Assisted specification with Biogeme 3.2.12

Michel Bierlaire Nicola Ortelli
August 16, 2023

Report TRANSP-OR 230816
Transport and Mobility Laboratory
School of Architecture, Civil and Environmental Engineering
Ecole Polytechnique Fédérale de Lausanne
transp-or.epfl.ch

SERIES ON BIOGEME

This document is an updated version of Bierlaire and Ortelli (2022),
adapted to version 3.2.12 of Biogeme.

The package Biogeme (biogeme.epfl.ch) is designed to estimate the pa-
rameters of various models using maximum likelihood estimation. It is par-
ticularly designed for discrete choice models. It is a Python package written
in Python and C++, that relies on the Pandas library for the management
of the data.

This document describes how to obtain assistance from Biogeme for the
model specification. In particular, it shows how to apply the algorithm de-
scribed by Ortelli et al. (2021). In a nutshell, an optimization algorithm is
used to generate models based on a minimal number of inputs provided by
the analyst. These inputs are used to build a space of possible specifications
that may contain any form of variable interaction, nonlinear transformation,
segmentation of the population and potential choice models; the space is then
explored by an algorithm that sequentially introduces small modifications to
an initial set of promising specifications.

We assume that the reader is already familiar with discrete choice models
and Biogeme. This document has been written using Biogeme 3.2.12.

We use the Swissmetro example throughout the document. The Python
scripts are available on GitHub in the biogeme repository, in the directory
examples/assisted. They are also reported in the Appendix.

1 Catalogs

The philosophy of the assisted specification is that the analyst may have
several specifications in mind, but does not know a priori which one is the
most appropriate. Biogeme can then accept as input a “catalog” of different
specifications, and estimate all specifications in the catalog, and provide a
comparative report of the estimation results. It provides a great flexibility to
the analyst who can replace any expression of the model by such a catalog,
as illustrated with the examples in this document.

In some cases, the number of possible specifications is so high that an
exhaustive enumeration is not feasible. In that case, the algorithm proposed
by Ortelli et al. (2021) is applied in order to investigate a subset of potentially
promising specifications.

The code used to generate the examples presented in this Section is avail-
able in Appendix 3.

Each catalog is associated with a unique name, and a list of different valid
expressions, each of them also associated with a name. For instance, suppose
that we want to define a catalog that contains both a logit and a nested logit
models.

We first define each of the models, like in a regular Biogeme script:

logprob_logit = models.loglogit(V, av, CHOICE)

and

logprob_nested = models.lognested(V, av, nests, CHOICE)

The catalog can then be defined using the following syntax, that is self-
explanatory:
model_catalog = Catalog.from_dict(
catalog_name=’model_catalog’,
dict_of_expressions={
’logit’: logprob_logit,
"nested’: logprob_nested

3
)

Note that the catalog class must first be imported using the following syntax:

from biogeme.catalog import Catalog

A catalog is a regular Biogeme expression, that can be used in another
expression. At each given point in time, exactly one of the expressions of the
catalog is active, and used for the evaluation of the expression. For instance,
if we print the catalog above, it corresponds to the logit specification by
default:

print(model_catalog)
[model_catalog: logit]...

where the ellipsis is the actual expression of the logit model (which is too
long to report in this document). In order to modify the configuration of a
catalog, Biogeme uses a controller, that is accessible using the controlled_by
attribute of the catalog. For instance, in order to activate the nested logit
specification, we need to write

model _catalog.controlled_by.set_name(’nested’)

Now, if we print the catalog again, we obtain

print(model_catalog)
[model_catalog: nested]...

where the ellipsis is the actual expression of the nested logit model.
In general, there is no need to explicitly access to the controller, as Bio-
geme provides high level access to the catalog. The simplest one is an iterator:

for specification in model_catalog:
print(specification)

provides the following output:

[model_catalog: nested]...
[model _catalog: logitl]...

For the sake of this document, instead of listing the expressions themselves
(which can be long and complicated), we report the configuration identifiers
of the controller, that identifies all possible specifications associated with a
catalog. This is usually not needed by regular users. The function used to do
that is described in Appendix 2. For the model_catalog, it gives the following
output:

model _catalog:logit
model_catalog:nested

Also, the Biogeme object has a function called estimate_catalog, that iterates
on all specifications in a catalog (if possible), and estimate the corresponding
models. If there are too many specifications to be enumerated, it launches
the assisted specification algorithm if not. This function is illustrated in
Section 3.

1.1 Synchronized catalogs

A catalog can be used for alternative nonlinear specifications of a variable.
Here, we use the example of the train travel time, in the Swissmetro example.
Again, we first define each specification separately:

1. the linear specification:

linear_train_tt = TRAIN_TT

2. the Box-Cox transform:

ell_travel_time = Beta(’lambda_travel_time’, 1, -10, 10, 0)
boxcox_train_tt = boxcox(TRAIN_TT_SCALED, ell_travel_time)

3. the squared variable:

squared_train_tt = TRAIN_TT * TRAIN_TT

Note that the boxcox function must first be imported as follows:

from biogeme.models import boxcox

The catalog can be defined, using the same syntax as above:

train_tt_catalog = Catalog.from_dict(
catalog_name=’train_tt_catalog’,
dict_of_expressions={
’linear’: linear_train_tt,
"boxcox’: boxcox_train_tt,
’squared’: squared_train_tt,
Yo
)

The catalog can be used as a regular expression in the definition of the utility
function, for instance:

V_TRAIN = ASC_TRAIN + B_TIME * train_tt_catalog +

Note that, because V_TRAIN contains a catalog, it is possible to iterate through
its specifications as well:

for specification in V_TRAIN:
print(specification)

generates the following output:

(ASC_TRAIN(init=0) + (B_TIME(init=0) x [train_tt_catalog:
boxcox]. ..

(ASC_TRAIN(init=0) + (B_TIME(init=0) * [train_tt_catalog:
linear JTRAIN_TT))

(ASC_TRAIN(init=0) + (B_TIME(init=0) * [train_tt_catalog:
squared]J(TRAIN_TT * TRAIN_TT)))

where the ellipsis is replaced by the complete specification of the Box-Cox
model.

Now, we would like to specify a similar catalog for the car travel time, in
the same model. We apply the exact same syntax as above:

4

CAR_TT = Variable(’CAR_TT’)

linear_car_tt
boxcox_car_tt
squared_car_tt
car_tt_catalog

CAR_TT
boxcox (CAR_TT, ell_travel_time)

= CAR_TT x CAR_TT
= Catalog.from_dict(

catalog_name=’car_tt_catalog’,
dict_of_expressions={

’linear’: linear_car_tt,
’boxcox’: boxcox_car_tt,
’squared’: squared_car_tt,

3
)

In order to illustrate how those catalogs are combined, we build a dummy
expression that calculates their sum:

dummy_expression = train_tt_catalog + car_tt_catalog

If we print all possible configurations, we obtain nine combinations (the order
in which they appear is irrelevant):

car_tt_catalog:
car_tt_catalog:
car_tt_catalog:
car_tt_catalog:
car_tt_catalog:
car_tt_catalog:
car_tt_catalog:
car_tt_catalog:
car_tt_catalog:

linear;train_tt_catalog:linear
linear;train_tt_catalog:boxcox
linear;train_tt_catalog:squared
boxcox;train_tt_catalog:squared
boxcox;train_tt_catalog:boxcox
boxcox;train_tt_catalog:linear
squared; train_tt_catalog:linear
squared;train_tt_catalog:boxcox
squared;train_tt_catalog:squared

Indeed, the combination of three configurations for one variable and three
configurations for the other one gives nine specifications. However, this is
not always the desired effect. It is actually often desirable that the same
nonlinear transform is applied to both variables. In that case, we need to
synchronize the two catalogs. It means that they must be controlled by
the same controller. This is achieved by constructing the second catalog as

follows:

car_tt_catalog = Catalog.from_dict(
catalog_name=’car_tt_catalog’,
dict_of_expressions={

’linear’: linear_car_tt,
’boxcox’: boxcox_car_tt,
’squared’: squared_car_tt,

3,

controlled_by=train_tt_catalog.controlled_by

)

The controlled_by argument allows to explicitly specify a controller for the
catalog. In this case, we provide the controller of the train_tt_catalog. Note

that it is required that synchronized catalogs have exactly the same set of
labels to identify their entries. If we now report the specifications of the
dummy expression defined above, we obtain only three specifications, where
both variables are associated with the same transformation:
train_tt_catalog:linear

train_tt_catalog:squared
train_tt_catalog:boxcox

Note that only the controller of the train travel time catalog is involved, as
it is used also for the car travel time.

1.2 Alternative-specific coefficient

In discrete choice models, it is typical to test a specification where the co-
efficient of a variable is generic, that is, the same for all alternatives, or
alternative-specific. For example, we are considering a catalog containing
specifications where the cost coefficient and the time coefficient should be
both generic, or both alternative-specific. In order to build such a catalog,
we need the function generic_alt_specific_catalogs that can be imported as
follows:

from biogeme.catalog import generic_alt_specific_catalogs

The following syntax is used:

(B_TIME_catalog_dict, B_COST_catalog_dict) =
generic_alt_specific_catalogs(
generic_name=’coefficients’,
beta_parameters=[B_TIME, B_COST],
alternatives=(’TRAIN’, ’CAR’)

)

The function takes three* arguments:
1. a generic name that identifies the catalogs,
2. a list of parameters, defined with Beta,
3. a tuple containing the names identifying the alternatives.

It returns a tuple of dictionaries where the keys are the name of the alter-
natives, and the values are the corresponding catalogs. They are used as
follows:

2As discussed later, it actually takes five arguments, but two of them have default
values.

V_TRAIN = (
B_TIME_catalog_dict[’TRAIN’] x TRAIN_TT +
B_COST_catalog_dict[’TRAIN’] % TRAIN_COST

)
V_CAR = (
B_TIME_catalog_dict[’CAR’] * CAR_TT +
B_COST_catalog_dict[’CAR’] * CAR_COST
)

In order to illustrate the catalogs, we build again a dummy expression:

dummy_expression = V_TRAIN + V_CAR

There are two possible configurations for this expression, one where both
coefficients are alternative-specific, and one where both are generic.

coefficients_gen_altspec:generic
coefficients_gen_altspec:altspec

If it is not desirable to have both coefficients synchronized, two different
calls to the function must be performed:

(B_TIME_catalog_dict,) = generic_alt_specific_catalogs(
generic_name=’time_coefficient’,
beta_parameters=[B_TIME],
alternatives=(’TRAIN’, ’CAR’)

)

(B_COST_catalog_dict,) = generic_alt_specific_catalogs(
generic_name=’cost_coefficient’,
beta_parameters=[B_COST],
alternatives=(’TRAIN’, ’CAR’)

)

Note that the function returns a tuple. And if the tuple contains only one
entry (as in this example), a comma must be explicitly mentioned in order
to obtain this single entry. An equivalent syntax would be

B_TIME _catalog_dict_tuple = generic_alt_specific_catalogs(
generic_name=’time_coefficient’,
beta_parameters=[B_TIME],
alternatives=(’TRAIN’, ’CAR’)

)
B_TIME_catalog_dict = B_TIME_catalog_dict_tuple[0]

As the two specifications are now independent, iterating on the dummy ex-
pression provides four specifications:

cost_coefficient_gen_altspec:generic;time_coefficient_gen_altspec:
cost_coefficient_gen_altspec:generic;time_coefficient_gen_altspec:
cost_coefficient_gen_altspec:altspec;time_coefficient_gen_altspec:
cost_coefficient_gen_altspec:altspec;time_coefficient_gen_altspec:

generic
altspec
generic
altspec

1.3 Segmentations

In order to capture potential taste heterogeneity, specifications where a co-
efficient takes different values for different segments of the population can
be investigated. The population is segmented using discrete socio-economic
characteristics. If such a discrete variable takes L values, they correspond to
L segments in the population. But several such variables can be combined
to define a segmentation. If K socio-economic characteristics are considered,
each of them with Ly discrete values, a total of HE:1 Ly segments can po-
tentially be defined, and a different coefficient associated with each of them.
However, the number of segments defined in this way grows exponentially
with K. It is statistically impossible to estimate a different coefficient for
each segment when K is high. Therefore, we consider a simplified segmenta-
tion method that proceeds as follows:

e Define a reference coefficient 3.

e For each socio-economic characteristic xy, select one value that corre-
sponds to the reference. Without loss of generality, assume that it is
the first one.

e Introduce a parameter B}, for each other value { = 2,..., L.

e The value of the coefficient as a function of the socio-economic charac-
teristics is defined as

K L
B(xty-e oy xk) = Brer + > > B L = 1,

k=1 (=2

where 1[x, = €] is 1 if the condition within the brackets is true, and 0
otherwise.

The number of parameters is therefore T—K+ ZE:1 Ly, which grows linearly
with K.

Let’s take an example with K = 2, where the first socio-economic char-
acteristic segments the population between individuals who are commuters
from those who are not, and the second segments the population into in-
dividuals without luggage, those carrying one piece of luggage, and those
carrying more than one piece of luggage. Therefore, L; =2 and L, = 3. This
segmentation is associated with 1 —2 4 2 4+ 3 = 4 coefficients:

L Breﬁ

commuters
° 1 ,

one_luggage
4 B 2)

° B;everal,luggages’
where the values “non commuters” and “no luggage” are used as reference
for each variable, respectively. Now, note that the number of segments is
2 -3 = 6. The value of the coefficient associated with each of them can be
reconstructed from the above coefficients as follows:

Commuter Luggages Coefficient

yes 0 Bref + Balommuters

yes 1 Bref 4 B(lzommuters + szme,luggage
yes > 1 Bref + B?Ommuters + B;@Veralluggages
no 0 Bref

no 1 Bref + Bgne,luggage

no > 1 Bref + BZGVeraLluggages

This simplified procedure makes the implicit assumption that the combined
effects of two socio-economic characteristics is the sum of two specific effects.
This is the price to pay to deal with the curse of dimensionality.

In this context, we would like to construct a catalog that contains the
following specifications:

e no segmentation, that is, the same coefficient for the whole population,

e a segmentation with the first variable only, that is T —1+4+2 = 2
coefficients: P, and Bommuters,

e a segmentation with the second variable only, that is T—1+3 =3

i - 11
coefficients: Brefy gne uggage o d B;evera uggages

Y

e a segmentation with both variables, involving 4 coefficients as described
above.

And we would like to apply these segmentations to two alternative-specific
constants, that must be segmented in the same way. To do that with Bio-
geme, we first need to define the segmentations, using the following syntax:

segmentation_purpose = database.generate_segmentation(
variable=’COMMUTERS’,
mapping={
@: ’non_commuters’,
1: ’commuters’

3

reference=’non_commuters’

)

segmentation_luggage = database.generate_segmentation(
variable="LUGGAGE’ ,
mapping={
0: ’no_lugg’,
1: ’one_lugg’,
3: ’several_lugg’

1

reference="no_lugg’

)

where the function generate_segmentation takes the following two arguments:
e the name of the discrete socio-economic characteristic in the database,

e a dictionary mapping the values of the variables in the database, and
a name identifying what they mean,

e the name of the reference level.

Note that the name of the reference level can be omitted. One of the levels
will then be arbitrarily chosen as the reference. We can now create the
catalogs themselves:
ASC_TRAIN_catalog, ASC_CAR_catalog = segmentation_catalogs(
generic_name=’ASC’,
beta_parameters=[ASC_TRAIN, ASC_CAR],
potential_segmentations=(
segmentation_purpose,
segmentation_luggage,

) ’

maximum_number=2,

)

where the function segmentation_catalogs can be imported using the following
statement

from biogeme.catalog import segmentation_catalogs

It takes four arguments:
1. a generic name that applies to all specifications,
2. a list of parameters to be segmented,
3. a list of potential segmentations,

4. the maximum number of segmentations that can be activated at the
same time.

10

If we report the configurations of the dummy expression defined as the sum
of the two catalogs, we obtain the following four configurations:

ASC:no_seg

ASC: LUGGAGE

ASC: COMMUTERS
ASC: COMMUTERS -LUGGAGE

If we call the same function with the parameter maximum_number set to 1, we
obtain
ASC:no_seg

ASC: LUGGAGE
ASC: COMMUTERS

as the interaction with both variables is not allowed anymore.

1.4 Alternative-specific and segmented coefficients

It is also possible to segment alternative-specific coefficients, and generate
catalogs that provide specifications with or without segmentation, and with
generic or alternative-specific coefficients. This is done using the following
syntax:
(B_TIME_catalog_dict,) = generic_alt_specific_catalogs(
generic_name=’'B_TIME’,
beta_parameters=[B_TIME],
alternatives=[’TRAIN’, ’CAR’],
potential_segmentations=(
segmentation_purpose,
segmentation_luggage,

) ’

maximum_number=1,

)

where the function generic_alt_specific_catalogs is the same as in Section 1.2,
and can be imported as follows:

from biogeme.catalog import generic_alt_specific_catalogs

The function takes five arguments:
1. a generic name that identifies the catalogs,
2. a list of parameters, defined with Beta,
3. a tuple containing the names identifying the alternatives,

4. a list of potential segmentations (set to None by default),

11

5. the maximum number of segmentations that can be activated at the
same time (set to 5 by default).

This function creates a dictionary with two catalogs B_TIME_catalog[’ TRAIN’]
and B_TIME_catalog[’CAR’], synchronized, and therefore controlled by the same
controller. There are six possible configurations:
B_TIME:no_seg;B_TIME_gen_altspec:generic
B_TIME:no_seg;B_TIME_gen_altspec:altspec

B_TIME:LUGGAGE ;B_TIME_gen_altspec:generic

B_TIME :LUGGAGE ;B_TIME_gen_altspec:altspec
B_TIME:COMMUTERS;B_TIME_gen_altspec:generic

B_TIME : COMMUTERS;B_TIME_gen_altspec:altspec

If we allow to segment the population with two socio-economic character-
istics instead of just one, we obtain a total of eight configurations, as the
double segmentation can be considered with generic or alternative-specific
coefficients:

B_TIME:no_seg;B_TIME_gen_altspec:generic
B_TIME:no_seg;B_TIME_gen_altspec:altspec

B_TIME :LUGGAGE ;B_TIME_gen_altspec:generic

B_TIME :LUGGAGE ;B_TIME_gen_altspec:altspec

B_TIME :COMMUTERS;B_TIME_gen_altspec:generic
B_TIME:COMMUTERS;B_TIME_gen_altspec:altspec
B_TIME:COMMUTERS -LUGGAGE ; B_TIME_gen_altspec:generic

B_TIME : COMMUTERS -LUGGAGE ;B_TIME _gen_altspec:altspec

2 Comparing models

The use of catalogs generates a great deal of potential specifications. And
we would like to focus of the best ones. One possibility would be to focus
on one criterion, such as the Akaike Information Criterion (AIC), and decide
that the best model is the one with the lowest AIC. While it is a valid idea,
the outcome of the estimation will be exactly one model. And if, for some
reasons, that model happens not to be acceptable, no other model will be
proposed to the analyst. Instead, we would like to combine several indicators
to identify good models. In particular, we would like to keep models that
fit the data well (that is, associated with a high log likelihood), and models
that are parsimonious (that is, with a low number of parameters). If we
consider those two indicators simultaneously, we need to use the concept of
dominance and Pareto optimality (formally defined in Appendix 1). Consider
a model M with K; parameters and final log likelihood £;, and M; with
K, parameters and final log likelihood £;. We say that M; dominates M, if

12

it is no worse than M; in any objective, and strictly better in at least one
objective, that is:
ﬁ] > ﬁz and K; < Kz,

or
[:1 > £2 and K; < K,.

In this context, we will keep only models that are not dominated. Such
models are said to be Pareto optimal.

3 Estimating parameters using catalogs

We illustrate the concept of catalogs by estimating several specifications. We
build on the examples from Section 1 on page 2.

3.1 Various choice models

We consider first a catalog that includes a logit and two nested logit models,
each with a different nest definition. The catalog is constructed as described
above:
model_catalog = Catalog.from_dict(
catalog_name=’model_catalog’,
dict_of_expressions={
’logit’: logprob_logit,
"nested existing’: logprob_nested_existing,
"nested public’: logprob_nested_public,

}7
)

and is provided to the Biogeme object:
the_biogeme = bio.BIOGEME (database, model_catalog)

The various specifications can be estimated using the estimate_catalog func-
tion:

dict_of_results = the_biogeme.estimate_catalog()

The complete code is available in Appendix 6. The output of estimation is
a dictionary, where each key is the name of a model, and each value is an
object containing the estimation results. In this document, we process this
dictionary using the code presented in Appendix 5. The output of the script
contains two parts. The first part contains the complete set of results (see
Figure 1). Each column is associated with a model name, each name being
associated with a specification below:

13

Model _000000 model _catalog:nested public
Model _000001 model _catalog:nested existing
Model _000002 model _catalog:logit

14

q1

A total of 3 models have been estimated

== Estimation results

Number of estimated parameters

Sample size

Final log likelihood

Akaike Information Criterion
Bayesian Information Criterion
ASC_CAR (t-test)

ASC_TRAIN (t-test)

B_COST (t-test)

B_TIME (t-test)

MU_public (t-test)

MU_existing (t-test)
model_catalog:
model _catalog:
model _catalog:

Model_000000
Model_000001
Model_000002

Model _000000
5

6768
-5331.252007
10672.504014
10706.603818

-0.155 (-2.03)
-0.701 (-5.22)
-1.08 (-14.4)
-1.28 (-10.5)

1 (8.78)

nested public
nested existing

Figure 1: Different choice models:

Model_000001
5

6768
-5236.900014
10483.800028
10517.899832

167 (-3.07)
512 (-6.47)
.857 (-14.3)
.899 (-8.39)

2.05 (12.5)

Model _000002
4

6768
-5331.252007
10670.504014
10697.783857

-0.155 (-2.66)
-0.701 (-8.49)
-1.08 (-15.9)
-1.28 (-12.3)

complete estimation report

It can be seen that the models model_catalog:nested public and model_catalog:logit
achieve the same final log likelihood. The nest parameter of the nested logit
model is actually 1. Therefore, model model_catalog:nested public is domi-
nated by model model_catalog:logit, and should be rejected. This is how the
second part of the output is generated, keeping only non dominated models,
as reported in Figure 2 on the next page. Note that the logit model is better
in terms of parsimony, and the nested logit model is better in terms of fit.

16

L1

Number of estimated parameters
Sample size

Final log likelihood

Akaike Information Criterion
Bayesian Information Criterion

ASC_CAR (t-test) -0.
ASC_TRAIN (t-test) -0.
B_COST (t-test) -0.
B_TIME (t-test) -0.

MU_existing (t-test)
Model_000000 model _catalog:neste
Model_000001 model_catalog:logit

Figure 2: Different choice models: Pareto optimal models

Model_000000
5
6768
-5236.900014
10483.800028
10517.899832
167 (-3.07)
512 (-6.47)
857 (-14.3)
899 (-8.39)
2.05 (12.5)
d existing

-0.155
-0.701

Model 000001
4

6768
-5331.252007
10670.504014
10697.783857

(-2.66)
(-8.49)
-1.08 (-15.9)
-1.28 (-12.3)

3.2 Nonlinear specifications

We consider a catalog that includes various specifications for the travel time
variables:

e a linear specification,
e a Box-Cox transform,
e a power series of degree 3.

If x; is the travel time variable, the catalog contains the following specifica-

tions:

A
X"t_1 3

A y and Xt + BsquareX% + Bcubext-

It can be seen that some of these specifications involve additional parameters,
some not. We use synchronized catalogs, so that the travel time variable is
involved in the same way in all alternatives. The full specification is available
in Appendix 7. The results associated with each of the three specifications
are reported in Figure 3 on the following page. It is interesting to note that
none of these model is dominated by another one.

Xty

18

61

A total of 3 models have been estimated

== Estimation results ==

Number of estimated parameters
Sample size

Final log likelihood

Akaike Information Criterion
Bayesian Information Criterion
ASC_CAR (t-test)

ASC_TRAIN (t-test)

B_COST (t-test)

B_TIME (t-test)
lambda_travel_time (t-test)
cube_tt_coef (t-test)
square_tt_coef (t-test)

Model _000000
Model _000001
Model_000002

train_tt_catalog:
train_tt_catalog:
train_tt_catalog:

Figure 3:

Model_000000
4

6768
-5331.252007
10670.504014
10697.783857

-0.155 (-2.66)
-0.701 (-8.49)
-1.08 (-15.9)
-1.28 (-12.3)
linear
boxcox
power

Model_000001

5

6768
-5292.095411
10594.190822
10628.290626
-0.00462 (-0.0963)
-0.485 (-7.53)
-1.08 (-15.9)
-1.67 (-21.9)
0.51 (6.6)

Model_000002
6

6768
-5236.262942
10484.525883
10525.445649

0.0434 (0.965)
-0.409 (-6.8)
-1.11 (-16)
-2.32 (-22.6)
0.000193 (7.38)
-0.105 (-21.2)

Nonlinear specifications: complete estimation report

3.3 Alternative-specific coefficients

We consider a catalog that considers both generic and alternative-specific
specifications for both the cost coefficient and the travel time coefficient.
The full specification is available in Appendix 8. The results associated with
each of the four specifications are reported in Figure 4 on the next page. Note
that the model where the cost coefficient is generic and the time coefficient
is alternative-specific is dominated by the model where the cost coefficient is
alternative-specific and the time coefficient is generic. Indeed, both models
involve 6 parameters, that the latter has a better fit.

20

1c

A total of 4 models have been estimated

— Estimation results —

Number of estimated parameters
Sample size

Final log likelihood

Akaike Information Criterion
Bayesian Information Criterion
ASC_CAR (t—test)

ASC_TRAIN (t—test)

B_COST (t—test)

B TIME_CAR (t—test)

B. TIMESM (t—test)
B_TIME_.TRAIN (t—test)
B_.COST_CAR (t—test)

B_COSTSM (t—test)
B_COST_TRAIN (t—test)

B.TIME (t—test)
Model_000000
Model 000001
Model_000002
Model_000003

Model 000000
6

6768
—5312.894223
10637.788446
10678.708211

—0.271 (—2.29)
~0.202 (—1.82)

~1.07 (—16)
~1.12 (—10.3)
—1.17 (—6.42)
~1.57 (—14.4)

B_COST_gen_altspec: generic; B.TIME_gen_altspec:
B_COST_gen_altspec: altspec; B_.TIME _gen_altspec:
B_COST_gen_altspec: altspec; B_.TIME _gen_altspec:
B_COST_gen_altspec: generic; B_.TIME _gen_altspec:

Model 000001
8

6768
—5075.704346
10167.408692
10221.968379

Model 000002
6

6768
—5083.499937
10178.999875
10219.91964

—0.367 (—3.32) —0.427 (—5.55)
—0.0754 (—0.712) 0.189 (2.06)
—1.29 (—7.92)
—1.11 (—6.25)
—0.889 (—7.51)
—0.786 (—5.27) —0.939 —8.1)
—1.12 (—14.2) —1.09 (—15.5)
—3.08 (—16) —2.93 (—17.4)
—1.12 —9.3)
altspec
altspec
generic
generic

Model 000003
4

6768
—5331.252007
10670.504014
10697.783857

—~0.155 (—2.66)
—0.701 (—8.49)
~1.08 (—15.9)
—1.28 (—12.3)

Figure 4: Alternative-specific coefficients: complete estimation report

3.4 Segmentations

We consider a catalog that considers potential segmentations of the param-
eters. The alternative-specific constants are potentially interacted with the
variables GA (identifying if the traveler owns a yearly subscription, with 2
levels) and LUGGAGES (identifying if the traveler is carrying luggages, with
3 levels), or both. The travel time coefficient is potentially interacted with
the variables FIRST (identifying if the traveler is traveling first class, with 2
levels) or PURPOSE (identifying if the traveler is a commuter or not, with
2 levels). Maximum one such interaction is allowed.
Therefore, we have 4 specifications for the constants:

e not segmented,
e segmented by GA (yearly subscription to public transport),
e segmented by luggage,
e segmented both by GA and luggage,
and 3 specifications for the time coefficients:
e not segmented,
e segmented with first class,
e segmented with trip purpose,

so that we obtain a total of 12 specifications.

The full specification is available in Appendix 9. Among the 12 estimated
models, 5 are Pareto optimal. The estimation results are reported in Figure 5
on the following page.

22

€¢

Number of estimated parameters
Sample size

Final log likelihood

Akaike Information Criterion
Bayesian Information Criterion
ASC_CAR (t—test)

ASC_CAR.GA (t—test)

ASC_TRAIN (t—test)
ASC_TRAIN_.GA (t—test)

B_COST (t—test)

B.TIME (t—test)
B_TIME_1st_class (t—test)
ASC_CAR_one_lugg (t—test)
ASC_CAR_several_lugg (t—test)
ASC_TRAIN_one_lugg (t—test)

ASC_TRAIN _several_lugg (t—test)
ASC:GA;B_TIME: no_seg
ASC:GA; B_.TIME: FIRST

ASC: GALUGGAGE; B.TIME: FIRST
ASC: no_seg ; B.TIME: FIRST
ASC:no_seg;B.TIME: no_seg

Model_000000
Model 000001
Model_000002
Model_000003
Model_000004

Model_000000
6

6768
—5050.677696
10113.355391
10154.275157

—0.249 (—3.97)
—0.301

)
—1.28 (—14)
1.97 (22.3)
—1.1 (—14.8)
)

—1.18 (—11.3

—0.281
~0.231 (—1.19
—1.37 (—14.7

Model 000001
7

6768
—4976.118641
9966.237282
10013.977009

1.91 (21.5

—0.621 (—4.46

)
)
)
—1.26 (—15.3)
)
—0.914 (—8.6)

)

)

1.75 (19.1)
—1.25 (—15.3)
~0.622 (—4.42)
—0.891 (—8.26)
0.0324 (0.486)
—0.437 (—1.82)
0.635 (6.4)
0.431 (2)

Model_000002
11

6768
—4952.546476
9927.092951
10002.112521

—0.298 (—4.12)
—0.206 (—1.05
~1.79 (—15.4

Figure 5: Segmentation: Pareto optimal models

Model_000003
5

6768
—5234.708233
10479.416466
10513.51627

—0.187 (—3.23)
—~0.814 (—9.45)
~1.23 (—16.6)

—0.647 (—4.69)
—1.02 (—9.87)

Model_000004
4

6768
—5331.252007
10670.504014
10697.783857

—0.155 (—2.66)
—~0.701 (—8.49)

~1.08 (—15.9)
~1.28 (-12.3)

3.5

Segmentations and alternative-specific coefficients

We consider a catalog that considers potential segmentations of the param-
eters as well as alternative-specific coefficients. We consider 4 specifications
for the constants:

not segmented,
segmented by GA (yearly subscription to public transport),
segmented by luggage,

segmented both by GA and luggage.

We consider 6 specifications for the time coefficients:

generic and not segmented,

generic and segmented with first class,

generic and segmented with trip purpose,
alternative-specific and not segmented,
alternative-specific and segmented with first class,

alternative-specific and segmented with trip purpose.

Finally, We consider 2 specifications for the cost coefficients:

generic,

alternative-specific.

In total, we obtain 48 specifications. The full specification is available in
Appendix 10. Among the 48 estimated models, 8 are Pareto optimal. The
estimation results are reported in Figure 6 on the next page and Figure 7 on
page 26.

24

IS¢

Number of estimated parameters
Sample size

Final log likelihood

Akaike Information Criterion
Bayesian Information Criterion
ASC_CAR (t—test)

ASC_CAR.GA (t—test)

ASC_TRAIN (t—test)
ASC_TRAIN_.GA (t—test)

B_COST (t—test)

B.TIME (t—test)
B_TIME_1st_class (t—test)
ASC_CAR_one_lugg (t—test)
ASC_CAR_several_lugg (t—test)
ASC_TRAIN_one_lugg (t—test)

ASC_TRAIN_several_lugg (t—test)

B_.COST-CAR (t—test)

B_.COSTSM (t—test)
B_COST_TRAIN (t—test)
B.TIME.CAR (t—test)
B_TIME_CAR_commuters (t—test)
B.TIMESM (t—test)
B_TIME_SM_commuters (t—test)
B_.TIME_TRAIN (t—test)

B_.TIME_TRAIN_commuters (t—test)
ASC:GA; B_.COST_gen_altspec: generic ;B.TIME: FIRST; B_.TIME_gen_altspec: generic
ASC:GA-LUGGAGE; B_.COST _gen_altspec: altspec ; B.TIME:COMMUTERS; B_. TIME _gen_altspec:
ASC:GA; B_.COST_gen_altspec: generic ;B.TIME: no_seg; B_.TIME_gen_altspec: generic
ASC:GA; B_.COST_gen_altspec: altspec ; B.TIME: FIRST; B_.TIME_gen_altspec: generic

Model_000000
Model_000001
Model_000002
Model 000003

Model_000000
7

6768
—4976.118641
9966.237282
10013.977009

—0.281 (—4.53)
—0.231 (—1.19)
—1.37 (—14.7)

1.91 (21.5)
~1.26 (—15.3)
—0.621 (—4. 46)
—0.914 (—8.6)

Model_000001

17

6768
~4865.971435
9765.94287
9881.882206
—0.446 (—3.68)
—0.145 (—0.739)
~1.07 (—6.72)
1.26 (8.67)
0.0264 (0.394)
~0.299 (—1.23)
0.674 (6.7)
0.495 (2.3)
~0.836 (—5.28)
—1.15 (—14)
—2.03 (—9.61)
~1.55 (—11.3)
0.682 (3.48)
~1.73 (—15.3)
1.6 (8.06)
—1.34 (—12.7)
0.116 (0.848)

Model_000002
6

6768
—5050.677696
10113.355391
10154.275157

—0.249 (—3.97)
—0.301 (—1.56)
~1.28 (—14)
1.97 (22.3)
—1.1 (—14.8)
~1.18 (—11.3)

Model_000003

9
6768
—4945.30006
9908.60012
9969.979768
—0.662 (—7.79)
—0.0761 (—0.389)
—0.938 (—6.76)
1.52 (11.1)
—0.69 (—4.56)
—0.925 (—8.62)
—0.848 (—7.25)
—1.3 (—16.1)
—1.83 (—10.3)
altspec

Figure 6: Segmentation and alternative-specific coefficients: Pareto optimal models (part 1)

9¢

Number of estimated parameters
Sample size

Final log likelihood

Akaike Information Criterion
Bayesian Information Criterion
ASC_CAR (t—test)

ASC_CAR.GA (t—test)

ASC_TRAIN (t—test)
ASC_TRAIN_.GA (t—test)

B_COST (t—test)

B.TIME (t—test)
B_TIME_1st_class (t—test)
ASC_CAR_one_lugg (t—test)
ASC_CAR_several_lugg (t—test)
ASC_TRAIN_one_lugg (t—test)
ASC_TRAIN_several_lugg (t—test)
B_.COST-CAR (t—test)

B_.COSTSM (t—test)
B_COST_TRAIN (t—test)
B.TIME.CAR (t—test)
B_TIME_CAR_commuters (t—test)
B_.TIMESM (t—test)
B_TIME_SM_commuters (t—test)
B.TIME_TRAIN (t—test)
B_.TIME_TRAIN_commuters (t—test)
Model_000004
Model_000005
Model_000006
Model_000007

Model_000004
4

6768
—5331.252007
10670.504014
10697.783857

—0.155 (—2.66)
—0.

—1701 (—8.49)
~1.08 (—15.9)

—0..28 (—12.3)
—0

Model_000005
5

6768
—5234.708233
10479.416466
10513.51627

—0.187 (—3.23)
—0.814 (—9.45)
~1.23 (—16.6)
—0.647 (—4.69)
—1.02 (—9.87)

Model_000006
11

6768
—4928.268572
9878.537145
9953.556715

—0.383 (—2.95)
—0.217 (—1.14)
—0.965 (—7.29)
2.05 (21. 8)
—1.13 (—15)
—1.4 (—16.8)
0.699 (3.61)
~1.8 (—16.6)
1.66 (8.62)
~1.61 (—17.3)
0.178 (1.3)

Model_000007
13

6768
—4890.815071
9807.630143
9896.289635

—0.434 (—3.72)
~0.173 (—0.891)
—0.593 (—4. 28)
1.38 (9.3)
—0.845 (—5.37)
—1.15 (—14.1)
~2.09 (—9.76)
~1.55 (—11.4)
0.692 (3.54)
~1.74 (—15.4)
1.62 (8.15)

)

—1.35 (—12.8
0.13 (0.956)

ASC:no_seg; B_.COST_gen_altspec: generic ;B.TIME: no_seg ; B_.TIME_gen_altspec: generic
ASC:no_seg; B_.COST _gen_altspec: generic ;B.TIME:FIRST; B_.TIME _gen_altspec: generic
ASC:GA; B_.COST _gen_altspec: generic ; B.TIME:COMMUTERS; B_.TIME _gen_altspec: altspec
ASC:GA; B_.COST _gen_altspec: altspec ; B.TIME:COMMUTERS; B_.TIME_gen_altspec: altspec

Figure 7: Segmentation and alternative-specific coefficients: Pareto optimal models (part 2)

3.6 Combining several specifications

We consider now a combination of the various specifications considered so
far:

e 3 models:
— logit,
— nested logit with two nests: public and private transportation,
— nested logit with two nests existing and future modes,
e 3 functional forms for the travel time variables:
— linear specification,
— Box-Cox transform,
— power series,
e 2 specifications for the cost coefficients:
— generic,
— alternative-specific,
e 2 specification for the travel time coefficients:
— generic,
— alternative-specific,
e 4 segmentations for the constants:
— not segmented,
— segmented by GA (yearly subscription to public transport),
— segmented by luggage,
— segmented both by GA and luggage,
e 3 segmentations for the time coefficients:

— not segmented,
— segmented with first class,
— segmented with trip purpose.
This leads to a total of 432 specifications. The script with the specification

is available in Appendix 11. If it is attempted to estimate all specifications
of this catalog, the following exception will be raised:

27

There are too many [432] different specifications for the log
likelihood function. This is above the maximum number: 100.
Simplify the specification, change the value of the
parameter maximum_number_catalog_expressions, or consider
using the AssistedSpecification object in the
"biogeme.assisted” module.

4 Assisted specification

When the systematic estimation of all possible specifications is infeasible,
it is possible to rely on the assisted specification algorithm, inspired by the
work of Ortelli et al. (2021).

This is done by first creating the object, using the following syntax:

assisted_specification = AssistedSpecification(
biogeme_object=the_biogeme,
multi_objectives=loglikelihood_dimension,
pareto_file_name=PARETO_FILE_NAME ,

)

where the class AssistedSpecification must be imported as follows:

from biogeme.assisted import AssistedSpecification

Its constructor takes three arguments:
1. the biogeme object,

2. a function providing all the indicators used to exclude dominated mod-
els,

3. the name of a file that will collect all the models that have been esti-
mated,

4. a function verifying the validity of the results (optional).

The biogeme object is constructed as before, from the database and the
catalog:

the_biogeme = bio.BIOGEME (database, model_catalog)
The function must take the estimation results as argument, and return a list

of indicators. The convention is that, the lower the value of the indicator,
the better the model. Here is an example of such a function:

def loglikelihood_dimension(results):
"""Function returning the negative log likelihood and the
number

28

of parameters, designed for multi-objective optimization

:param results: estimation results
:type results: biogeme.results.bioResults

nnn

return [-results.data.loglLike, results.data.nparam]

The two indicators in this case are

e the opposite of the final log likelihood (opposite, because of the above
mentioned convention),

e the number of estimated parameters.

Another example involving three indicators is as follows:

def AIC_BIC_dimension(results):
"""Function returning the AIC, BIC and the number
of parameters, designed for multi-objective optimization

:param results: estimation results
:type results: biogeme.results.bioResults

nnn

return [results.data.akaike, results.data.bayesian,
results.data.nparam]

The three indicators are the Akaike Information Criterion (AIC), the Bayesian
Information Criterion (BIC) and the number of estimated parameters. Those
two examples can actually be directly imported from biogeme:

from biogeme.multiobjectives import loglikelihood_dimension,
AIC_BIC_dimension

The “pareto file” is the memory of the process. It stores all models that
have been estimated by the algorithm, together with the relevant indicators.
It is organized in three sections:

1. The [Pareto] section contains all models that are not dominated.
2. The [Considered] section contains all models that have been estimated.

3. The [Removed] section contains all models that have been Pareto optimal
at some point during the algorithm, but that have been rejected by a
dominating model.

4. The [Invalid] section contains all models that have been identified as
invalid.

29

If the file exists when the algorithm is started, its content is used to initialize
the algorithm. This allows to interrupt the algorithm and to relaunch it
without losing what has been found so far.

Like the function calculating the indicators, the function verifying the
validity of the results takes also estimation results as argument, as returns a
tuple with two values:

1. a boolean that is True if the results are valid, and False otherwise,
2. a string explaining why the results are invalid, or None if they are valid.

Here is an example of such a function, where the results are reported invalid
if any coeflicient of time or cost is non negative:

def validity(results):
"""Function verifying that the estimation results are valid.

The results are not valid if any of the time or cost
coefficient is non negative.

nnn

for beta in results.data.betas:
if ’TIME’ in beta.name and beta.value >= 0:
return False, f’{beta.name} = {beta.value}’
if ’COST’ in beta.name and beta.value >= 0:
return False, f’{beta.name} = {beta.value}’
return True, None

The algorithm is executed using the following statement:

non_dominated_models = assisted_specification.run()

Similarly to the estimate_catalog function, it returns a dictionary with all
Pareto optimal models. The code is reported in Appendix 12.

Before looking at the results in the next section, we note that the concept
of “valid” models can be dealt with in several ways. In particular, the sign of
a coefficient can be constrained using the bounds appearing in the definition
of the Beta expression. For instance, if the time and cost coefficients are
constrained to be non positive, all models will be “valid” by design, and the
above function will always return “True”. This may be a good alternative
if there is a high rate of rejected invalid models, that may decrease the
capability of the algorithm to explore the space of possible specifications.

5 Using the Pareto file

As mentioned above, the Pareto file contains the description of all models that
have been estimated by the algorithm, as well as the requested indicators. In

30

this Section, we describe some post-processing methods that allow to exploit
it.

5.1 Selecting one model

Each model in the file is characterized by an ID. For instance:

SPEC_ID = (
>ASC:GA-LUGGAGE "’
"B_COST_gen_altspec:generic;’
"B_TIME:FIRST;’
"B_TIME_gen_altspec:generic;’
"model _catalog:logit;’
’train_tt_catalog:power’

)

corresponds to a model where
e the constants are segmented both by GA and luggages,

e the cost coefficient is generic,

the time coefficient is segmented by first class,

the time coefficient is generic,

the model is logit,

e the travel time variable is transformed using a power series.
The Biogeme object corresponding to this specification can be obtained
using the following constructor:

the_biogeme = bio.BIOGEME. from_configuration/(
config_id=SPEC_ID,
expression=model_catalog,
database=database,

It can be used, either for re-estimation, or for applications.

5.2 Post processing

The post processing object accepts as input the Biogeme object as well as
the Pareto file:

post_processing = ParetoPostProcessing(
biogeme_object=the_biogeme,
pareto_file_name=PARETO_FILE_NAME

31

where the class itself is imported as follows:

from biogeme.assisted import ParetoPostProcessing

The main purpose of this object is to re-estimate all models that are
Pareto optimal. This can be done using the statement:

post_processing.reestimate(recycle=True)

The option “recycle=True” does not re-estimate a model if the pickle file is
already present. Instead, it reads the results from this file. This may be
useful when you interrupt the process. The next time you run it, it does
not need to re-estimate the models that have already been processed. If you
set it to False, the models are re-estimated, irrespectively of the presence of
the pickle file. Note that no output file is overwritten. If an HTML file or
a pickle file for a model already exist, a version number is inserted in the
name of the file. For instance, if my_model.html already exists, the results will
be saved in the file my_model1~00.html.

Finally, it is possible to obtain an illustration of the amount of models
that have been estimated by the algorithm and saved in the Pareto file. This
can be done using the following statements:
= post_processing.plot(

label_x=’Negative log likelihood’,
label_y=’Nbr of parameters’,

plt.show()

It generates a figure with two axes, corresponding to two objectives. Each
model is represented by a point with coordinates calculated using the cor-
responding objectives. The shape of the point represents the status of the
model:

e A circle represents a Pareto optimal model.

e A cross represents a model that has been Pareto optimal at some point
during the course of the algorithm, and later dominated by another
model.

e A star represents a model that has been deemed invalid.
e A small dot represents all other models that have been considered.

An example of this illustration is available in Figure 8 on the next page.
Note that, when more than two objectives have been used by the algo-

rithm, the first two are used by default for the plot. But other objectives

can be selected using the parameters objective_x and objective_y. This can

32

25
® Pareto
Removed
Considered
20 '.‘ : * Invalid
* k-
ok k k- ke
E ok -
154 @ o« *
g @hh>k - *
£ * Xk - W -
G @ X X hMeX- *
aQ XX X *- *
‘s 10 ® X X- - . *
— .. . ¥ -X- .
P . .
° - .
5 & :
L
0-
4900 5000 5100 5200 5300

Negative log likelihood

Figure 8: Models in the Pareto file

also be used to swap the position of the axes, as illustrated by the following
statement, that generates the picture in Figure 9 on the following page:

= post_processing.plot(
label_x=’Nbr of parameters’,
label_y=’Negative log likelihood’,
objective_x=1,
objective_y=0,

6 Conclusion

This report describes several functionalities of Biogeme that happened to be
useful to the authors in the context of model development. It is important to
emphasize that they are not designed to replace the analyst and the modeler.
Instead, they are designed to assist her, in order to facilitate the investigation
of many possible specifications.

These features are experimental, and are likely to be improved in the
future.

33

L J
5300 4 ® Pareto
Removed
Considered
® . * Invalid

5200 - S
e . .
8
< *
T R
o 5100 A L i
o X . : "
.g e - : *
s Loy
& 5000 - XL
z [J . O :

X *
R :
4900 C o XX % gu &
® *x t Dok ok
o} - .
0 5 10 15 20 25

Nbr of parameters

Figure 9: Models in the Pareto file (swapped axes)

References

Bierlaire, M. and Ortelli, N. (2022). Assisted specification with biogeme,
Technical Report TRANSP-OR 220707, Transport and Mobility Labo-

ratory, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzer-
land.

Ortelli, N., Hillel, T., Pereira, F., de Lapparent, M. and Bierlaire, M. (2021).
Assisted specification of discrete choice models, Journal of Choice Mod-
elling 39(100285).

34

Appendix

1 Dominance and Pareto optimality

We consider a vector x € R", which is associated with P indicators: fy(x),
..., fp(x). Each of these indicators is such that lower values are better
than higher values. As there are multiple indicators, it is not necessarily
straightforward to decide which between two vectors x and y is better, as
one can be better for some indicators, and the other one for other indicators.
In order to formalize this, we introduce the concept of dominance.

Consider two vectors x,y € R™. We say that x is dominating y, and
use the notation x <y, if

1. x is no worse in any objective

Vie{l,...,PLfix) < fily),

2. x is strictly better in at least one objective

Fiel,...,PLfix) < fily).

The dominance relation has the following properties:

e Not reflexive: x 4 x.

Not symmetric: x <y # y < x.

Instead: x <y =y £ x.

Transitive: x <yandy <z = x < z.
e Not complete: Ix,y: x Ay andy £ x.

Consider now a set F C R™. The vector x* € F is Pareto optimal if it
is not dominated by any solution in F:

#x € F such that x < x*.

*

Intuitively, x* is Pareto optimal if no objective can be improved without
degrading at least one of the others.

As the relation is not complete, there may be more than one Pareto
optimal solution in a set. The Pareto optimal set is defined as

P*={x*€ Flfx € F:x <x"}L

35

© oo N O ot e w M) =

e e e
g W N = O

16
17
18
19
20
21
22
23
24
25
26
27

2 Function printing the configurations of an
expression

def print_all_configurations(expression: Expression) -> None:

"""Prints all configurations that an expression can take

expression.set_central_controller ()

total =
expression.central_controller.number_of_configurations ()

print(f’Total: {total} configurations’)

for config_id in
expression.central_controller.all_configurations_ids:
print(config_id)

3 Illustrations of the catalogs

This is the code used to generate the examples in Section 1.

777 File simple_example. py

sauthor: Michel Bierlaire , EPFL
sdate: Sun Aug 6 18:18:18 2023

Example of a catalog

2209

import sys
import numpy as np
import biogeme.biogeme as bio
from biogeme import models
from biogeme.expressions import Beta, Variable, Expression
from biogeme.models import boxcox
from biogeme.catalog import Catalog,
generic_alt _specific_catalogs , segmentation_catalogs
from results_analysis import report
from swissmetro_data import (
database ,
CHOICE,
SM_AV,
CAR_AV_SP,
TRAIN_AV SP,
TRAIN_TT_SCALED,
TRAIN_COST_SCALED,
SM_TT_SCALED,
SM_COST_SCALED,
CAR_TT_SCALED,

36

28
29
30
31
32
33
34
35

36
37

38
39

41
42
43
44
45
46
47
48

49
50
51
52
53
54
55
56
57
58
59
60
61

63
64
65
66
67
68
69
70
71
72
73

CAR_CO_SCALED,

def print_all_configurations (expression: Expression) —> None:
»?7 Prints all configurations that an expression can take
expression.set_central_controller ()
total =
expression.central_controller .number_of_configurations ()
print (f’Total: {total} configurations’)
for config_id in
expression.central_controller.all_configurations_ids:
print (config_id)

Parameters to be estimated

ASC_CAR = Beta(’ASC_CAR’, 0, None, None, 0)
ASC_TRAIN = Beta(’ASC_TRAIN’, 0, None, None, 0)
B.TIME = Beta(’B_TIME’, 0, None, None, 0)
B_.COST = Beta(’B_COST’, 0, None, None, 0)

Definition of the wutility functions

V1 = ASC_TRAIN + B.TIME x TRAIN.TT_SCALED + B_COST =
TRAIN_COST_SCALED

V2 = B.TIME * SM_TTSCALED + B_COST x SM_COST_SCALED

V3 = ASC.CAR + B.TIME % CAR.TTSCALED + B_.COST x CAR_.COSCALED

Associate wutility functions with the numbering of alternatives
V= {1: V1, 2: V2, 3: V3}

Associate the awvailability conditions with the alternatives
av = {1: TRAIN.AVSP, 2: SM AV, 3: CARAV.SP}

Definition of the model. This is the contribution of each
observation to the log likelihood function.
logprob_logit = models.loglogit (V, av, CHOICE)

MU = Beta(’MU’, 1, 1,
existing = MU, [1, 3]
future = 1.0, [2]
nests = existing , future

logprob_nested = models.lognested (V, av, nests, CHOICE)

10, 0)

model_catalog = Catalog.from_dict (
catalog_name='model_catalog’,
dict_of_expressions={
’logit’: logprob_logit ,
"nested’: logprob_nested ,

’

37

74
75
76
7
78

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

104
105
106
107

109
110
111
112
113
114
115
116
117
118
119
120
121

)

print (’*xx Current status of the catalog *xx’)
print (model_catalog)
print (’*xx Use the controller to select a different

configuration

***’)

model_catalog.controlled_by .set_name(’nested’)
print (’*xx Current status of the catalog **x’)
print (model_catalog)

print (’*x* Iterator x**’)

for specification

in model_catalog:

print (specification)

print_all_configurations (model_catalog)

print (’*xxx Nonlinear specifications xxx)
TRAIN.TT = Variable (’ TRAIN_TT’)

TRAIN_.COST = Vari
ell_travel_time =
linear_train_tt =
boxcox_train_tt =

able (’ TRAIN_COST ")
Beta(’lambda_travel_time’, 1, —10, 10, 0)
TRAIN_TT

boxcox (TRAIN.TT, ell_travel_time)

squared_train_tt = TRAIN.TT x TRAIN.TT
train_tt_catalog = Catalog.from_dict (

catalog_name=

train_tt_catalog’,

dict_of_expressions={

>linear’:

’boxcox’:

’squared’
J

ASC_TRAIN = Beta(

linear_train_tt ,
boxcox_train_tt ,
: squared_train_tt ,

"ASC_TRAIN’, 0, None, None, 0)

B.TIME = Beta(’B_TIME’, 0, None, 0, 0)
V_TRAIN = ASC_TRAIN + B.TIME % train_tt_catalog

print_all_configurations (V_.TRAIN)

print (’*x Unsynch
CAR.TIT = Variable

ronized catalogs #*x’)
(’CAR_TT”)

CAR.COST = Variable(’CAR_COST’)
linear_car_tt = CARTT

boxcox_car_tt = b

oxcox (CAR.TT, ell_travel_time)

squared_car_tt = CARTT x CAR.TT

car_tt_catalog =
catalog_name=

Catalog. from_dict (
’car_tt_catalog’,

dict_of_expressions={

>linear’:
’boxcox’:

linear_car_tt ,
boxcox_car_tt ,

38

122 ’squared’: squared_car_tt

123 +,

124)

125

126 dummy_expression = train_tt_catalog + car_tt_catalog
127

128 print_all_configurations (dummy_expression)

129

130 print (’** Synchronized catalogs *x’)

131 CARTT = Variable(’CAR_TT’)

132 CAR.COST = Variable(’CAR_COST’)

133 linear_car_tt = CARTIT

13 boxcox_car_tt = boxcox (CAR.TT, ell_travel_time)
135 squared_car_tt = CARTT % CARTT

136 car_tt_catalog = Catalog.from _dict (

137 catalog_name=’car_tt_catalog’,

138 dict_of_expressions={

139 ’linear’: linear_car_tt ,

140 ’boxcox’: boxcox_car_tt

141 ’squared’: squared_car_tt ,

142 },

143 controlled _by=train_tt_catalog.controlled_by
144)

145

146 dummy_expression = train_tt_catalog 4+ car_tt_catalog
147

s print_all_configurations (dummy_expression)

149

150

151 print (’**x Alternative specific xxx%’)

152

153 (B_TIME_catalog_dict, B_COST_catalog_dict) =
generic_alt_specific_catalogs(

154 generic_.name=’'coefficients’,

155 beta_parameters=[B.TIME, B_.COST],
156 alternatives=("TRAIN’, ’CAR’)

157)

158

159 V.TRAIN = (

160 B_TIME _catalog_dict [’ TRAIN’] * TRAIN.TT +
161 B_COST_catalog_dict [’ TRAIN’] x TRAIN_.COST
162)

163 V.CAR = (

164 B_TIME_catalog_-dict [’CAR’| % CAR.TIT +

165 B_COST_catalog_dict[’CAR’] * CAR.COST

166)

167

16s dummy_expression = V.TRAIN + V_.CAR

169

39

170
171
172
173
174
175
176
177
178
179

181
182
183
184
185
186
187
188
189

191
192
193
194

196
197
198
199

201

202
203

204
205
206
207

209
210
211
212
213
214
215
216

print_all_configurations (dummy_expression)
print (’*xx Alternative specific - not synchronized #*xx’)

(B_TIME _catalog_dict,) = generic_alt_specific_catalogs(
generic_name=’time_coefficient’,
beta_parameters=[B.TIME] ,
alternatives=("TRAIN’, ’CAR’)

)

(B_COST_catalog_-dict,) = generic_alt_specific_catalogs(
generic_.name=’cost_coefficient’,
beta_parameters=[B.COST],

alternatives=("TRAIN’, ’CAR’)
)
V.TRAIN = (
B_TIME _catalog_dict [’ TRAIN’] % TRAIN.TT +
B_COST_catalog_dict [’ TRAIN’] * TRAIN.COST
)
V.CAR = (
B_TIME catalog_dict [’CAR’| % CARTT +
B_COST_catalog_-dict [’CAR’ | % CAR_COST
)

dummy_expression = V. TRAIN + V_.CAR
print_all_configurations (dummy_expression)

print (’*x* Segmentation xxx’)

We consider two trip purposes: ’‘commuters’ and anything else.
We

mneed to define a binary variable first

database.data [’ COMMUTERS’] = np.where(database.data[’ PURPOSE’ |
— 1, 1, 0)

segmentation_purpose = database.generate_segmentation (
variable=’ COMMUTERS’ ,
mapping={

0: ’non_commuters’,
1: ’commuters’

}s

reference="non_commuters’

)
segmentation_luggage = database.generate_segmentation (
variable=’ LUGGAGE’ ,
mapping={
0: ’no_lugg’,

40

217 1: ’one_lugg’,

218 3: ’several_lugg’
219 T,

220 reference="no_lugg’
221)

222

223

224 ASC_TRAIN _catalog, ASC_CAR_catalog = segmentation_catalogs(
225 generic_name="ASC’ |

226 beta_parameters=[ASC_TRAIN, ASC.CAR],
227 potential_segmentations=(

228 segmentation_purpose ,

229 segmentation_luggage ,

230),

231 maximum_number=2,

232)

233

234

235

236 dummy_expression = ASC_TRAIN_catalog + ASC_CAR_catalog

23s print_all_configurations (dummy_expression)

239

220 ASC_TRAIN _catalog, ASC_CAR_catalog = segmentation_catalogs(
241 generic_name="ASC’ |

242 beta_parameters=[ASC_TRAIN, ASC.CAR],
243 potential_segmentations=(

244 segmentation_purpose ,

245 segmentation_luggage ,

246) ,

247 maximum_number=1,

s)

249

250

251

252 dummy _expression = ASC_TRAIN_catalog + ASC_CAR_catalog
253

254 print_all_configurations (dummy_expression)

255

256 print (’** Segmentation and alternative specific *xx’)

258 (B_TIME catalog_dict ,) = generic_alt_specific_catalogs(

259 generic_name="B_TIME’

260 beta_parameters=[B_.TIME] ,

261 alternatives=["TRAIN’, ’'CAR’],
262 potential_segmentations=(

263 segmentation_purpose ,

264 segmentation_luggage ,

265),

41

266
267
268
269
270
271
272
273
274
275

277
278
279
280
281
282

© 0w N9 O o se W NN =

NN ONNN NN N R R e R e R e
N O ke W N R O © 00 N O ke W N R O

maximum_number=1,

)

print_all_configurations (B_.TIME_catalog_dict [’ TRAIN’])

(B_TIME _catalog_dict ,) = generic_alt_specific_catalogs(
generic_.name="B_TIME’ ,
beta_parameters=[B.TIME] ,
alternatives=["TRAIN’, ’CAR’],
potential_segmentations=(
segmentation_purpose ,
segmentation_luggage ,

)

maximum_number=2,

)

print_all _configurations (B_.TIME catalog_dict [’ TRAIN’])

4 Data

777 File swissmetro_data.py

sauthor: Michel Bierlaire , EPFL
sdate: Mon Mar 6 15:17:03 2023

Data preparation for Swissmetro, and definition of the wvariables

2”0

import pandas as pd
import biogeme.database as db
from biogeme.expressions import Variable

Read the data
df = pd.read_csv(’swissmetro.dat’, sep="\t’)
database = db.Database(’swissmetro’, df)

GROUP = Variable (’GROUP’)
SURVEY = Variable (’SURVEY’)
SP = Variable(’SP’)

ID = Variable(’ID”)

PURPOSE = Variable (’PURPOSE ")
FIRST = Variable (’FIRST’)
TICKET = Variable (’ TICKET’)
WHO = Variable (’WHO’)
LUGGAGE = Variable (’LUGGAGE ")
AGE = Variable (’AGE")

MALE = Variable (’MALE’)

42

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

59

60

61

62

63

64

65

66

INCOME = Variable (’ INCOME)

GA = Variable(’GA”)

ORIGIN = Variable (’ORIGIN’)
DEST = Variable(’DEST’)
TRAINAV = Variable (’ TRAIN_AV”)
CARAV = Variable (’CAR_AV”)
SM_AV = Variable (’SM_AV’)
TRAIN.TT = Variable (’ TRAIN_TT’)
TRAIN.CO = Variable (’ TRAIN_CO")
TRAIN.HE = Variable (’ TRAIN_HE’)
SM.TT = Variable(’SM_TT’)

SM_.CO = Variable(’SM_C0")
SMHE = Variable(’SM_HE”)
SM_SEATS = Variable(’SM_SEATS)
CAR.TT = Variable(’CAR_TT’)
CAR.CO = Variable(’CAR_CO")
CHOICE = Variable (’CHOICE”)

Remouving some observations can be done directly wusing pandas.
remove = (((database.data.PURPOSE != 1) &

(database . data.PURPOSE = 3)) |

(database . data.CHOICE == 0))

database. data.drop(database. data [remove]. index , inplace=True)
Here we use the ”biogeme” way:

exclude = ((PURPOSE != 1) % (PURPOSE != 3) + (CHOICE = 0)) > 0
database .remove (exclude)

Definition of new wvariables
SM_.COST = database.DefineVariable (’SM_COST’, SM.CO *x (GA = 0))
TRAIN_COST = database.DefineVariable (’ TRAIN_COST’ , TRAIN.CO x

(GA — 0))
CAR_AV SP = database.DefineVariable (’CAR_AV_SP’, CARAV x (SP
= 0))
TRAIN_AV_SP = database.DefineVariable (’ TRAIN_AV_SP’, TRAIN_AV x
(SP = 0))

TRAIN.TT SCALED = database.DefineVariable(’ TRAIN_TT_SCALED’,
TRAIN.TT / 100)

TRAIN_COST_SCALED =
database.DefineVariable (’ TRAIN_COST_SCALED’, TRAIN_.COST /
100)

SM_.TT SCALED = database.DefineVariable (> SM_TT_SCALED’, SM.TT /
100)

SM_COST_SCALED = database.DefineVariable(’ SM_COST_SCALED’,
SM_COST / 100)

CAR_TTSCALED = database.DefineVariable(’ CAR_TT_SCALED’, CARTT
/ 100)

CAR_.COSCALED = database.DefineVariable(’ CAR_CO_SCALED’, CAR.CO
/ 100)

43

© 00 N O s W N =

[
(=}

11
12
13
14

15

16
17
18
19
20
21
22
23
24
25

26

27
28
29
30
31

© 0 N9 O s W N

5 Reporting

777777F?;le

sauthor:

results_analysis

Michel Bierlaire , EPFL

sdate: Thu Jul 18 16:82:45 2023

Reports

229

the results of the catalog estimation

from biogeme.results import compile_estimation_results
pareto_optimal

def report(dict_of_results):

”77Reports the results of the estimared catalogs

NN

print (f’A total of {len(dict_of_results)} models have been
estimated’)
print (’== Estimation results ==")

compiled_results , specs = compile_estimation_results (

)

dict_of_results , use_short_names=True

print (compiled_results)
for short_-name, spec in specs.items():

print (f’{short_name}\t{spec}’)

pareto_results = pareto_optimal (dict_of_results)
compiled_pareto_results, pareto_specs =
compile_estimation_results (

)

pareto_results , use_short_names=True

print (compiled_pareto_results)
for short_name, spec in pareto_specs.items():

print (f’{short_name}\t{spec}’)

6 Estimation of a catalog with two models

}7}7}7F7:le

sauthor:

bO0imodel. py

Michel Bierlaire , EPFL

sdate: Fri Jul 14 09:47:21 2023

Investigate several choice models:

— logit
— nested
— nested

logit with two nests: public and private transportation
logit with two mests existing and future modes

44

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

for a total of 3 specifications.
import biogeme.biogeme as bio
from biogeme import models
from biogeme.expressions import Beta
from biogeme.catalog import Catalog
from results_analysis import report
from swissmetro_data import (

database ,

CHOICE,

SM_ AV,

CAR_AV_SP,

TRAIN_AV_SP,

TRAIN_TT_SCALED,

TRAIN_COST_SCALED,

SM_TT_SCALED,

SM_COST_SCALED,

CAR_TT_SCALED,

CAR_COSCALED,

)

Parameters to be estimated

ASC.CAR = Beta(’ASC_CAR’, 0, None, None, 0)
ASC_TRAIN = Beta(’ASC_TRAIN’, 0, None, None, 0)
B_.TIME = Beta(’B_TIME’, 0, None, None, 0)
B_COST = Beta(’B_C0ST’, 0, None, None, 0)

Definition of the wtility functions

V1 = ASC_TRAIN + B_.TIME x TRAIN.TT_SCALED + B_.COST =
TRAIN_COST_SCALED

V2 = B.TIME % SM_TT_SCALED + B_.COST % SM_COST_SCALED

V3 = ASC.CAR + B.TIME % CAR.TTSCALED + B_COST % CAR_.COSCALED

Associate wutility functions with the numbering of alternatives
V= {1: V1, 2: V2, 3: V3}

Associate the availability conditions with the alternatives

av = {1: TRAIN_.AV.SP, 2: SM.AV, 3: CAR-AV_SP}

Definition of the model. This is the contribution of each
observation to the log likelihood function.
logprob_logit = models.loglogit (V, av, CHOICE)

MU _existing = Beta(’MU_existing’, 1, 1, 10, 0)
existing = MU_existing , [1, 3]

future = 1.0, [2]

nests_existing = existing , future
logprob_nested_existing = models.lognested (V, av,

45

59
60
61
62
63

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

=] ot - W [V =

10
11
12
13
14
15
16

nests_existing , CHOICE)

MU _public = Beta(’MU_public’, 1, 1, 10, 0)

public = MU_public, [1, 2]
private = 1.0, [3]
nests_public = public, private

logprob_nested_public = models.lognested (V, av, nests_public

CHOICE)

model_catalog
catalog_.name="model_catalog’,
dict_of_expressions={

)

= Catalog. from _dict (

’logit’: logprob_logit ,

"nested existing’:
"nested public’:

I

Create the Biogeme object

the_biogeme = bio .BIOGEME(database, model_catalog)

the_biogeme .modelName = ’b@1model’
the_biogeme . generate_html = False
the_biogeme . generate_pickle = False

FEstimate the parameters

dict_of_results = the_biogeme.estimate_catalog ()

report (dict _of_results)

7 Estimation of a catalog with nonlinear spec-

ifications
777 File b02nonlinear.py
rauthor: Michel Bierlaire , EPFL
sdate: Thu Jul 18 21:81:54 2023

Investigate

of nonlinear specifications for the
variables:

— linear specification
— Boz—Coz transform ,

— power series ,

for a total

»

of 8 specifications.

import biogeme.biogeme as bio

from
from
from
from

biogeme

biogeme .
biogeme .
biogeme .

import models
expressions import Beta
models import boxcox
catalog import Catalog

46

logprob_nested_existing ,
logprob_nested_public ,

travel time

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

from results_analysis import report
from swissmetro_-data import (
database ,
CHOICE,
SM AV,
CAR_AV_SP,
TRAIN_AV_SP,
TRAIN_TT_SCALED,
TRAIN_COST_SCALED,
SM_TT_SCALED,
SM_COST_SCALED,
CAR_TT_SCALED,
CAR_COSCALED,

)

Parameters to be estimated

ASC_CAR = Beta(’ASC_CAR’, 0, None, None, 0)
ASC_TRAIN = Beta(’ASC_TRAIN’, 0, None, None, 0)
B.TIME = Beta(’B_TIME’, 0, None, 0, 0)

B_.COST = Beta(’B_C0ST’, 0, None, 0, 0)

Non linear specifications for the travel time

Parameter of the Box—Cox transform
ell_travel_time = Beta(’lambda_travel_time’, 1, —10, 10, 0)

Coefficients of the power series
square_tt_coef = Beta(’square_tt_coef’, 0, None, None, 0)
cube_tt_coef = Beta(’cube_tt_coef’, 0, None, None, 0)

def power_series(the_variable):
777 Generate the expression of a polynomial of degree 3

:param the_variable: wvariable of the polynomial
type the_variable: biogeme.expressions. Expression
return (

the_variable

+ square_tt_coef *x the_variablexx2

+ cube_tt_coef % the_variable * the_variablexx3

linear_train_tt = TRAIN.TT_SCALED

boxcox_train_tt = boxcox (TRAIN.TTSCALED, ell_travel_time)
power_train_tt = power_series (TRAIN.TT_SCALED)
train_tt_catalog = Catalog.from_dict (

47

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

103
104

106
107
108
109
110
111
112
113

catalog_name=’train_tt_catalog’,
dict_of_expressions={

’linear’: linear_train_tt ,
"boxcox’: boxcox_train_tt ,
’power’: power_train_tt

I
)

linear_sm_tt = SM_TT_SCALED

boxcox_sm_tt = boxcox (SM_.TTSCALED, ell_travel_time)

power_sm_tt = power_series (SM_TT_SCALED)

sm_tt_catalog = Catalog. from_dict (
catalog_name=’sm_tt_catalog’,
dict_of_expressions={

’linear’: linear_sm_tt ,
"boxcox’: boxcox_sm_tt
"power’: power_sm_tt ,

}s

controlled_by=train_tt_catalog.controlled_by ,

)

linear_car_tt = CARTT_SCALED

boxcox_car_tt = boxcox (CAR-TTSCALED, ell_travel_time)

power_car_tt = power_series (CAR-TT_SCALED)

car_tt_catalog = Catalog.from_dict (
catalog_name=’car_tt_catalog’,
dict_of_expressions={

’linear’: linear_car_tt ,
’boxcox’: boxcox_car_tt ,
’power’: power_car_tt,

}s

controlled _by=train_tt_catalog.controlled_by ,

Definition of the wutility functions

V1 = ASC_TRAIN + B.TIME % train_tt_catalog + B_.COST x
TRAIN_COST_SCALED

V2 = B.TIME % sm_tt_catalog + B_-COST x SM_COST_SCALED

V3 = ASC.CAR + B.TIME % car_tt_catalog + B.COST x CAR.CO.SCALED

Associate utility functions with the mumbering of alternatives
V= {1: V1, 2: V2, 3: V3}

Associate the availability conditions with the alternatives
av = {1: TRAIN.AV.SP, 2: SM AV, 3: CAR.AV_SP}

Definition of the model. This is the contribution of each
observation to the log likelihood function.

48

114
115
116
117
118
119
120
121
122
123
124
125

N O o s W N =

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

logprob = models. loglogit (V, av, CHOICE)

Create the Biogeme object

the_biogeme = bio.BIOGEME(database, logprob)
the_biogeme .modelName = ’b@2nonlinear’
the_biogeme . generate_html = False
the_biogeme. generate_pickle = False

FEstimate the parameters
dict_of_results = the_biogeme.estimate_catalog ()

report (dict_of_results)

8 Estimation of a catalog with alternative-
specific coeflicients

777 File b03alt_spec.py

sauthor: Michel Bierlaire , EPFL
sdate: Thu Jul 13 16:18:10 2023

Investigate alternative specific parameters:

— two specifications for the travel time coefficient: generic,
and alternative specific,

— two specifications for the travel cost coefficient: generic,
and alternative specific,

for a total of 4 specifications.

20

import numpy as np

import biogeme.biogeme as bio

from biogeme import models

from biogeme.expressions import Beta

from biogeme.catalog import generic_alt_specific_catalogs

from results_analysis import report
from swissmetro_-data import (
database ,
CHOICE,
SM_AV,
CAR_AV_SP,
TRAIN_AV_SP,
TRAIN_.TT_SCALED,
TRAIN_COST_SCALED,
SM_TT_SCALED,
SM_COST_SCALED,
CAR_TT SCALED,
CAR_COSCALED,

49

31

33
34
35
36
37
38
39

40
41
42
43

44
45
46
47
48
49
50
51
52

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

Parameters to be estimated

ASC_CAR = Beta(’ASC_CAR’, 0, None, None, 0)
ASC_TRAIN = Beta(’ASC_TRAIN’, 0, None, None, 0)
B.TIME = Beta(’B_TIME’ , 0, None, None, 0)
B_COST = Beta(’B_C0ST’, 0, None, None, 0)

(B_.TIME _catalog_dict ,) = generic_alt_specific_catalogs(
generic_name=’B_TIME’ , beta_parameters=[B.TIME],
alternatives=(’TRAIN’ , "SM’ ’'CAR’)

)

(B_COST_catalog_dict ,) = generic_alt_specific_catalogs(
generic_name=’B_CO0ST’, beta_parameters=[B.COST],

alternatiVQS:(’TRAIN’7 "SM? | ’CAR’)
)
Definition of the wtility functions
V1 = (
ASC_TRAIN
+ B_TIME_catalog_dict [’ TRAIN’] * TRAIN.TT_SCALED
+ B_COST _catalog_dict [’ TRAIN’] * TRAIN.COST_SCALED
)

V2 = B_.TIME _catalog_dict[’SM’] % SM.TT_SCALED +
B_COST_catalog_dict[’SM’] x SM_COST_SCALED
=
ASC_CAR
+ B_TIME_catalog-dict [’CAR’ | x CARTT_SCALED
+ B_COST _catalog-dict [’CAR’] % CAR.CO_SCALED

)

Associate utility functions with the mumbering of alternatives
V= {1: V1, 2: V2, 3: V3}

Associate the availability conditions with the alternatives
av = {1: TRAIN.AV.SP, 2: SMAV, 3: CAR._AV_SP}

Definition of the model. This is the contribution of each
observation to the log likelihood function.
logprob = models.loglogit (V, av, CHOICE)

Create the Biogeme object

the_biogeme = bio .BIOGEME(database, logprob)
the_biogeme .modelName = ’b0@lalt_spec’
the_biogeme. generate_html = False
the_biogeme . generate_pickle = False

FEstimate the parameters
dict_of_results = the_biogeme.estimate_catalog ()

20

77
78

© 0w N O g s W N =

AW oW oW W oW W oW oW W W NN NN NN NN NN E R R e e e e
S © ® I O A L R0 P O OV O N0 A A WN RO © N O oA W N R O

41
42
43

report (dict_of_results)

9 Estimation of a catalog with segmentations

»77 File b04segmentation.py

sauthor: Michel Bierlaire , EPFL
sdate: Thu Jul 13 16:18:10 2023

Investigate the segmentations of parameters.

We consider 4 specifications for the constants:

— Not segmented

— Segmented by GA (yearly subscription to public transport)
— Segmented by luggage

— Segmented both by GA and luggage

We consider 8 specifications for the time coefficients:
— Not Segmented

— Segmented with first class

— Segmented with trip purpose

We obtain a total of 12 specifications.
import numpy as np
import biogeme.biogeme as bio
from biogeme import models
from biogeme.expressions import Beta
from biogeme.catalog import segmentation_catalogs
from results_analysis import report
from swissmetro_data import (

database ,

CHOICE,

SM_AV,

CAR_AV SP,

TRAIN_AV SP,

TRAIN_TT_SCALED,

TRAIN_COST_SCALED,

SM_TT_SCALED,

SM_COST_SCALED,

CAR.TTSCALED,

CAR_COSCALED,

)

segmentation_ga = database.generate_segmentation (
variable="GA’ , mapping={0: 'noGA’, 1: ’GA’}
)

51

44
45
46

47
48
49
50
51
52

54
55
56

57
58
59

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

80
81
82
83
84
85
86
87

segmentation_luggage = database.generate_segmentation (
variable="LUGGAGE’ , mapping={0: 'no_lugg’, 1: ’one_lugg’,
3: ’several_lugg’}

)

segmentation_first = database.generate_segmentation (
variable="FIRST’ , mapping={0: ’2nd_class’, 1: ’1st_class’}
)

We consider two trip purposes: ’commuters’ and anything else.
We

meed to define a binary variable first

database.data [’ COMMUTERS’] = np.where(database.data [’ PURPOSE’ |
= 1, 1, 0)

segmentation_purpose = database.generate_segmentation (

variable=’ COMMUTERS’ , mapping={0: ’non_commuters’, 1:
’commuters’}

Parameters to be estimated

ASC.CAR = Beta(’ASC_CAR’, 0, None, None, 0)
ASC_TRAIN = Beta(’ASC_TRAIN’, 0, None, None, 0)
B.TIME = Beta(’B_TIME’, 0, None, None, 0)
B_COST = Beta(’B_C0ST’, 0, None, None, 0)

ASC_TRAIN _catalog, ASC_CAR_catalog = segmentation_catalogs (
generic_name="ASC’ ,
beta_parameters=[ASC.TRAIN, ASC.CAR],
potential _segmentations=(
segmentation_ga ,
segmentation_luggage ,

)

maximum_number=2,

)

Note that the function returns a list of catalogs. Here, the
list

contains only one of them. This is why there is a comma after

"B_TIME _catalog”.

(B_.TIME_catalog,) = segmentation_catalogs (
generic_.name="B_TIME’ |
beta_parameters=[B.TIME] ,
potential_segmentations=(

segmentation_first ,
segmentation_purpose ,

52

88
89
90
91
92
93

94
95

96
97

)

maximum_number=1,

)

Definition of the wtility functions

V1 = ASC_TRAIN _catalog + B_TIME _catalog * TRAIN.TT_SCALED +
B_COST * TRAIN_.COST_SCALED

V2 = B_TIME _catalog * SM_.TT_SCALED + B_.COST % SM_COST_SCALED

V3 = ASC_CAR_catalog + B_TIME_catalog x CARTTSCALED + B_COST
* CAR_COSCALED

Associate wutility functions with the numbering of alternatives

s V= {1: V1, 2: V2, 3: V3}

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

o = W [N —

10
11
12

Associate the awvailability conditions with the alternatives
av = {1: TRAIN.AVSP, 2: SM AV, 3: CARAV.SP}

Definition of the model. This is the contribution of each
observation to the log likelihood function.
logprob = models. loglogit (V, av, CHOICE)

Create the Biogeme object

the_biogeme = bio.BIOGEME(database, logprob)
the_biogeme .modelName = ’b@4segmentation’
the_biogeme . generate_html = False
the_biogeme . generate_pickle = False

FEstimate the parameters
dict_of_results = the_biogeme.estimate_catalog ()

report (dict_of_results)

10 Estimation of a catalog with segmenta-
tions and alternative-specific coefficients

777 File b0balt_spec_segmentation .py

rauthor: Michel Bierlaire , EPFL
sdate: Thu Jul 183 16:18:10 2023

Investigate segmentations of parameters and alternative
specific specification

We consider 4 specifications for the constants:

— Not segmented

— Segmented by GA (yearly subscription to public transport)
— Segmented by luggage

— Segmented both by GA and luggage

93

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

54
55
56
57
58
59

We consider 6
— Generic and
— Generic and
— Generic and
— Alternative
— Alternative
— Alternative

We consider 2
— Generic
— Alternative

specifications for the time
not segmented

segmented with first class
segmented with trip purpose
specific and not segmented
specific and segmented with
specific and segmented with

specifications for the cost

specific

We obtain a total of 48 specifications.

NN

import numpy as np

import biogeme.biogeme as bio

from biogeme import models

from biogeme.expressions import Beta

from biogeme.catalog import segmentation_catalogs,
generic_alt_specific_catalogs

from results_analysis import report

from swissmetro_-data import (

database ,
CHOICE,
SM_AV,
CAR_AV SP,

TRAIN_AV_SP,
TRAIN.TT_SCALED,
TRAIN_.COST SCALED,
SM_TT_SCALED,
SM_COST_SCALED,

coefficients:

first class
trip purpose

coefficients:

CAR_TT_SCALED,
CAR_COSCALED,
)
segmentation_ga = database.generate_segmentation (
variable="GA’ , mapping={0: ’noGA’, 1: ’GA’}
)
segmentation_luggage = database.generate_segmentation (
variable="LUGGAGE’ , mapping={0: ’'no_lugg’, 1:
3: ’several_lugg’}
)
segmentation_first = database.generate_segmentation (

variable="FIRST’, mapping={0: ’2nd_class’, 1:

)

o4

’one_lugg’

"1st_class’}

61 # We consider two trip purposes: ’‘commuters’ and anything else.
We
62 # need to define a binary wvariable first

62 database.data[’ COMMUTERS’] = np.where(database.data|[’ PURPOSE’ |
= 1, 1, 0)

65

66 segmentation_purpose = database.generate_segmentation (

67 variable=’ COMMUTERS’ , mapping={0: ’non_commuters’, 1:

’commuters’}
68)
69
70
71 # Parameters to be estimated
72 ASC.CAR = Beta(’ASC_CAR’, 0, None, None, 0)
73 ASC_.TRAIN = Beta(’ASC_TRAIN’, 0, None, None, 0)
72 B.TIME = Beta(’B_TIME’, 0, None, None, 0)
75 B_.COST = Beta(’B_COST’, 0, None, None, 0)
76

77 ASC_TRAIN catalog, ASC_CAR_catalog = segmentation_catalogs(

78 generic_name="ASC’ |

79 beta_parameters=[ASC.TRAIN, ASC.CAR],
80 potential_segmentations=(

81 segmentation_ga ,

82 segmentation_luggage ,

83)

84 maximum_number=2,

85)

86

87

ss (B_TIME catalog_dict,) = generic_alt_specific_catalogs (
89 generic_name="B_TIME’ ,

90 beta_parameters=[B.TIME] ,
91 alternatives=["TRAIN’, "SM’, ’CAR’],
92 potential_segmentations=(
93 segmentation_first ,
94 segmentation_purpose ,
95),
96 maximum_number=1,
97
)

98

99 (B_COST _catalog_dict ,) = generic_alt_specific_catalogs (

100 generic_.name=’"B_COST’, beta_parameters=[B.COST],
alternatives=["TRAIN’, ’SM’ ’CAR’]

101)

102

103 # Definition of the wutility functions

e V1 = (

95

105
106
107
108
109

110
111
112
113
114
115
116

ASC_TRAIN _catalog
+ B_TIME_catalog_dict [’ TRAIN’] x TRAIN.TT_SCALED
+ B_COST_catalog_-dict [’ TRAIN’] x TRAIN.COST_SCALED
)
V2 = B_.TIME_catalog_dict [?SM’] % SM.TT_SCALED —+
B_COST _catalog_dict [’SM’] x SM_.COST_SCALED
V3 = (
ASC_CAR _catalog
+ B_TIME_catalog_dict [’CAR’] % CAR.TT_SCALED
+ B_COST _catalog_-dict[’CAR’] * CAR_COSCALED

)

Associate wutility functions with the numbering of alternatives

nr V= {1: V1, 2: V2, 3: V3}

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

© 00 N O U e W N =

10

Associate the awvailability conditions with the alternatives
av = {1: TRAIN.AV.SP, 2: SM AV, 3: CAR.AV_SP}

Definition of the model. This is the contribution of each
observation to the log likelihood function.
logprob = models. loglogit (V, av, CHOICE)

Create the Biogeme object

the_biogeme = bio.BIOGEME(database, logprob)
the_biogeme .modelName = ’b05alt_spec_segmentation’
the_biogeme . generate_html = False

the_biogeme. generate_pickle = False

FEstimate the parameters
dict_of_results = the_biogeme.estimate_catalog ()

report (dict_of_results)

11 Specification of a catalog with 432 config-
urations

777 File everything_spec.py

rauthor: Michel Bierlaire , EPFL
sdate: Sat Jul 15 15:40:838 2023

We investigate wvarious specifications:
— 8 models
— logit
— nested logit with two nests: public and private
transportation
— nested logit with two nests existing and future modes
— & functional forms for the travel time wvariables

o6

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

— linear specification ,
— Boz—Cox transform ,
— power series ,
2 specifications for the cost coefficients:
— generic
— alternative specific
2 specifications for the travel time coefficients:
— generic
— alternative specific
— 4 segmentations for the constants:
— not segmented
— segmented by GA (yearly subscription to public transport)
— segmented by luggage
— segmented both by GA and luggage
— 8 segmentations for the time coefficients:
— not segmented
— segmented with first class
— segmented with trip purpose

This leads to a total of 432 specifications.
20
import numpy as np
from biogeme import models
from biogeme.expressions import Beta
from biogeme.catalog import (
Catalog ,
segmentation_catalogs ,
generic_alt_specific_catalogs ,

)

from swissmetro_data import (
database ,
CHOICE,
SM_AV,
CAR_AV_SP,
TRAIN_AV_SP,
TRAIN_TT_SCALED,
TRAIN_COST_SCALED,
SM_TT_SCALED,
SM_COST_SCALED,
CAR.TT_SCALED,
CAR_COSCALED,

)

segmentation_ga = database.generate_segmentation (
variable="GA’ , mapping={0: 'noGA’, 1: ’GA’}
)

segmentation_luggage = database.generate_segmentation (

o7

61

62
63
64
65
66
67
68

69
70
71

72
73
74

75
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

103
104
105

variable=’LUGGAGE’ , mapping={0: ’'no_lugg’, 1: ’one_lugg’,
3: ’several_lugg’}

)

segmentation_first = database.generate_segmentation (
variable=’FIRST’ , mapping={0: ’2nd_class’, 1: ’1st_class’}
)

We consider two trip purposes: ’‘commuters
We

need to define a binary variable first

7

and anything else.

database.data |’ COMMUTERS’] = np.where(database.data[’ PURPOSE’ |
— 1, 1, 0)
segmentation_purpose = database.generate_segmentation (

variable=’COMMUTERS’ , mapping={0: ’non_commuters’, 1:
’commuters’}

Parameters to be estimated

ASC.CAR = Beta(’ASC_CAR’, 0, None, None, 0)
ASC_TRAIN = Beta(’ASC_TRAIN’, 0, None, None, 0)
B_.TIME = Beta(’B_TIME’, 0, None, None, 0)
B_COST = Beta(’B_C0ST’, 0, None, None, 0)

Non linear specifications for the travel time

Parameter of the Box—Cox transform
ell_travel_time = Beta(’lambda_travel_time’, 1, —10, 10, 0)

Coefficients of the power series
square_tt_coef = Beta(’square_tt_coef’, 0, None, None, 0)
cube_tt_coef = Beta(’cube_tt_coef’, 0, None, None, 0)

def power_series(the_variable):
777 Generate the expression of a polynomial of degree 3

:param the_variable: wvariable of the polynomial
type the_variable: biogeme.expressions. Expression
»rn»
return (

the_variable

+ square_tt_coef % the_variablex%2

+ cube_tt_coef % the_variable * the_variablexx3

o8

106
107
108

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

131
132
133
134

136
137
138
139
140
141
142
143
144
145
146
147
148
149

151
152
153

linear_train_tt = TRAIN.TT_SCALED
boxcox_train_tt = models.boxcox (TRAIN.TT_SCALED,

ell_travel_time)
power_train_tt = power_series (TRAIN.TT_SCALED)

train_tt_catalog = Catalog.from_dict (
catalog_name=’train_tt_catalog’,

dict_of_expressions={

s
)

’linear’: linear_train_tt ,
"boxcox’: boxcox_train_tt ,
"power’: power_train_tt ,

linear_sm_tt = SM_.TT_SCALED

boxcox_sm_tt = models.boxcox (SM_.TT_SCALED,
power_sm_tt = power_series (SM_TT_SCALED)
sm_tt_catalog = Catalog.from_dict (

catalog_name=’sm_tt_catalog’,
dict_of_expressions={

}s

’linear’: linear_sm_tt ,
"boxcox’: boxcox_sm_tt
"power’: power_sm-_tt ,

ell_travel_time)

controlled _by=train_tt_catalog.controlled_by ,

)

linear_car_tt = CARTT_SCALED
boxcox_car_tt = models.boxcox (CAR-TT_SCALED, ell_travel_time)

power_car_tt = power_series (CAR.TT_SCALED)

car_tt_catalog = Catalog.from_dict (
catalog_name=’car_tt_catalog’,

dict_of_expressions={

I

’linear’: linear_car_tt ,
"boxcox’: boxcox_car_tt ,
’power’: power_car_tt ,

controlled_by=train_tt_catalog.controlled_by ,

ASC_TRAIN catalog, ASC_CAR _catalog = segmentation_catalogs (
generic_name=’ASC’ ,

beta_parameters =[ASC_TRAIN, ASC.CAR],

potential_segmentations=(

)

segmentation_ga ,
segmentation_luggage ,

29

154 maximum_number=2,

155)

156

157

158 (B_TIME_catalog_dict ,) = generic_alt_specific_catalogs(
159 generic_name='B_TIME’

160 beta_parameters=[B.TIME] ,

161 alternatives=["TRAIN’, ’SM’, ’CAR’],
162 potential_segmentations=(

163 segmentation_first ,

164 segmentation_purpose ,

165),

166 maximum_number=1,

167)

168

169 (B_COST_catalog_dict,) = generic_alt_specific_catalogs(

170 generic_name=’B_COST’, beta_parameters=[B.COST],
alternatives=["TRAIN’, "SM’ ’CAR’]

171)

172

173 # Definition of the wutility functions

e V1 = (
175 ASC_TRAIN _catalog
176 + B_TIME_catalog_dict [’TRAIN’] * train_tt_catalog
177 + B_COST _catalog-dict [’ TRAIN’] % TRAIN.COST_SCALED
178

)

179 V2 = B_TIME catalog_dict[’SM’] % sm_tt_catalog +
B_COST_catalog_dict [’SM’] % SM_COST_SCALED

180 V3 = (
181 ASC_CAR _catalog
182 + B_TIME_catalog_dict[’CAR’] * car_tt_catalog
183 + B_COST _catalog_dict [’CAR’] x CAR_.CO_SCALED
184

)

185

186 # Associate wutility functions with the numbering of alternatives
157 V.= {1: V1, 2: V2, 3: V3}

188

189 # Associate the availability conditions with the alternatives
100 av = {1: TRAIN.AV.SP, 2: SM.AV, 3: CAR.AV.SP}

191

192 # Definition of the model. This is the contribution of each
193 # observation to the log likelihood function.

194 logprob_logit = models.loglogit (V, av, CHOICE)

195

196 MU _existing = Beta(’MU_existing’, 1, 1, 10, 0)

197 existing = MU_existing, [1, 3]

198 future = 1.0, [2]

199 nests_existing = existing , future

200 logprob_nested_existing = models.lognested (V, av,

60

nests_existing , CHOICE)
201
202 MU_public = Beta(’MU_public’, 1, 1, 10, 0)
203 public = MU_public, [1, 2]
204 private = 1.0, [3]

205 nests_public = public, private

206 logprob_nested_public = models.lognested (V, av, nests_public
CHOICE)

207

206 model_catalog = Catalog.from _dict (

209 catalog_.name="model_catalog’,

210 dict_of_expressions={

211 ’logit’: logprob_logit ,

212 "nested existing’: logprob_nested_existing ,

213 "nested public’: logprob_nested_public,

214 },

215)

12 Assisted Specification of a catalog with
432 configurations

1 777 File b07everything_assisted.py

2

3 :author: Michel Bierlaire, EPFL

4 :date: Sat Jul 15 15:02:20 2023

5

6 Investigate wvarious specifications:

7 — 8 models

8 — logit

9 — nested logit with two mnests: public and private
transportation

10 — nested logit with two nests existing and future modes

11 — 8 functional form for the travel time wvariables

12 — linear specification ,

13 — Box—Coz transform,

14 — power series ,

15 — 2 specification for the cost coefficients:

16 — generic

17 — alternative specific

18 — 2 specification for the travel time coefficients:

19 — generic

20 — alternative specific

21 — 4 segmentations for the constants:

22 — not segmented

23 — segmented by GA (yearly subscription to public transport)

24 — segmented by luggage

25 — segmented both by GA and luggage

26 8 segmentations for the time coefficients:

61

27
28
29
30
31
32

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

— not segmented
— segmented with first class
— segmented with trip purpose

This leads to a total of 432 specifications.

The algorithm implemented in the AssistedSpecification object
is used to

investigate some of these specifications.

NN

import biogeme.logging as blog

import biogeme.biogeme as bio

from biogeme. assisted import AssistedSpecification

from biogeme.multiobjectives import loglikelihood_dimension
from everything _spec import model_catalog, database

from results_analysis import report

logger = blog.get_screen_logger (level=blog .DEBUG)
logger.info (’Example b@7everything_assisted’)

PARETOFILENAME = ’'b@7everything_assisted.pareto’

def validity (results):

777 Function verifying that the estimation results are wvalid.

The results are mot wvalid if any of the time or cost
coefficient is mon megative.
for beta in results.data.betas:
if "TIME’ in beta.name and beta.value >= 0:
return False, f’{beta.name} = {beta.value}’
if ’COST’ in beta.name and beta.value >= 0:
return False, f’{beta.name} = {beta.value}’
return True, None

Create the Biogeme object

the_biogeme = bio .BIOGEME(database, model_catalog)
the_biogeme .modelName = 'b@7everything’
the_biogeme. generate_html = False

the_biogeme. generate_pickle = False

FEstimate the parameters

assisted_specification = AssistedSpecification (
biogeme_object=the_biogeme ,
multi_objectives=loglikelihood_dimension ,

pareto_file_name=PARETO_FILE NAME,
validity=validity ,

62

74
75
76

(SN I SR

© oo ~ o v

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

36
37
38
39
40

non_dominated_models = assisted_specification .run()

report (non_dominated_models)

13 Postprocessing

70 Bile bOonst,pTOC@SSing'py

sauthor: Michel Bierlaire , EPFL
sdate: Thu Jul 20 17:15:37 2023

We consider the model with 432 specifications:
— 8 models
— logrt
— nested logit with two nests: public and private
transportation
— nested logit with two mnests existing and future modes
— 8 functional form for the travel time variables
— linear specification ,
— Box—Cox transform
— power series,
— 2 specification for the cost coefficients:
— generic
— alternative specific
— 2 specification for the travel time coefficients:
— generic
— alternative specific
— 4 segmentations for the constants:
— not segmented
— segmented by GA (yearly subscription to public transport)
— segmented by luggage
— segmented both by GA and luggage
— 3 segmentations for the time coefficients:
— not segmented
— segmented with first class
— segmented with trip purpose

This leads to a total of 432 specifications.

After rumnmning the assisted specification algorithm , we use post

processing to re—estimate all Pareto optimal models, and
display some

information about the algorithm

209

try:
import matplotlib.pyplot as plt
can_plot = True

63

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

59
60
61
62
63
64
65
66
67
68
69
70

except ModuleNotFoundError:
can_plot = False
import biogeme.logging as blog
import biogeme.biogeme as bio
from biogeme. assisted import ParetoPostProcessing

from everything _spec import model_catalog , database

logger = blog.get_screen_logger (level=blog .INFO)
logger .info (’Example b@8selected_specification’)

PARETOFILENAME = ’b07everything_assisted.pareto’

the_biogeme = bio .BIOGEME(database, model_catalog)
the_biogeme .modelName = ’b0@9post_processing’

post_processing = ParetoPostProcessing (
biogeme_object=the_biogeme ,
pareto_file_name=PARETO_FILE NAME

)

post_processing .reestimate (recycle=True)

if can_plot:
- = post,processing.plot(
label_x="Nbr of parameters’,
label _y=’Negative log likelihood’,
objective_x=1,
objective_y =0,
)

plt.savefig (’pareto.eps’, format="eps’, dpi=300)

64

