data. By comparing
the curves, we can state that the developed model can capture the evolution of the
positive cases with reasonable accuracy.

While Table 2 proves the methodology to accurately represent the dependency
of the pandemic spread on the age groups and the socio-economic variables, Fig-
ure 2 validates the overall SIRD approach by comparing the aggregated number
of cases. Nevertheless, the model is not yet proven to capture the correlation be-
tween activity-travel behavior and infections. To prove our methodology’s ability
to capture such correlation, we use the reduction of the reinfection rate as the
parameter to compare to other studies (Muller et al., 2020). In their study, the
reinfection rate is defined as:

R =
Reinfection cases with restriction/Reinfection cases with no restriction

Total number of individuals
.

(23)
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Figure 2: Daily infection from google data for the first wave (blue line) against
the aggregated output of our model (red line).

We compute the reinfection rate R indicator by setting to zero the elements of
the policy vector Θ and running the model. The obtained results are shown in
Table 3 and compared to previous authors’ results ( see Brauner et al., 2020, Haug
et al., 2020, and Muller et al., 2020), where it is possible to observe that the results
obtained with our disaggregate SIRD Model are in line with the ones proposed by
Brauner et al., 2020.

Measure Brauner Brauner et al., 2020 Haug Haug et al., 2020 Disaggregated SIRD Model
Schools closed 50 16 38
Most businesses suspended 26 27
Work ban 34 36
Gatherings limited to ≤ 1000 16 19
Gatherings limited to ≤ 100 17 21
Gatherings limited to ≤ 10 28 32
Mass gathering cancellation ≥ 50 27 31
Small gathering cancellation ≤ 50 17 22
Stay-at-home order with exemptions 14 12

Table 3: Percentage point reduction of Muller et al., 2020

Optimal policy control
The optimal policy control problem is computed based on the validated SIRD
model. The following assumptions are made on the policy vector Θ: (i) tstart is
bounded between the beginning to the end of modeled period, i.e., 80 days (ii) the
policy duration is implemented at least for 7 days (iii) the policy vector can be
modified with a precision of 0.05, meaning the authorities can modify the con-
tacts between the individual with steps of 5% on the total number of the contact.
To compute the total GDP loss and the economic cost of diseased workers and
unemployed people due to the lockdown policy we choose the values of the GDP
contribution vector c from the literature. The contributions of each activity to the
general economy (GDP) ca are: 1% for home, 1% (gdp loss work, 2020) for work,
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4.4% (gdp loss supermarket, n.d.) for leisure, 1.7% (OECD, n.d.) for services,
1.5% Hanushek and Woessmann, n.d. for education, 5% (gdp loss supermar-
ket, n.d.) for supermarkets, and 1.5% for cars. We run the optimization problem
for the two objectives, and we show in Figure 3 the health cost H (Equation (15))
on the y-axis and the loss in GDP in percentage (Equation (16)) on the x-axis.
Together with the Pareto frontier in yellow, the figure shows in green the set of
solutions that have been considered at some point by the algorithm and in blue the
ones that have been in the Pareto, but have been removed because dominated by
another solution.

Figure 3: Pareto solution from the VNS algorithm (368 points) .

Figure 4: Analysis of different policies simulation outcomes dependant on the
tstart

In Figure 4, we display different Pareto frontiers obtained from the VNS al-
gorithm and analyze different policies. In particular, the green curve represents
the Pareto frontier considering that the policy vector can be applied at any time
between the start of the pandemic and the end. Nevertheless, it is possible to prove
that most of the points composing this frontier are characterized by an application
of the policy vector in the early stages of the pandemic, i.e. in the first week,
making this Pareto unrealistic. In fact, it is improbable for a country to apply
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NPIs against a pandemic a few days after the appearance of the first positive tests.
Therefore, we examine how much the policy’s efficiency depends on early imple-
mentation. We compute two additional Pareto frontiers using the VNS algorithm
by adding a new constraint on tstart ≤ 10, 20 days respectively. As tstart increases
the Pareto frontier worsens since the optimal points imply higher losses in GDP
(E) and the number of deaths (H).

To assess the policy decision-making process, we start by plotting the point
that reflects the policies applied during the first wave (red dot). The applied
measures consist in the closing of all shops, restaurants, bars and leisure facili-
ties, together with mandatory online schooling and remote working when possible
of Public Health, 2020. These activity restrictions were implemented the 16th of
March 2020 (tstart = 21) and modified the 11th of May (T = 61). The values for
the policy vector can be found in Table 4.

As further validation of the proposed methodology, the GDP loss computed by
means of Equation (16) and visible as ∆E in Table 4, is perfectly in line with the
real GDP loss registered in the first quarter of 2022, accounting for -2.7 % of the
Swiss GDP. We project the policy applied by the Swiss government (red dot) on
the Pareto frontiers, to check for policies characterized by the same economical
or health cost, obtaining 6 alternative scenarios. In particular, Scenarios 1-3 are
the projection of the red dot on the different Pareto frontiers, being equal the
economical cost. Scenario 1 shows how an early application of policies would
have allowed to reduce the number of causalities, being similar the amount of
restriction on the population (i.e. being equal Θmean and the economical losses E).
Acting in later stages, as in Scenario 3, calls for stricter measures. Nonetheless,
the latter scenario safeguards the service activity, proposing to keep facilities such
as restaurants open. Scenarios 4-6 are the projection of the red dot on the three
Pareto frontiers, being equal to the health cost, i.e. the number of deaths. Scenario
4 shows how an early policy only imposing online schooling would have reduced
by a factor of three the GDP losses. For all scenarios, we can observe that the later
the restriction is implemented, the stricter they have to be to remain on the Pareto
frontier.

Policy ∆t tstart Θ Θmean H E
Policies applied during the first wave 61 21

[
1.00 0.75 0.00 0.00 0.00 1.00 1.00

]
0.54 251 2.7

Scenario 1 (green) 64 1
[
1.00 0.00 0.85 1.00 0.00 1.00 0.00

]
0.55 13 2.55

Scenario 2 (orange) 51 11
[
1.00 0.00 0.20 1.00 0.00 1.00 0.00

]
0.46 39 2.61

Scenario 3 (blue) 44 21
[
1.00 0.00 0.00 1.00 0.00 0.05 0.00

]
0.29 100 2.62

Scenario 4 (green) 61 6
[
1.00 1.00 1.00 1.00 0.00 1.00 1.00

]
0.86 249 0.91

Scenario 5 (orange) 49 14
[
1.00 0.00 1.00 1.00 0.00 1.00 1.00

]
0.71 251 0.95

Scenario 6 (blue) 34 26
[
1.00 0.05 0.00 1.00 0.00 0.00 0.10

]
0.31 250 1.09

Table 4: Policy parameters with related economical losses and deaths
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4 Conclusions
This paper describes the design and evaluation of a disaggregate SIRD model. We
aim to create an interdisciplinary bridge between transportation and the epidemi-
ological community. The most significant contributions are: (i) we capture how
the socio-economic characteristics of an individual define the force of infection
(ii) , we obtain a self-explanatory model defined by the estimates of the variables
that characterize the spreading event, (iii) we calibrate the epidemiological model
on real data, (iv) we validate multiple aspects of the disaggregate model by com-
parison to real Swiss data and existing literature, (v) we propose a method to
compute optimal policies to control the spread of the virus. Concerning the per-
formance assessment of the model, the lack of individual data makes it very chal-
lenging to have a rigorous analysis of how disaggregation performs in this kind of
model. Nevertheless, we propose alternative ways to validate the model against
aggregated data and literature. According to the authors, the optimal policy algo-
rithm returns essential information that can help guide the authorities responsible
for managing a pandemic crisis or adapting to a post-pandemic situation. Future
works might include adding different groups to the model based on other socio-
economic variables (subject to data availability). Adding more groups will allow
us to explore different policy strategies and their efficiency. Also, the probability
of infection is correlated with age, and different age groups have different activity-
travel behavior. Endogeneity issues should be analyzed carefully by modeling the
probability of infection using a latent model. Finally, to extend the model to the
different COVID-19 variants to evaluate its performance and consider the method-
ology for other non-vector-borne diseases.

Data availability
The data used in this study are available from the Swiss Federal Office of Pub-
lic Health (FOPH) and the Swiss Federal Institute of Technology in ZÃŒrich
(ETHZ). Restrictions apply to the availability of the data. The data were used
under license for the current study and are therefore not publicly available. The
data are however available from the authors upon reasonable request and with
permission of FOPH and ETHZ. The data have undergone an ethical-legal check
and have been evaluated for their compliance with the regulations set out by the
EPFL Ethics Affairs office. The study was reviewed and approved by the EPFL
Research Ethics Compliance officer. The data fall under the Federal Act on the
Control of Communicable Diseases in Humans (Epidemics Act) and the Federal
Act on Data Protection (Data Protection Act), together with the associated ordi-
nances and provisions. These Federal Acts legislate the timely detection, moni-

17



toring, prevention, and control of crises, a model applicable to normal, particular,
and extraordinary health situations. The collection and reporting of SARS-CoV-2
data are managed by the FOPH via a notification form for the sake of infectious
diseases notification. The data considered in this study are coded, hence prevent-
ing the authors from tracing back the identity of human subjects. The authors had
access to anonymized demographic and geographic data that does not represent
any risk for patients’ identification.
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