
Assisted specification with Biogeme

Michel Bierlaire Nicola Ortelli

July 7, 2022

Report TRANSP-OR 220707
Transport and Mobility Laboratory

School of Architecture, Civil and Environmental Engineering
Ecole Polytechnique Fédérale de Lausanne

transp-or.epfl.ch

Series on Biogeme

1

The package Biogeme (biogeme.epfl.ch) is designed to estimate the
parameters of various models using maximum likelihood estimation. It is
particularly designed for discrete choice models.

This document describes how to use Biogeme to apply the methodology
for assisted specification described by Ortelli et al. (2021). In a nutshell,
an optimization algorithm is used to generate models based on a minimal
number of inputs provided by the analyst. These inputs are used to build
a space of possible specifications that may contain any form of variable in-
teraction, nonlinear transformation, segmentation of the population in the
dataset and potential choice models; the space is then explored by an al-
gorithm that sequentially introduces small modifications to an initial set of
promising specifications.

We assume that the reader is already familiar with discrete choice models,
and has successfully installed Biogeme. Biogeme is a Python package written
in Python and C++, that relies on the Pandas library for the management
of the data. This document has been written using Biogeme 3.2.9.

1

1 Modeling elements

We first define the modeling elements that are combined for the specification
of a discrete choice model.

Alternatives An alternative is an element of the choice set C.

Variable A variable is an explanatory, or independent, variable that is
present in the data set.

Characteristic A characteristic is a variable that does not vary across alter-
natives. Typical characteristics are the socio-economic characteristics
of the decision-maker (age, income, gender, etc.), and the variables de-
scribing the choice context (day of the week, weather conditions, etc.)
In our context, they are used to segment the population into mutually
exclusive segments.

Attribute An attribute is a variable that does vary across alternatives.

Group of attributes A group captures the same attribute in different util-
ity functions. All attributes in the same group play similar roles in the
specification of the model. A group of attributes is said to be active if
it is involved in the specification of the choice model.

Coefficient When the utility function is a linear combination of attributes,
the coefficients of this combination are unknown parameters to be es-
timated.

Segmentation The population can be segmented using one or several char-
acteristics. In that case, a different coefficient is associated with each
segment of the population.

Generic group of attributes A group of attributes is said to be generic if
the same coefficient is used for each attribute in the group.

Alternative specific group of attributes A group of attributes that is
not generic is said to be “alternative specific”.

Transformation A transformation is a function that transforms the value
of the attributes in a group. It may involve unknown parameters and
nonlinear specifications.

2

2 A step by step specification

We describe now how to prepare a Python script for the assisted specification
of a choice model. We use the Swissmetro example to illustrate each step.

1. Data preparation: this step is exactly the same as for any Biogeme
model. An object of type biogeme.database has to be defined. Each
variable is associated with an object of type biogeme.expressions.Variable,
which can be a column of the original dataset, or a new variable defined
by the user. We refer the reader to the documentation of Biogeme and
to the online examples for more details.

2. Dictionary of attributes: the attributes that may be involved in the
model specification are identified and named, in the form of a dictio-
nary. The keys of the dictionary are the names, and the values are the
corresponding biogeme.expressions.Variable. For example,

a t t r i b u t e s = {
’Train travel time’ : TRAIN TT SCALED,
’Swissmetro travel time’ : SM TT SCALED,
’Car travel time’ : CAR TT SCALED,
’Train travel cost’ : TRAIN COST,
’Swissmetro travel cost’ : SM COST,
’Car travel cost’ : CAR COST,
’Train headway’ : TRAIN HE,
’Swissmetro headway’ : SM HE,

}

3. Dictionary of groups of attributes: the keys of the dictionary are the
names of the group. The values are a list of names of attributes. Note
that no attribute can appear in more than one group.

groupsOfAttr ibutes = {
’Travel time’ : [

’Train travel time’ ,
’Swissmetro travel time’ ,
’Car travel time’ ,

] ,
’Travel cost’ : [

’Train travel cost’ ,
’Swissmetro travel cost’ ,
’Car travel cost’ ,

] ,
’Headway’ : [’Train headway’ , ’Swissmetro headway’] ,

}

3

4. The algorithm tries to change the status of groups of attributes from
generic to alternative specific. It is possible to force some groups to
always be alternative specific by defining the list of their names. If
there is no such restriction, set the list to None.

gener i cForb iden = None

5. The algorithm tries to include or not each group of attributes in the
model. It is possible to force some groups to always be active, that is,
to be in the model, by defining the list of their names. If there is no
such restriction, set the list to None.

f o r c eAc t i v e = [’Travel time’ , ’Travel cost’]

6. Define possible transformations of the attributes. Each of these trans-
formations is characterized by a Python function that takes a real num-
ber as input, and returns a tuple with two elements:

(a) the name of the transformation,

(b) a Biogeme expression (that is, an object of type

biogeme.expressions) to calculate the transformation.

de f mylog (x) :
”””Log o f the a t t r i b u t e , or 0 i f i t i s zero ”””

r e turn ’log’ , Elem ({0 : l og (x) , 1 : Numeric (0)} , x == 0)

More examples are discussed in Section 5. Then, associate each group
of attributes with possible transformations. Note that the option not to
transform the attribute is automatically considered. Define a dictionary
where the keys are the names of the groups of attributes, and the values
are lists of functions defined in the previous step.

t r ans f o rmat i ons = {
’Travel time’ : [

mylog ,
sqrt ,
square ,
p i e c ew i s e t ime 1 ,
p i e c ew i s e t ime 2 ,
boxcox time ,

] ,
’Travel cost’ : [

mylog ,
sqrt ,
square ,
p i e c ew i s e c o s t 1 ,

4

p i e c ew i s e c o s t 2 ,
boxcox cost ,

] ,
’Headway’ : [mylog , sqrt , square , boxcox headway] ,

}

7. Define the potential segmentations. A segmentation is based on a dis-
crete characteristic z that can take several values: z1, . . . , zℓ. It is
defined by a tuple with two elements:

(a) an object of type biogeme.expressions.Variable that captures the char-
acteristic,

(b) a dictionary associating each possible value with a name describing
it.

As a group of attributes can potentially be associated with several
segmentations, we define a dictionary where the keys are the names of
the segmentations, and the values are the tuples described above.

s egmenta t i on s co s t = {
’GA’ : DiscreteSegmentat ionTuple (

v a r i ab l e=GA,
mapping={1: ’GA’ , 0 : ’noGA’}

) ,
’gender’ : DiscreteSegmentat ionTuple (

v a r i ab l e=MALE,
mapping={0: ’female’ , 1 : ’male’}

) ,
’income’ : DiscreteSegmentat ionTuple (

v a r i ab l e=INCOME,
mapping={

1 : ’inc-under50’ ,
2 : ’inc-50-100’ ,
3 : ’inc-100+’ ,
4 : ’inc-unknown’ ,

} ,
) ,
’class’ : DiscreteSegmentat ionTuple (

v a r i ab l e=FIRST ,
mapping={0: ’secondClass’ , 1 : ’firstClass’}

) ,
’who’ : DiscreteSegmentat ionTuple (

v a r i ab l e=WHO,
mapping={1: ’egoPays’ , 2 : ’employerPays’ , 3 : ’fiftyFifty’} ,

) ,
}

5

Each of these potential segmentations is then associated with a name,
using a dictionary. It also clarifies if the segmentation should be done
for each characteristic separately, or if all combinations of all possible
values of the characteristics should be used for the segmentation. In
the latter case, combinatorial must be set to True.

segmentat ions = {
’Seg. cte’ : SegmentedParameterTuple (

d i c t=segmentat ions c te , combinator i a l=Fal se
) ,
’Seg. cost’ : SegmentedParameterTuple (

d i c t=segmentat ions cos t , combinator i a l=Fal se
) ,
’Seg. time’ : SegmentedParameterTuple (

d i c t=segmentat ions t ime , combinator i a l=Fal se
) ,
’Seg. headway’ : SegmentedParameterTuple (

d i c t=segmentations headway , combinator i a l=Fal se
) ,

}

Note that this feature allows the algorithm to investigate interactions
between attributes and discrete characteristics. In order to model in-
teractions between attributes and continuous characteristics, see the
example provided in Section 5.

8. Specification of the utility functions as a list of terms. Each term is a
tuple with the following elements:

(a) the name of an attribute, or None for the alternative specific con-
stant,

(b) the name of a list of segmentations,

(c) the bounds on the associated coefficients, in the form of a tuple
(lower bound, upper bound), where each of these entries can be set to
None is no bound is needed,

(d) a function that verifies the validity of the estimated coefficient.
Each model where the estimated value of the parameter is invalid
is rejected. The function takes a value as input and returns a
boolean. For instance, if we expect a coefficient to be negative,
we can define the following function:

de f negat iveParameter (va l) :
r e turn va l < 0

6

Note that the bounds apply to the coefficients of each segment of the
population. Here is an example of the definition of the utility function:

u t i l i t y t r a i n = [
TermTuple (

a t t r i b u t e=None ,
segmentat ion=’Seg. cte’ ,
bounds=(None , None) ,
v a l i d i t y=None ,

) ,
TermTuple (

a t t r i b u t e=’Train travel time’ ,
segmentat ion=’Seg. time’ ,
bounds=(None , 0) ,
v a l i d i t y=None ,

) ,
TermTuple (

a t t r i b u t e=’Train travel cost’ ,
segmentat ion=’Seg. cost’ ,
bounds=(None , 0) ,
v a l i d i t y=None ,

) ,
TermTuple (

a t t r i b u t e=’Train headway’ ,
segmentat ion=’Seg. headway’ ,
bounds=(None , 0) ,
v a l i d i t y=None ,

) ,
]

Then, associate each utility function with the ID of the alternative, and
with a name. Define a dictionary such that the keys are the ID of the
alternatives, and the values are a tuple with the following elements:

(a) the name of the alternative,

(b) a list describing the specification of the utility function, as de-
scribed in the previous step.

For example,

u t i l i t i e s = {
1 : (’train’ , u t i l i t y t r a i n) ,
2 : (’Swissmetro’ , u t i l i t y sm) ,
3 : (’car’ , u t i l i t y c a r) ,

}

9. Define the availability condition, in the exact same way as for any Bio-
geme specification, that is a dictionary where the keys are the ID of the

7

alternatives, and the values are Biogeme expressions (biogeme.expressions.Expression).
For example,

a v a i l a b i l i t i e s = {
1 : TRAIN AV SP,
2 : SM AV,
3 : CAR AV SP

}

10. We define potential candidates for the choice model. Each candidate
is a function that takes as input three arguments:

(a) the dictionary of utility functions,

(b) the dictionary of availability conditions, and

(c) the expression to calculate the chosen alternative.

It returns, as output, an expression representing the contribution of
each observation to the log likelihood function. For example,

de f nested1 (V, av , cho i c e) :
e x i s t i n g = Beta (’mu_existing’ , 1 , 1 , None , 0) , [1 , 3]
f u tu r e = 1 . 0 , [2]
n e s t s = ex i s t i n g , f u tu r e
re turn models . l ogne s t ed (V, av , nests , cho i c e)

Each of these functions is associated with a name in a dictionary:

myModels = {
’Logit’ : l o g i t ,
’Nested one stop’ : nested1 ,
’Nested same’ : nested2 ,
’CNL alpha fixed’ : cnl1 ,
’CNL alpha est.’ : cnl2 ,

}

11. The last step consists in defining the optimization problem, gathering
the ingredients defined above. An object of type biogeme.assisted.specificationProblem

is created, with the following arguments for the constructor:

(a) the name of the problem,

(b) the biogeme.database object containing the data (from step 1),

(c) the dictionary of all attributes, defined at step 2,

(d) the dictionary of all groups of attributes, defined at step 3,

(e) the list of groups that must be alternative specific, defined at
step 4,

8

(f) the list of groups that must be in the model, defined at step 5,

(g) the dictionary of transformations of attributes, defined at step 6,

(h) the dictionary of segmentations, defined at step 7,

(i) the dictionary of utility functions, defined at step 8,

(j) the dictionary of availability conditions, defined at step 9,

(k) the Biogeme expression calculating the chosen alternative,

(l) the dictionary of possible choice models, defined at step 10.

For example,

theProblem = a s s i s t e d . s p e c i f i c a t i onProb l em (
’Swissmetro’ ,
database ,
a t t r i bu t e s ,
groupsOfAttr ibutes ,
gener icForb iden ,
f o r ceAct ive ,
t rans format ions ,
segmentat ions ,
u t i l i t i e s ,
a v a i l a b i l i t i e s ,
CHOICE,
myModels ,

)

3 Running the algorithm

In order to run the algorithm, we need to provide initial specifications that
the algorithm tries to improve. A specification is characterized by two dic-
tionaries. The first one associates each group of attributes with the index
of a transformation (or None) and a boolean that is True if the coefficient is
generic, and False if it is alternative specific. For instance,

a t t r = {
’Travel time’ : (1 , Fa l se) ,
’Travel cost’ : (0 , True) ,
’Headway’ : (0 , Fa l se) ,

}

If n transformations have been associated with a group of attributes, the
index must be between 0 and n− 1. The second dictionary activates specific
dimensions of the segmentations. For instance, the following dictionary acti-
vates one dimension for the constant and the headway coefficients, and two

9

dimensions for the cost coefficient. The time coefficient is not segmented,
and is the same for all observations.

sg = {
’Seg. cte’ : [’GA’] ,
’Seg. cost’ : [’class’ , ’who’] ,
’Seg. time’ : [] ,
’Seg. headway’ : [’class’] ,

}

The actual model is generated by the function generateSolution that takes three
arguments:

1. the dictionary describing the transformation, as introduced above,

2. the dictionary describing the segmentations, as introduced above,

3. the name of the choice model.

For instance, we can create five models, with the same specification for the
utility functions, but different assumptions for the error term as follows:

i n i t S o l u t i o n s = [
theProblem . gene ra t eSo lu t i on (att r , sg , ’Logit’) ,
theProblem . gene ra t eSo lu t i on (att r , sg , ’Nested one stop’) ,
theProblem . gene ra t eSo lu t i on (att r , sg , ’Nested same’) ,
theProblem . gene ra t eSo lu t i on (att r , sg , ’CNL alpha fixed’) ,
theProblem . gene ra t eSo lu t i on (att r , sg , ’CNL alpha est.’) ,

]

The algorithm investigates many specifications, and estimates the corre-
sponding set of parameters. All these specifications are stored in a pickle file
(a binary representation of Python objects). Therefore, the algorithm can
be interrupted at any time, and restarted at the point it was interrupted.
Moreover, the pickle file contains the Pareto optimal models, as discussed
later.

The following instruction launches the algorithm:

vns . vns (
theProblem ,
i n i t S o l u t i o n s ,
a r ch i v e Inpu tF i l e=’swissmetroPareto.pickle’ ,
p i ck l eOutputF i l e=’swissmetroPareto.pickle’ ,

)

Note that it is simpler to use the same pickle file for input and output, to
avoid any specific manipulation between two runs. For the first run, when
no pickle file is available yet, simply define archiveInputFile=None.

10

4 Exploring the Pareto set

The algorithm generates a pickle file where the Pareto optimal solutions are
stored. These solutions can be explored using the following statements:

from biogeme import vns
p i c k l e F i l e = ’swissmetroPareto.pickle’

pareto = vns . pare toClas s (
0 ,
a r ch i v e Inpu tF i l e=p i c k l e F i l e

)
f o r p in pareto . pareto :

p r i n t (’----------------------------’)
p r i n t (p)

For each model, it prints the name of the model, the description of the spec-
ification of the utility function, the value of the final log likelihood function
and the number of parameters, as in the following examples:

Nested one stop−−−−−−−−−−−−−−−−−−−−−−

Al t e rna t i v e t r a i n [1]
−−−−−−−−−−−−−−−−−−−−−−

Cte . <GA, gender>
Train t r a v e l t ime l og [a l t . spec .] <GA>
Train t r a v e l c o s t l o g [a l t . spec .] <c l a s s , who>
Train headway log [g en e r i c] <c l a s s>
−−−−−−−−−−−−−−−−−−−−−−−−−−−

Al t e rna t i v e Swissmetro [2]
−−−−−−−−−−−−−−−−−−−−−−−−−−−

Cte . <GA, gender>
Swissmetro t r a v e l t ime l og [a l t . spec .] <GA>
Swissmetro t r a v e l c o s t l o g [a l t . spec .] <c l a s s , who>
Swissmetro headway log [g en e r i c] <c l a s s>
−−−−−−−−−−−−−−−−−−−−

Al t e rna t i v e car [3]
−−−−−−−−−−−−−−−−−−−−

Car t r a v e l t ime l og [a l t . spec .] <GA>
Car t r a v e l c o s t l o g [a l t . spec .] <c l a s s , who>

Neg . l og l i k e l i h o o d : 7786.078102793665
#parameters : 32

Actually, the pickle file contains three sets of models:

• the set of Pareto optimal solutions that are not dominated by any other
model (illustrated above),

• the set of considered solutions that contains all models that have been
investigated by the algorithm,

11

• the set of removed solutions that contains the models that have been
at some point in the Pareto set, but have been removed when a better
model has been found.

It is interesting to visualize these three sets using the following code:

import matp lo t l i b . pyplot as p l t
from biogeme import vns

p i c k l e F i l e = ’swissmetroPareto.pickle’

pareto = vns . pare toClas s (0 , a r ch i v e Inpu tF i l e=p i c k l e F i l e)

o b j e c t i v e s = l i s t (pareto . pareto) [0] . object ivesNames
par ob j = [p . o b j e c t i v e s f o r p in pareto . pareto]
par x , par y = z ip (∗ par ob j)
con obj = [p . o b j e c t i v e s f o r p in pareto . cons ide r ed]
con x , con y = z ip (∗ con obj)
rem obj = [p . o b j e c t i v e s f o r p in pareto . removed]
rem x , rem y = z ip (∗ rem obj)

x bu f f e r = 10
y bu f f e r = 0 .1

p l t . ax i s (
[

min (par x) − x bu f f e r ,
max(par x) + x bu f f e r ,
min (par y) − y bu f f e r ,
max(par y) + y bu f f e r ,

]
)
p l t . p l o t (par x , par y , ’o’ , l a b e l=’Pareto’)
p l t . p l o t (rem x , rem y , ’x’ , l a b e l=’Removed’)
p l t . p l o t (con x , con y , ’,’ , l a b e l=’Considered’)
p l t . x l ab e l (o b j e c t i v e s [0])
p l t . y l ab e l (o b j e c t i v e s [1])
p l t . l egend ()
p l t . show ()

The resulting plot is represented in Figure 1, where the x-axis represents the
value of the negative log likelihood, and the y-axis represents the number
of parameters. The idea is that each of these objectives should be as small
as possible. The trade-off between these two objectives is well illustrated by
this figure.

The results of the algorithm allow to better appreciate the trade-off be-
tween the goodness of fit and the parsimony. But the final decision about
which model in the Pareto set must be preferred lies with the modeler.

12

Figure 1: Illustration of the models investigated by the algorithm

13

5 Transformation of variables

The transformation of variables provides a great flexibility to investigate
various specifications of a choice model. In general, it is used to investigate
nonlinear specifications, but it does not have to.

We provide here some examples of transformations.
First, any simple transformation can be investigated. For instance, the

square of the variable:

de f square (x) :
r e turn ’square’ , x ∗∗ 2

The Box-Cox transformation can also be investigated. In that case, it
involves an additional parameter to be estimated. We first define a generic
Box-Cox function, as follows.

de f boxcox (x , name) :
e l l = Beta (f ’lambda_{name}’ , 1 , None , None , 0)
re turn f ’Box-Cox_{name}’ , models . boxcox (x , e l l)

It defines first a parameter, which is initialized at the value 1. Then, it com-
bines the name of the transformation, with the Box-Cox model implemented
in the Biogeme module models.

This generic function can now be used to implement several specific trans-
formations. For instance, the Box-Cox transformation of the travel time
variable can be coded as follows:

de f boxcox time (x) :
r e turn boxcox (x , ’time’)

Similarly, the Box-Cox transformation of the cost variable can be coded as
follows:

de f boxcox cost (x) :
r e turn boxcox (x , ’cost’)

The reason why we need two different functions is to associate a different
parameter with each transformation.

A similar implementation can be used to investigate piecewise linear spec-
ifications. Indeed, different variables are associated with different thresholds
for such a specification. We first implement a generic function, that also
relies on the Biogeme module models:

de f p i e c ew i s e (x , th re sho lds , name) :
p i e c ew i s eVa r i ab l e s = models . p i e c ew i s eVa r i ab l e s (x , t h r e sho ld s)
formula = p i e c ew i s eVa r i ab l e s [0]
f o r k in range (1 , l en (th r e sho ld s) − 1) :

formula += (
Beta (

14

f ’pw_{name}_{thresholds[k-1]}_{thresholds[k]}’ ,
0 ,
None ,
None ,
0 ,

)
∗ p i e c ew i s eVa r i ab l e s [k]

)
r e turn (f ’piecewise_{name}_{thresholds}’ , formula)

Now, we can define specific transformations of the same variable. For ex-
ample, we transform the time variable based on the threshold [0, 0.1,∞[as
follows:

de f p i e c ew i s e t ime 1 (x) :
r e turn p i e c ew i s e (x , [0 , 0 . 1 , None] , ’time’)

The transformation of the same variable with a different list of thresholds is
obtained as follows:

de f p i e c ew i s e t ime 2 (x) :
r e turn p i e c ew i s e (x , [0 , 0 . 25 , None] , ’time’)

Transformation of variables can also be used to investigate interactions
with continuous characteristics. In the following example, the variable distance km

is a continuous characteristic. It provides the distance between an origin and
a destination in a mode choice context. In order to investigate its interaction
with an attribute, the following transformation can be implemented:

from biogeme . e xp r e s s i on s import Var iab le
de f d i s t a n c e I n t e r a c t i o n (x) :

r e turn (
’dist. interaction’ ,
x ∗ l og (1 + Var iab le (’distance_km’) / 1000)

)

If income is coded as a continuous variable, its interaction with an attribute
can be coded as follows:

from biogeme . e xp r e s s i on s import Var iab le
de f incomeInte rac t i on (x) :

r e turn (
’income interaction’ ,
x / Var iab le (’income)

)

15

References

Ortelli, N., Hillel, T., Pereira, F., de Lapparent, M. and Bierlaire, M. (2021).
Assisted specification of discrete choice models, Journal of Choice Mod-

elling 39(100285).

16

