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Abstract

The development and evaluation of Dynamic Traffic Management
Systems (DTMS) for Intelligent Transportation Systems (ITS) appli-
cations require sophisticated simulation tools. Many traffic simulators
representing traffic at various levels of aggregation have been devel-
oped and used. Despite the importance of demand in this context,
these tools focus mainly on the supply aspects of the transportation
systems. Demand is usually just an input to the simulator.

The lack of dynamic demand simulators seems to be due to the dif-
ficulty of combining different models (like discrete choice models and
OD matrix estimation) within a common environment. Therefore, a
unifying framework, where different models can cooperate, will pro-
vide the necessary incentives for the development and implementation
of a new class of dynamic demand simulators.

In this paper, we propose a general framework for the design and
development of dynamic demand simulators. It is sufficiently general
to encapsulate a wide variety of applications, models, data and al-
gorithms. The paper not only describes the conceptual framework,
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but also provides several practical considerations. The framework is
illustrated using a dynamic demand simulator implemented within
DynaMIT, a real-time dynamic traffic assignment system.

1 Introduction

With the emergence of Intelligent Transportation Systems (ITS), research has
been conducted for several years on the design, development and evaluation
of Dynamic Traffic Management Systems (DTMS). An important part of
that effort focuses on traffic simulation which can be (i) macroscopic such
as METANET (Messmer and Papageorgiou, 1990) and the cell-transmission
model (Daganzo, 1994); (ii) mesoscopic such as in DynaMIT (Ben-Akiva
et al., 1998), DYNASMART (Mahmassani et al., 1993) and INTEGRATION
(van Aerde and Yagar, 1988); (iii) microscopic such as MITSIM (Yang and
Koutsopoulos, 1997) and AIMSUN2 (Barceló and Ferrer, 1997). All of these
traffic simulators effectively capture the performance of the network. This
literature illustrates the strong emphasis placed on modeling network supply
in the context of DTMS.

The research on demand aspects has also been investigated in the liter-
ature. However, very few demand-based integrated operational tools that
can be used within DTMS have been developed. Such tools are necessary to
capture both the demand levels and their distribution over time and space in
conjunction with network performance and information provided to travelers.

As already recognized by Ben-Akiva et al. (1994) in the context of DTMS
applications, demand models can roughly be grouped into two categories: ag-
gregate (or statistical) models, and disaggregate (or behavioral) models. The
development of integrated demand simulators requires an unified framework
where these two categories of models can interrelate in a cooperative and
complementary fashion. The first integrated real-time demand simulator has
been proposed by Antoniou et al. (1997) and has been implemented within
the DynaMIT system (Ben-Akiva et al., 1998). This simulator captures the
effect of information provided to travelers on their departure time and route
choices prior to the commencement of their trips using historical OD data
and real-time link flow data.

In this paper, a conceptual framework for the development of a Dynamic
Demand Simulator (DDS) is presented. This framework is based on a formal
representation of demand referred to as the Disaggregate Demand Represen-
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tation (DDR). The originality of the DDR is in its ability to combine different
levels of aggregation in a consistent fashion. The methodology through which
the DDR is used to combine different sources of demand information such
as origin-destination matrices, socio-economic data and behavioral models
is presented first. Moreover, a comprehensive mathematical description of
demand processing is discussed together with the underlying assumptions.
The general concept of a DDS, based on the DDR, is then introduced. Fi-
nally, the DynaMIT demand simulator is described as an illustration of the
concepts.

2 The Disagreggate Demand Representation

A Disaggregate Demand Representation (DDR) C is characterized by a set
of attributes {C1, C2, . . . , Cn} that are relevant in a transportation demand
analysis context. These attributes include socio-economic characteristics
(such as age, gender, level of income, address, access to real-time informa-
tion, etc.) and trip characteristics (such as origin, destination, departure
time, mode, path, average travel time, etc.) It may also include external
characteristics describing the context when a trip occurs (such as weather
condition, special events, holidays, etc.) This list is not exhaustive and may
be extended to meet the requirements of any particular application. We as-
sume, without loss of generality, that each attribute Ci may take only a finite
and discrete number of distinct values {Ci(1), . . . , Ci(si)}, called states of the
attributes.

Definition 1 Given a set of n attributes {C1, C2, . . . , Cn}, with a finite number

of states si, i = 1, . . . , n, a Disaggregate Demand Representation C is a table

with n columns and m =
∏n

i=1 si rows. Each row corresponds to a unique

combination of the attributes states.

For example, we consider the set of attributes {Origin, Destination, Mode,
Departure Time Interval}, and we assume that we have two origins O1 and
O2, two destinations, D1 and D2, one mode M and two departure time
intervals T1 and T2. The corresponding DDR is represented in Table 1,
where n = 4, and m = 2 × 2 × 1 × 2 = 8.

From a practical viewpoint, the general definition of the DDR may lead to
intractable representations due to the combinatorial size of the DDR. There-
fore, for practical purposes, and without loss of generality, several combi-
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i Origin Destination Mode Departure Time
1 O1 D1 M T1

2 O1 D1 M T2

3 O1 D2 M T1

4 O1 D2 M T2

5 O2 D1 M T1

6 O2 D1 M T2

7 O2 D2 M T1

8 O2 D2 M T2

Table 1: Example of a Disaggregate Demand Representation

nations of states may be arbitrarily omitted from the representation, based
on the specific characteristics of the application. For example, this typically
occurs when the list of attributes contains Origin, Destination and Path. It
does not make sense to include in the DDR a combination where a path does
not link the associated origin and destination. Therefore, in that case, the
topology of the network can be exploited to significantly reduce the size of
the DDR.

The definition of a DDR is sufficiently general to capture a very wide
range of applications related to transportation demand. For example, origin-
destination matrices are a specific DDR, with two attributes. However, when
several representations are used in a specific context, they must be compatible
with one another.

Definition 2 If Ca and Cb are two DDR, we say that Ca is compatible with Cb

and denoted by Ca ⊆ Cb, if the set of attributes in Ca is a subset of the set of

attributes in Cb. Moreover, the attributes common to both DDR must have the

same states.

If Ca ⊆ Cb, we say that the Disaggregate Demand Representation Ca is
more aggregate than Cb. Note that Ca = Cb if and only if Ca ⊆ Cb and Cb ⊆ Ca.
If Ca ⊆ Cb and Ca 6= Cb, we note Ca ⊂ Cb.

We denote by fC(i) the set of the attribute states corresponding to row
i of a DDR C. The subscript is dropped when no confusion is possible
and we write f(i). Referring to the example of Table 1, we have f(6) =
{O2, D1, M, T2}. f is a bijective relation between the set of indices (1, . . . , m)
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and the set of all combinations of attributes states. Therefore, it is meaning-
ful to write f−1({O2, D1, M, T2}) = 6.

Definition 3 The characterization function fC(i) of a DDR C is a bijective

function mapping the set of indices (1, . . . , m) into the set of all combinations

of states.

The compatibility between two DDRs can be captured by a linear oper-
ator, referred to as the compatibility matrix, based on the characterization
functions.

Definition 4 If Ca and Cb are two compatible DDRs such that Ca ⊆ Cb with ma

and mb rows, respectively, their compatibility matrix P a
b ∈ R

ma×mb is defined as

P a
b (i, j) =

{

1 iffCa
(i) ⊂ fCb

(j)
0 otherwise

(1)

Note that each set of states fCb
(j) contains exactly one set of states fCa

(i).
Therefore, each column of P a

b contains exactly one nonzero entry. Hence,
defining Ji = {j|P a

b (i, j) = 1} as the set of indices associated with nonzero
entries in row i, then

Ji ∩ Jk = ∅ if i 6= k, (2)

and
ma
⋃

i=1

Ji = {1, . . . , mb}. (3)

This concept is illustrated with the following example. Denote by Cb the
DDR represented in Table 1 based on the set of attributes {Origin, Desti-
nation, Mode, Departure Time Interval}, and by Ca the DDR based on the
set {Origin, Destination} represented in Table 2. We have na = 2, ma = 4,
nb = 4 and mb = 8.

The compatibility matrix P a
b is given by

P a
b =









1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1









(4)

For example, the entry P a
b (2, 3) is 1 because {O1, D2} = fCa

(2) ⊆ fCb
(3) =

{O1, D2, M, T1}.
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i Origin Destination
1 O1 D1

2 O1 D2

3 O2 D1

4 O2 D2

Table 2: A more disagreggate DDR

After introducing the representation itself, an instance of a Dynamic De-
mand Representation is now defined.

Definition 5 An instance of a DDR C is characterized by a vector C(α) ∈ R
m.

The ith component of C(α) represents the amount of demand, in a given unit,

associated with the set of attributes f(i).

The chosen unit depends on the application. Typical units are number of

travelers, number of vehicles or number of packets of vehicles. In the example
above, α6 could be the number of travelers from origin O2 to destination D1

departing during time interval T2 using mode M .
In summary, the level of aggregation of a DDR is determined by the num-

ber n of considered attributes. The more attributes, the more disaggregate
the representation. The definition of a DDR is sufficiently general to capture
a wide range of demand representations, from simple static origin-destination
matrix, to a complete list of trip-makers with all their characteristics.

In the subsequent sections 3 through 6, the processes used to transform
an instance of a given representation into a instance of another representation
are described. These processes are the building blocks of Dynamic Demand
Simulators.

3 The Aggregation process

Let Cb be a DDR based on the set of attributes {C1, . . . , Cnb
} and Ca ⊆ Cb

a DDR based on {C1, . . . , Cna
}, where na ≤ nb. The Aggregation process

transforms an instance Cb(β) of Cb into an instance Ca(α) of Ca. Denoting
by ma and mb the number of rows of Ca and Cb, respectively, the following
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holds:
Agg : R

mb −→ R
ma

Cb(β)  Ca(α) = P a
b Cb(β),

(5)

where P a
b is the compatibility matrix defined by (1).

Using the example described in Section 2, with P a
b defined by (4), and

considering

Cb(β) = ( 3.4 6.8 2.3 5.7 1.0 4.5 0.0 3.0 )T , (6)

the aggregated instance is given by

Ca(α) = P a
b Cb(β) = ( 10.2 8.0 5.5 3.0 )T . (7)

4 The Disaggregation process

Let Cb be a DDR based on the set of attributes {C1, . . . , Cnb
} and Ca ⊆ Cb

a DDR based on {C1, . . . , Cna
}, where na ≤ nb. Consider also a matrix

Qb
a ∈ R

mb×ma such that
P a

b Qb
a = Ima

, (8)

where P a
b is the compatibility matrix defined by (1).

The Disaggregation process transforms an instance Ca(α) of Ca into an
instance Cb(β) of Cb as follows:

Disagg(Qb
a) : R

ma −→ R
mb

Ca(α)  Cb(β) = Qb
aCa(α).

(9)

Contrary to the aggregation process, where the matrix P a
b is completely

characterized by Ca and Cb, the disaggregation process requires an externally
defined matrix Qb

a. Thus, there are many possible ways to disaggregate a
DDR, and the matrix Qb

a is necessary to identify one of them.
To illustrate the disaggregation process the same example is used with

Ca(α) = ( 10.2 8.0 5.5 3.0 )T . (10)
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Using the matrix

Qb
a =

























0.5 0 0 0
0.5 0 0 0
0 0.5 0 0
0 0.5 0 0
0 0 0.5 0
0 0 0.5 0
0 0 0 0.5
0 0 0 0.5

























(11)

to disaggregate Ca(α) results in

Cb(β
′) = ( 5.1 5.1 4 4 2.75 2.75 1.5 1.5 )T . (12)

4.1 Properties

Some interesting properties of the aggregation and the disaggregation pro-
cesses are identified in this section. Consider Cb a DDR based on the set of
attributes {C1, . . . , Cnb

} and Ca ⊆ Cb a DDR based on {C1, . . . , Cna
}, where

na ≤ nb. Consider also the matrix P a
b ∈ R

ma×mb defined by (1). Condi-
tion (8) immediately induces the following property.

Property 1 For any matrix Qb
a ∈ R

ma×mb , the following holds

P a
b Qb

aCa(α) = Ca(α) ∀α ∈ R
ma . (13)

It guarantees that applying any disaggregation followed by an aggregation
on an instance of a DDR does not modify that instance.

Note, however, that in general applying an aggregation followed by a
disaggregation on an instance of a DDR does not result in that same instance.
That is, Qb

aP
a
b Cb(β) 6= Cb(β). This is illustrated in the above example where

the instance Cb(β
′) given by (12) is different from the instance Cb(β) given

by (6) although Ca(α) is an aggregation of Cb(β) as given by (7).

Property 2 For any matrix Qb
a ∈ R

mb×ma satisfying (8), the following holds:

mb
∑

i=1

Qb
a(i, j) = 1. (14)
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Proof. Let j be any index between 1 and ma. From (8),

mb
∑

i=1

P a
b (j, i)Qb

a(i, j) = 1 ∀j = 1, . . . , ma. (15)

By definition of Jj , P a
b (j, i) = 1 if i ∈ Jj, and 0 otherwise. Therefore,

∑

i∈Jj

Qb
a(i, j) = 1. (16)

Let ℓ be any index between 1 and ma, ℓ 6= j. From (8),

mb
∑

i=1

P a
b (ℓ, i)Qb

a(i, j) = 0. (17)

By definition of Jℓ, P a
b (ℓ, i) = 1 if i ∈ Jℓ, and 0 otherwise. Therefore,

∑

i∈Jℓ

Qb
a(i, j) = 0. (18)

Finally, (3) allows for writing the following:

mb
∑

i=1

Qb
a(i, j) =

ma
∑

k=1

∑

i∈Jk

Qb
a(i, j). (19)

The result (14) follows directly from (16), (18) and (19). �

4.2 Specific disaggregation matrices

The general description of the disaggregation process is insufficient for an
operational system. Some specific processes corresponding to realistic situ-
ations are therefore presented. As before, it is assumed that Ca ⊆ Cb and
an instance Ca(α) is disagreggated into an instance Cb(β). Also, P a

b is the
compatibility matrix between Ca and Cb.

Homogeneous disaggregation The first situation considered is when no
external information is available to determine the disaggregation, and
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an arbitrary decision must be made. In this case, the disaggregation
matrix

Qb
a = (P a

b )T (P a
b (P a

b )T )−1, (20)

the Moore-Penrose generalized inverse of P a
b , is defined. This matrix re-

flects a homogeneous distribution of the total demand across the states
of new attributes. The disaggregation matrix (11) used to produce
Cb(β

′) of (12) is such a matrix.

Previous aggregation If a disaggregated instance Cb(β) is already avail-
able, it is desirable that an aggregation of this instance, followed by a
disaggregation would lead back to the same instance. More formally,
if Cb(β) ∈ R

mb is known, then Ca(α) = P a
b Cb(β), and Qb

a ∈ R
mb×ma is

given by

Qb
a(i, j) =

{

Cb(β)j/Ca(α)i iffCa
(i) ⊂ fCb

(j)
0 otherwise.

(21)

so that
Qb

aP
a
b Cb(β) = Cb(β). (22)

Considering our example, we have

Qb
a =

























0.33 0 0 0
0.67 0 0 0
0 0.29 0 0
0 0.71 0 0
0 0 0.18 0
0 0 0.82 0
0 0 0 0
0 0 0 1

























(23)

In general, this matrix Qb
a is determined when an aggregation is per-

formed, and is used in a subsequent disaggregation. This is illustrated
in section 7.

External data In order to maximize the quality of the disaggregated in-
stance, it is desirable to make use of all available data, namely socio-
economic information. Assume that the external data is available as
an instance Cref(αref) of a DDR Cref ⊆ Cb (so that both Ca and Cref are

10



j Origin Destination Ca(α)j

1 O1 D1 100
2 O1 D2 50
3 O2 D1 250
4 O2 D2 20

Table 3: A static OD matrix

compatible with Cb), and that all attributes in Cb are either in Ca or
in Cref (or both). In this case, the disaggregation matrix Qb

a is defined
such that

Qb
a(i, j) =

{

g(i)/G(j) if fCa
(j) ⊂ fCb

(i)
0 otherwise,

(24)

where g = Qb
refαref, G = P a

b g, and Qb
ref is any appropriate disaggregation

matrix.

In most practical applications, the choice of Qb
ref is simply the homo-

geneous disaggregation, but any other matrix verifying (8) is valid.
The vector g represents the disaggregation of the available data into
the structure of the desirable DDR while the vector G represents the
aggregation of this disaggregate instance to the DDR structure of the
instance which needs to be disaggregated. The corresponding disaggre-
gation matrix Qb

a defined by the elements of g and G, therefore, allows
for a disaggregation which is consistent with the information inherent
to the available data.

As an example, a static OD matrix is disaggregated, knowing the gender
breakdown by origin. The instance of Ca represented in Table 3 is
disaggregated into an instance of the DDR Cb represented in Table 4,
knowing the socio-economic data represented by the instance of Cref

represented in Table 5.

Choosing Qb
ref as the homogeneous disaggragation matrix, the following

are determined:

g = Qb
refαref = ( 32.5 17.5 32.5 17.5 10 40 10 40 )T , (25)

G = P a
b g = ( 50 50 50 50 )T (26)
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Origin Destination Gender
1 O1 D1 Male
2 O1 D1 Female
3 O1 D2 Male
4 O1 D2 Female
5 O2 D1 Male
6 O2 D1 Female
7 O2 D2 Male
8 O2 D2 Female

Table 4: A disaggregated static OD matrix

Origin Gender Cref(α)

1 O1 Male 65
2 O1 Female 35
3 O2 Male 20
4 O2 Female 80

Table 5: Socio-economic data
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and

Qb
a =

























0.65 0 0 0
0.35 0 0 0
0 0.65 0 0
0 0.35 0 0
0 0 0.2 0
0 0 0.8 0
0 0 0 0.2
0 0 0 0.8

























. (27)

Therefore, the disaggregated instance of Cb is

Origin Destination Gender Cb(β)
1 O1 D1 Male 65
2 O1 D1 Female 35
3 O1 D2 Male 32.5
4 O1 D2 Female 17.5
5 O2 D1 Male 50
6 O2 D1 Female 200
7 O2 D2 Male 4
8 O2 D2 Female 16

Probabilistic model The disaggregation using external data is designed
to maintain some known proportions in the demand representation. In
some cases, however, the demand must be represented by integer num-
bers and, therefore, cannot be split using that technique. The proba-
bilistic model uses the same information, but creates a disaggregation
matrix with only 0 or 1 entries. That guarantees that the integrality
of the demand will be preserved by the disaggregation process.

Considering any disagreggation matrix Qb
a, a new matrix Q̂b

a can be
built using the following procedure. For each column j, property 2
of section 4.1 is used and the entries of the column are considered to
define a probability mass function (pmf). A Monte-Carlo simulation is
performed based on this pmf to randomly identify one row i. Define

Q̂b
a(i, j) = 1 (28)

and
Q̂b

a(k, j) = 0 ∀k 6= i. (29)
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Column Uniform[0,1) Selected row
1 0.353 1
2 0.345 3
3 0.509 6
4 0.105 7

Table 6: Illustration of the probabilistic model

Note that this process is more expensive from a computational point of
view. Therefore, it is preferable to use it only for off-line computation
except when it is necessary to preserve integrality in a consistent way.

As an example, consider Qb
a defined by (27). Each column contains two

nonzero entries. A random number r is generated, based on a uniform
distribution between 0 and 1. If r is smaller or equal to the first non
zero element of a column, the corresponding entry in Q̂b

a is 1. If it is
large, the entry in Q̂b

a corresponding to the other nonzero element is
one. Table 6 illustrates this process. The first column contains the
column index of Qb

a, the second contains uniformly distributed random
numbers, and the third mention the row in Q̂b

a which is set to 1.

5 The splitting process

The combinatorial definition of a DDR may lead to very large instances. For
practical reasons, it is desirable to split a DDR into smaller representations.
The idea is to select one attribute and split the DDR creating a new DDR for
each state of this attribute. The selected attribute will not appear anymore
in the new DDRs.

The splitting process is defined by first assuming (without loss of gener-
ality) that the last attribute is selected. Let C be a DDR based on the set
{C1, . . . , Cn} of attributes. The splitting process creates sn DDRs (C1, . . . , Csn

),
all based on the set {C1, . . . , Cn−1} of attributes.

Given an instance C(β) of the original DDR, an instance of a new DDR
Ck(κ) is such that Ck(κ)j = C(β)i if

fC(i) = fCk
(j) ∪ {Cn(i)} (30)
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Departure Time = T1

i C1(κ)i Orig. Dest. Mode
1 3.4 O1 D1 M
2 2.3 O1 D2 M
3 1.0 O2 D1 M
4 0.0 O2 D2 M

Departure Time = T2

i C2(κ)i Orig. Dest. Mode
1 6.8 O1 D1 M
2 5.7 O1 D2 M
3 4.5 O2 D1 M
4 3.0 O2 D2 M

Table 7: Split Disaggregate Demand Representation

Considering the DDR of table 1 and the instance (6)

Cb(β) = ( 3.4 6.8 2.3 5.7 1.0 4.5 0.0 3.0 )T , (31)

two new DDRs and their corresponding instances are created, one for each
departure time, as shown in Table 7.

6 Model application

A model application transforms an instance of a given DDR into another
instance of the same DDR. It is important to distinguish between two types
of models: aggregate and disaggregate.

A typical example of an aggregate model application is an OD estima-
tion algorithm (see for instance Bell, 1983, Cascetta, 1984 or Ashok and
Ben-Akiva, 1993). Such an algorithm updates an a priori OD matrix using
external data such as link flow observations. If C is the DDR with m rows
capturing the OD matrix, and C(α) is the instance corresponding to the a
priori matrix, the algorithm computes ∆ ∈ R

m such that the new instance is

C(α∗) = C(α) + ∆. (32)

Typical examples of disaggregate models are discrete choice models (see
for instance Ben-Akiva and Bierlaire, 1999). These models consider one unit
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of demand (an individual, or a packet) and update some attribute states
(such as the path choice). This produces shifts of demand across the rows of
the DDR. If C is the considered DDR with m rows, and C(α) is the instance
corresponding to the initial demand, the disaggregate model transforms it
into

C(α∗) = AC(α), (33)

where A ∈ R
m×m is such that Aij is the proportion of demand moving from

state combination f(i) to state combination f(j), and where f is the char-
acterization function of the considered DDR.

For example, considering a DDR composed of Origin, Destination and
Path, with f(i) = {O1, D1, P1} and f(j) = {O1, D1, P2}, the entry Aij is the
proportion of travelers that used path P1 between O1 and D1, and are now
using path P2. Note that the matrix A can be obtained either by considering
the probability distribution provided by the model as proportions, or by
performing a Monte-Carlo simulation in the exact same way as described
for the probabilistic model discussed in Section 4.2. A compromise between
accuracy and computation time has to be made here, but it does not affect
the general framework.

As can be seen from the above discussion, model applications can be cat-
egorized into additive and multiplicative operations on DDR instances. More
general operations could be integrated in the framework, but no operational
requirement justifies complex generalizations.

7 Dynamic Demand Simulation

We now combine the concepts introduced before to define a Dynamic Demand
Simulation.

Definition 6 Let C1, . . . , CN be N DDRs such that, either Ci ⊆ Ci+1, or

Ci+1 ⊆ Ci, for i = 1, . . . , N − 1. A Dynamic Demand Simulation is a func-

tion transforming an instance of C1 into an instance of CN .

Given an instance C1(α1), the Dynamic Demand Simulation creates a
sequence (C2(α2), . . . CN(αN)) of instances of each DDR in the following way.

If Ci ⊂ Ci+1 a disaggregation process is applied, and

Ci+1(αi+1) = Qi+1
i Ci(αi)
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where Qi+1
i satisfies (8).

If Ci+1 ⊂ Ci , there are two possibilities

1. An aggregation process is applied, and

Ci+1(αi+1) = P i+1
i Ci(αi)

where P i+1
i is defined by (1); or

2. A splitting process is applied, as described is Section 5.

If Ci = Ci+1 a model is applied to transform Ci(αi) into Ci+1(αi+1), as de-
scribed in Section 6.

Therefore, to design an operational Dynamic Demand Simulation, the
following steps must be performed:

1. Identification of relevant DDRs: In a typical application, the number
of different DDR is small, but may be repeated several times in the
sequence.

2. Selection of disaggregation matrices Qi+1
i for all i such that Ci ⊂ Ci+1.

3. Choice between splitting and aggregating when Ci+1 ⊂ Ci.

4. Selection of models transforming an instance of a DDR into another
instance of the same DDR when Ci+1 = Ci.

Section 8 is devoted to the description of the DDS proposed by Antoniou
et al. (1997) and implemented into the DynaMIT system (Ben-Akiva et al.,
1998).

8 DynaMIT implementation

DynaMIT (Dynamic Network Assignment for the Management of Informa-
tion to Travelers) is a real time dynamic traffic assignment system that pro-
vides traffic predictions and travel information and guidance. DynaMIT
estimates current traffic conditions using historical information and real-
time data collected from a surveillance system. DynaMIT also generates
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prediction-based pre-trip information for departure time, path and mode
choice, and en-route information for route choice.

DynaMIT combines both historical and real-time data to perform the best
possible estimation and prediction. In order to achieve real-time efficiency,
DynaMIT processes several data off-line, before the online operations start.
The purpose of DynaMIT’s DDS is to generate a list of travelers or group of
travelers formed into packets each with a specific departure time and path
choice reflecting the available pre-trip travel time information. The inputs to
this process are historical OD flows, a habitual path choice model, a departure
time and path choice model based on pre-trip traveler information, and real-
time data on link flows.

The steps that make DynaMIT’s demand simulator an operational Dy-
namic Demand Simulation, as described in Section 7, are presented here. For
more details about DynaMIT’s DDS (including models and algorithms), see
Antoniou et al. (1997).

8.1 Identification of relevant DDRs

DynaMIT’s DDS is based on four DDRs:

1. a historical database, noted CD,

2. a time-dependent OD matrix, noted COD,

3. a list of unrouted packets, noted CUP , and

4. a list of packets, noted CP .

DynaMIT uses a historical database to exploit any relevant information
collected from day to day about the considered environment. The database
may contain an arbitrarily long list of information. In the context of Dyna-
MIT’s Dynamic Demand Simulation, four relevant attributes are considered,
namely CD = {Origin, Destination, Departure Time Interval, Day Category}.
Each attribute is described in what follows.

Origin Each state of that attribute corresponds to a specific centroid where
trips may originate within the considered area.

Destination Each state of that attribute corresponds to a specific centroid
where trips may end within the considered area.
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Departure Time Interval Each state corresponds to a time interval within
which a constant OD flow is realized.

Day Category Each state of that attribute corresponds to a specific cate-
gory of day, such as rainy days, holidays, or special event days.

The time-dependent OD matrix DDR is COD = {Origin, Destination,
Departure Time Interval}. The DDR associated with the list of packets is
the most disaggregate and is given by CP = {Origin, Destination, Depar-
ture Time Interval, Mode, Path, Value of Time, Trip Purpose, Information
Availability}. Each of the attributes not described already are described in
what follows:

Mode In DynaMIT, this attribute currently has two states: private auto-

mobile and other.

Path DynaMIT considers a restricted number of paths between each OD
pair. These paths are selected and stored off-line, based on the network
topology and on historical information.

Value of Time Three states are considered in the current version of Dyna-
MIT: high, medium and low.

Trip purpose Three states are considered in the current version of the sys-
tem: work, leisure and other.

Information availability Two states are considered in the current version
of the system: Equipped and Not equipped.

Finally, the DDR CUP associated with the list of unrouted packets is that of
the list of packets without the path attribute.

The chain of mutually compatible DDRs, according to definition of a
Dynamic Demand Simulator (see definition 6), can than be described as

C1 ⊃ C2 ⊂ C3 ⊂ C4 = C5 ⊃ C6 = C7 ⊂ C8

m m m m m m m m
CD ⊃ COD ⊂ CUP ⊂ CP = CP ⊃ COD = COD ⊂ CP

(34)

The overall process is transforming an instance of the historical data
CD(γ) into an instance CP (βE) corresponding to the best estimation of the
current demand at the packet level. This process is illustrated in Figure 1
and is subsequently described step by step.
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Figure 1: DynaMIT’s Dynamic Demand Simulation
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8.2 Splitting the historical database

A splitting process based on the attribute Day Category is applied to the his-
torical database CD. Among the DDRs obtained from the process described
in Section 5, the one corresponding to the day of interest is selected and an
instance COD(αH) of the historical OD matrix is now available. We note that
this splitting process may be performed off-line before the online system is
in operation.

8.3 Disaggregation of the historical OD matrix

This disaggregation is based on external socio-economic data. As described in
Section 4.2, the availability of an instance Cref(αref) is assumed. For this disag-
gregation process to be valid, the DDR Cref must contain at least the following
attributes: {Mode, Value of Time, Trip Purpose, Information Availability}.
Note that Cref(αref) must reflect the composition of the population captured
by the historical database. In some cases the database considers only trav-
elers using private automobile and, consequently, the mode proportion is 1.0
for private.

The disaggregation process described in Section 4.2 is sufficiently flexible
to exploit more detailed external data. For instance, if the composition of
the population is known for each origin zone, the reference DDR to consider
is then based on the attributes {Origin, Mode, Value of Time, Trip Purpose,
Information Availability}. Clearly, destination-based data or even origin-
destination based data can be exploited in a similar way, if available.

As discussed in Section 4.2, by default the disaggregation matrix QUP
ref

corresponds to the homogeneous disaggregation. The disaggregation process,
based on QUP

OD defined by (24), provides an instance CUP (βT ).

8.4 Determination of habitual paths

The determination of habitual paths for each of the packets relies, again,
on external data. In DynaMIT, a discrete choice model based on historical
travel times is used (see Antoniou et al., 1997). The reference DDR Cref is
base on the attributes {Origin, Destination, Departure Time Interval, Path}.
In this case, the disaggregation based on a probabilistic model as described
in Section 4.2 is applied, so that each packet is associated with exactly one
path. An instance CP (βH) is now available. As a direct result of using
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historical travel times, the path selected for each packet reflects a habitual
choice. Subsequent steps will update this habitual choice to reflect the effect
of information on predicted traffic conditions specific to the day of interest.

8.5 Behavioral models

Behavioral models capture the response of drivers to real-time information
and guidance. The behavioral models within DynaMIT are discrete choice
models capturing route choice, departure time choice and mode choice of each
individual (or the group of individuals formed into packets) in the system.
For details, see Antoniou et al. (1997) and Ben-Akiva and Bierlaire (1999).
A matrix A captures the effects of these models on the DDR instance. As
discussed in Section 6, A can be generated by interpreting the model prob-
abilities as proportions, or by performing a Monte-Carlo simulation. The
current version of DynaMIT is based on the latter. We compute

CP (βU) = ACP (βH) (35)

to obtain an instance CP (βU).

8.6 Aggregation of the list of packets

As described in Section 3, the aggregation matrix P OD
P is fully determined

from CP and COD. Based on P OD
P an instance COD(αU) is directly obtained

through COD(αU) = P OD
P CP (βU).

8.7 OD matrix estimation

DynaMIT implements a Kalman Filter algorithm (Ashok and Ben-Akiva,
1993) where the state variables are perturbations from a reference OD matrix,
in this case the Updated OD Matrix COD(αU). The direct output of this
model is the ∆ vector, introduced in Section 6, reflecting observed real-time
data on link flows. Therefore, an instance COD(αE) is obtained through
COD(αE) = COD(αU) + ∆.

8.8 Final disaggregation

To obtain the estimated list of packets, a final disaggregation must be per-
formed. As emphasized in Section 4, a disaggregation process is determined
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by a matrix QP
OD. In this case, the result of the previous aggregation that

transforms CP (βU) into COD(αU) is used. The matrix QP
OD is, therefore, de-

fined by (21) of Section 4.2 where Ca(α) = COD(αU) and Cb(β) = CP (βU).
The instance CP (βE) is finally obtained through CP (βE) = QP

ODCOD(αE).

9 Conclusion

A general framework for Dynamic Demand Simulation (DDS) is proposed.
The framework is based on a formal representation of demand: the Disag-
gregate Demand Representation (DDR). Processes to aggregate and disag-
gregate that demand have been described in detail. Noting that there are
infinitely many ways to disaggregate a DDR, several realistic options have
been proposed. Finally, an actual DDS, DynaMIT’s demand simulation, has
been described in the context of the general framework.

The framework has been designed to capture most of the difficulties en-
countered during the design, development and implementation of DynaMIT’s
dynamic demand simulator. Therefore, this framework should allow for the
development of more sophisticated dynamic demand simulators for evolving
or new real-time applications.
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