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1 Introduction

We consider a population of N individuals. Each individual n is choosing ex-

actly one alternative in within a choice set C of J alternatives. A choice model

is designed to capture the causal relationship between a vector xn of explanatory

variables characterizing the individual, the alternatives and the choice context, and

the choice in. For the sake of simplifying the notations, we assume in this paper

that all variables involved are discrete. The derivations generalize to continuous

variables by replacing probabilities by density functions, and sums by integrals.

The analyst postulates a functional form, usually derived from a behavioral

theory, that generates the probability that an alternative i is chosen, given the

explanatory variables. We denote it as

P(i|xn, Cn; θ), (1)

where θ is a vector of unknown parameters. If the choice set happens to vary

across individuals, we assume that this is represented by variables within xn in

order to avoid using the notation Cn. Therefore, we can assume the choice set C
to be given once for all, and write the choice model

P(i|xn; θ), (2)

without loss of generality.

Random utility models associate a random variable Uin called a utility function

with each individual and each alternative. The choice model (2) is then defined as

P(i|xn; θ) = Pr(Uin(xn; θ) ≥ Ujn(xn; θ),∀j ∈ C). (3)

For example, the logit model is

P(i|xn; θ) =
eµVin(xn;θ)

∑
j∈C e

µVjn(xn;θ)
, (4)

where

Uin(xn; θ) = Vin(xn; θ) + εin, (5)

and εin is extreme value distributed with location parameter 0 and scale parameter

µ.

The choice variable i is referred to as the endogenous or dependent variable,

and the variables xn are the exogenous or independent variables.

A choice probability is associated with each individual in the population and

each alternative, as illustrated in Table 1. The total of each row is equal to 1, as

each individual chooses exactly one alternative. The total of each column is the
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expected number of individuals in the population who choose the corresponding

alternative.

Model estimation consists of inferring the value of θ from the observed choices.

Once these values have been estimated, the model is used for prediction. Predic-

tion involves defining a hypothetical scenario consisting of a (possibly synthetic)

population, in which each individual n is associated with a vector xn of explana-

tory variables. The model is then used to predict various indicators derived from

Table 1, such as market shares and elasticities.

Population
Alternatives

Total
1 2 · · · J

1 P(1|x1; θ) P(2|x1; θ) · · · P(J|x1; θ) 1

2 P(1|x2; θ) P(2|x2; θ) · · · P(J|x2; θ) 1
...

...
...

...
...

...

N P(1|xN; θ) P(2|xN; θ) · · · P(J|xN; θ) 1

Total N(1) N(2) · · · N(J) N

Table 1: Choice probability for each individual and each alternative

It appears from Table 1 that the complexity grows with both N and J. The ana-

lyst has to rely on sampling when the values of N and J are such that the resources

needed for model estimation or model prediction exceed a given budget. The typ-

ical limitations are related to the cost of data collection and the computational

complexity, which both increase with N and J.

Sampling consists of performing the analysis using a subset of individuals

and/or alternatives that fits within the resource budget. A sampling protocol is

characterized by the size of the sample and the probability that each element in

the original set belongs to the subset used for analysis.

In this chapter, we review several sampling methods and discuss their impact

on both the estimation of the unknown parameters θ and on the use of the model

for prediction.

Throughout the exhibition of the concepts in this chapter, we assume that the

population is well identified (individuals living in a given city, or area; customers

in a given market; etc.), and that the choice model (2) is given.

In the next section, we focus on the sampling of observations, which is re-

quired when N is large. In Section 3, we focus on the sampling of alternatives,

which is required when J is large. In Section 4, we illustrate the sampling concepts

using semi- and fully-synthetic data. Finally, we discuss additional literature in

Section 5.
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2 Sampling of observations

The first decision made by the analyst is related to the sample size Ns. The choice

of Ns must take into account the trade-off between the resources needed to per-

form the analysis and the required precision for the quantities derived from the

statistical analysis of the sample. Both increase with Ns. Because the model is

non linear and disaggregate, there is no general theoretical result suggesting a

relationship between the value of Ns and the precision that can be expected for

the parameters of the models. Therefore, analysts have to rely on experience and

trial and error to identify the best value for Ns. In particular, it is good practice

to perform the data collection in several waves, to allow for readjustments of the

sampling protocol.

The simplest sampling protocol consists in associating the same sampling

probability R with each individual in the population. Such a protocol is called

simple random sampling (SRS). In addition to its simplicity, SRS has convenient

mathematical properties, as we discuss below. There are two major disadvantages,

though. First, SRS is difficult to conduct in practice. Second, SRS is not driven

by a specific research question and cannot be adapted to the goals of the analysis.

Therefore, researchers rely on other sampling protocols. The most widely

used is probably the stratified random sampling. It consists in partitioning the

population into G groups, or strata, so that each individual belongs to exactly one

group. Simple random sampling is then applied to sample Nsg individuals from

each stratum g, so that the sample is of size Ns =
∑G

g=1Nsg. Stratified random

sampling addresses the above-mentioned issues of SRS in that it is easier to per-

form a random sample in a smaller, well-identified subgroup of the population.

Moreover, the strata can be defined based on the objectives of the analysis, and

the number of individuals Nsg may vary from group to group in order to over-

sample individuals who will contribute most to addressing the research question.

Stratified random sampling provides also more flexibility for the logistics of the

data collection. For instance, it may be more convenient to survey travelers in

public transportation as they can be interviewed during the trip. Therefore, it may

make sense to design a protocol where the sample contains proportionally more

public transportation users than the population.

In the context of discrete choice, the population distribution is defined along

both the choice dimension i and the explanatory variables xn, and therefore the

definition of the strata can involve both the endogenous variable i and the exoge-

nous variables x. Consequently, the probability for individual n to be selected in

the sample may depend on in and xn, and is denoted R(in, xn). If individual n
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belongs to stratum g, this probability is defined as

R(in, xn) =
HgNs

WgN
, (6)

where

• Hg is the proportion of individuals from group g in the sample,

• Wg is the proportion of individuals from group g in the population.

The quantities at the numerator of (6) are controlled by the analyst, while the

quantities at the denominator are properties of the population. In particular, the

proportion of individuals from group g in the population can be obtained from the

choice model:

Wg =
∑

xn∈g

∑

i∈g

P(i|xn; θ)Pr(xn), (7)

where the sums span the variables corresponding to group g, and the Pr(xn) char-

acterizes the distribution of xn in the population. Equation 7 shows that the quan-

tity R(in, xn) is not exogenous and depends on the vector of unknown parameters

θ. Therefore, we write R(in, xn; θ).

Note that the SRS is a special case of stratified sampling where Hg = Wg in

(6). In addition, there are two other interesting special cases.

1. Sampling is said to be exogenous when the probability to be selected de-

pends only on the exogenous variables, that is R(in, xn; θ) = R(xn; θ). In

that case, the definition (7) of Wg simplifies. Indeed, each group involves

all alternatives in the choice set, so that

∑

i∈g

P(i|xn; θ) =
∑

i∈C

P(i|xn; θ) = 1, (8)

and

Wg =
∑

x∈g

Pr(xn), (9)

and we can write

R(in, xn; θ) = R(xn), (10)

as it does not depend on θ anymore. Note that this applies also to SRS.

2. Sampling is said to be purely choice-based when the probability to be se-

lected depends only on the endogenous variables, that is

R(in, xn; θ) = R(in; θ). (11)
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Consider an example of transportation mode choice, with three alternatives:

driving, walking and public transportation. Two explanatory variables inform the

sampling strategy, namely age and travel time by car. Observe that both attributes

of the alternatives and socio-economic characteristics of the decision-maker can

be used to define strata. The stratification is illustrated in Table 2. In this exam-

ple, there is no individual in the population under the age of 18 who is driving.

Therefore, the groups that are shaded in gray are such what Wg = 0.

Driving Walking Public transp.

Age ≤ 18

Travel ≤ 15

time >15, ≤ 30

by car > 30

Age 18 ≤ 65

Travel ≤ 15

time >15, ≤ 30

by car > 30

Age > 65

Travel ≤ 15

time >15, ≤ 30

by car > 30

Table 2: Illustration of stratified sampling

The exogenous sampling protocol is illustrated in Table 3, where the groups

are designed based on the value of the exogenous variables, age and travel time.

Driving Walking Public transp.

Age ≤ 18

Travel ≤ 15

time >15, ≤ 30

by car > 30

Age 18 ≤ 65

Travel ≤ 15

time >15, ≤ 30

by car > 30

Age > 65

Travel ≤ 15

time >15, ≤ 30

by car > 30

Table 3: Illustration of exogenous sampling

The pure choice-based sampling protocol is illustrated in Table 4. In this sce-

nario, the strata are defined through the endogenous variable (i.e. the choice).
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Driving Walking Public transp.

Age ≤ 18

Travel ≤ 15

time >15, ≤ 30

by car > 30

Age 18 ≤ 65

Travel ≤ 15

time >15, ≤ 30

by car > 30

Age > 65

Travel ≤ 15

time >15, ≤ 30

by car > 30

Table 4: Illustration of choice-based sampling

2.1 Maximum likelihood estimation

We have at our disposal a data set corresponding to a sample of individuals se-

lected from the population. For each individual n in the sample, we have

• the observed values of the explanatory variables xn,

• the observed choice in,

• an estimation R̂(in, xn) of the probability R(in, xn; θ) that individual n is in

the sample, obtained from the sampling protocol and aggregate information

such as market shares.

In order to estimate the unknown parameters of (2) using maximum likelihood

estimation, we need to write the likelihood function. The maximum likelihood

estimation problem consists of solving the optimization problem

max
θ

L(θ) =

N∑

n=1

ln Pr(in, xn|sn; θ), (12)

where sn is the event that individual n is in the sample, and Pr(in, xn|sn; θ) is

the joint probability to obtain in and xn given that individual n is in the sample.

Using Bayes theorem, we can write

Pr(in, xn|sn; θ) =
1

Pr(sn)
Pr(sn|in, xn)Pr(in|xn)Pr(xn), (13)

where the factors are described as follows.

• Pr(sn|in, xn) is the probability that individual n is in the sample. This quan-

tity has been denoted R(in, xn; θ) above.
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• Pr(in|xn) is the choice model P(in|xn; θ),

• Pr(xn) is the probability to observe the variables xn in the population,

• Pr(sn) is the probability that individual n is in the sample, defined as

∑

j∈C

∑

y

R(j, y; θ)P(j|y; θ)Pr(y). (14)

Therefore, we have

Pr(in, xn|sn; θ) =
R(in, xn; θ)P(i|xn; θ)Pr(xn)∑
j∈C

∑
y R(j, y; θ)P(j|y; θ)Pr(y)

. (15)

In the most general case, these quantities are impossible to handle in prac-

tice. In particular, it is impossible to enumerate all possible vectors of variables y

involved at the denominator of (15).

Assume now that the sampling protocol is exogenous. In that case, using (10)

in (15), we have

Pr(in, xn|sn; θ) =
R(xn)P(i|xn; θ)Pr(xn)∑

y R(y)Pr(y)
, (16)

because
∑

j∈C P(j|y; θ) = 1. Taking the logarithm, we obtain

ln Pr(in, xn|sn; θ) = lnP(i|xn; θ)

+ lnR(xn) + ln Pr(xn)

− ln(
∑

y

R(y)Pr(y)).
(17)

Only the first term depends on θ. Therefore, all the other terms can be omitted

for the optimization problem (12). Therefore, the optimal solution of (12), that

is, the maximum likelihood estimator of β, is also the solution of the following

optimization problem:

max
θ

N∑

n=1

lnP(i|xn; θ). (18)

This procedure is called the exogenous sample maximum likelihood (ESML). It is

important to note here that it is the same likelihood function as for simple random

sampling. It shows that there is no need to “correct” for over- or under-sampling

of some groups of the population, when these groups are defined by exogenous

variables.
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2.2 Conditional maximum likelihood

The complexity of (12) is namely due to the complex distribution of the exoge-

nous variables in the population. Therefore, an operational solution consists in

considering that the xn in the sample are given, and not distributed. It means that

the maximum likelihood estimation problem (12) is replaced by

max
θ

L(θ) =

N∑

n=1

ln Pr(in|xn, sn; θ). (19)

This procedure is called conditional maximum likelihood. It can be shown (Basawa,

1981) that the estimators obtained by this procedure are consistent, although not

efficient (see Manski and McFadden, 1981, for detailed discussions). Using Bayes

theorem again, we have

Pr(in|xn, sn; θ) =
R(in, xn; θ)P(in|xn)∑
j∈C R(j, xn; θ)P(j|xn)

. (20)

In the general case, the conditional maximum likelihood estimation can be per-

formed by using the estimate R̂(in, xn) of the sampling probability in (20). Note

that this procedure is computationally expensive, as it requires the evaluation of

the model for all alternatives, for each observation. In comparison, ESML (18)

requires only to apply the model on the chosen alternative for each observation.

If the choice model is a Multivariate Extreme Value (MEV) model (McFadden,

1978), it is written as

P(in|xn) =
eVin+lnGi(e

V1n ,...,eVJn )

∑
j∈C e

Vjn+lnGj(e
V1n ,...,eVJn )

, (21)

where Vin is the deterministic part of the utility function, G is the probability gen-

erating function of the model, and Gi the partial derivative of G with respect to its

ith argument. As the denominator is the same across alternatives, (20) simplifies

into

Pr(in|xn, sn; θ) =
exp(Vin + lnGi(e

V1n, . . . , eVJn) + lnR(in, xn; θ))∑
j∈C exp(Vjn + lnGj(eV1n, . . . , eVJn) + lnR(j, xn; θ))

, (22)

saving computational efforts (see Bierlaire et al., 2008, for details).

The formulation can be further simplified if the choice model is logit:

Pr(in|xn, sn; θ) =
exp(Vin + lnR(in, xn; θ))∑
j∈C exp(Vjn + lnR(j, xn; θ))

. (23)
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In this case, the correction lnR(in, xn; θ) is actually confounded with the alter-

native specific constant of alternative in. As a consequence, if the model is esti-

mated with ESML, McFadden (1978) and Manski and Lerman (1977) have shown

that all the parameters of the models are consistently estimated, except the con-

stants. The estimates of the constants can be corrected afterwards by subtracting

ln R̂(in, xn) (see also Cosslett, 1981), as illustrated in Section 4.1.1.

2.3 Weighted Exogenous Sampling Maximum Likelihood

The simplifications of CML mentioned above are valid only for the MEV mod-

els. For other models, Manski and Lerman (1977) have introduced an estimator

called the weighted exogenous sampling maximum likelihood (WESML), that has

a similar complexity as the ESML, and is appropriate for data collected with an

endogenous sampling strategy. It is a weighted version of (18):

max
θ

Ns

N

N∑

n=1

1

R̂(in, xn)
lnP(i|xn; θ). (24)

Note that the factor Ns/N is not formally needed. It is included so that (24) is

equivalent to (18) when the sampling strategy is exogenous.

This estimator actually defeats the purpose of stratified sampling strategies.

Indeed, groups of the population that the analyst wishes to oversample are associ-

ated with a small weight, reducing their relative importance. This is the intuition

why the WESML estimator is less efficient than maximum likelihood and con-

ditional maximum likelihood (this is formally proved by Wooldridge, 2001 for

exogenously stratified samples, and conjectured by the authors for endogenously

stratified samples.) An empirical illustration is provided in Section 4.1. There-

fore, if the precision of the estimators is more important than the computational

burden, the estimators mentioned in the previous sections should be preferred, and

weighting should be used only as a last resort.

2.4 Prediction

Prediction consists in defining a hypothetical scenario, consisting of a popula-

tion (possibly synthetic) where each individual n is associated with a vector xn
of explanatory variables. It is common to use the same reference population as

for estimation, and sometimes the same sample, if revealed preference data are

considered. The socio-economic variables (income, age, etc.) for the predicted

year are adjusted based on forecasts from secondary models. The attributes of the

alternatives for the predicted year are based on the specific scenario that is under

analysis (do nothing, price increase for some alternatives, modification of the level
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of service, etc.) Note that the choice set may be different, in the sense that some

alternatives considered for estimation may not be available anymore, and some

new alternatives may be introduced.

The objective of prediction is to derive various indicators corresponding to

the hypothetical scenario from Table 1. For instance, the market share for an

alternative is obtained by calculating the mean of the corresponding column:

W(i) =
1

N

N∑

n=1

P(i|xn; θ). (25)

When the full population cannot be enumerated, the analyst has to rely on sam-

pling. We have at our disposal a data set corresponding to a sample of individuals

selected from the population. For each individual n, we have

• the observed values of the explanatory variables xn,

• the probability Rn that individual n is in the sample obtained from the sam-

pling protocol,

• the model P(i|xn)
1.

An estimate of the market share of alternative i is obtained from:

Ŵ(i) =
1

N

Ns∑

n=1

1

Rn

P(i|xn)

=
1

Ns

Ns∑

n=1

wnP(i|xn),

(26)

where

wn =
Ns

RnN
(27)

is the weight of observation n. Note that, contrarily to what we discussed in the

context of estimation, the weight has to be applied for prediction even if the sam-

pling protocol is exogenous. It can be omitted only with simple random sampling,

as Rn = Ns/N, so that wn = 1 for all n. Using (6), we obtain a formulation

based on the strata:

Ŵ(i) =
1

Ns

G∑

g=1

Wg

Hg

∑

n∈g

P(i|xn). (28)

1In the context of prediction, the vector of parameters θ is given, so that we can write the

choice model P(i|xn).
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Note that the fact that Rn is derived from an exogenous or endogenous sampling

protocol is irrelevant here.

The above procedure applies to estimate any relevant quantity for the popula-

tion. However, a confusion is often made when calculating aggregate elasticities,

as we discuss below.

2.5 Elasticities

The disaggregate direct point elasticity of the choice model for individual n with

respect to variable xik is by definition

EP(i|xn)
xink

=
∂P(i|xn)

∂xink

xink

P(i|xn)
, (29)

It captures the marginal impact on the choice probability of an infinitesimal change

in the variable xink. What is referred to as the aggregate elasticity is not the

weighted sum of the disaggregate elasticities.

The aggregate direct point elasticity of the market share is defined as

EWi
xik

=
∂Wi

∂xik

xik

Wi

. (30)

It can actually be written as a function of the disaggregate elasticities (see the

derivation in Appendix A).

EWi
xik

=
1

Ns

∑

n

EP(i|xn)
xink

wnP(i|xn)∑
m wmPm(i)

, (31)

which shows that

EWi
xik

6=
1

Ns

∑

n

wnE
P(i|xn)
xink

. (32)

3 Sampling of alternatives

Large choice sets occur often in a combinatorial context. For instance, Huffpost

(2017) reports that “There Are 80,000 Ways To Drink A Starbucks Beverage”,

with fancy combinations such as a “tall, non-fat latte with caramel drizzle”, a

“grande, iced, sugar-free, vanilla latte with soy milk” or a “tall, half-caff, soy latte

at 120 degrees”.

We investigate now how discrete choice analysis can be performed using a

sample of alternatives drawn from a large choice set. Similar to the sampling pro-

cedures for the population, the use of stratified sampling is natural in this context,
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because the strata can be defined based on some dimensions of the combinatorial

elements. For instance, the size of the coffee, the type of milk, or if the coffee is

decaf or not.

As for the sampling of observation, the sampling protocol is characterized by

the size Js of the sampled choice set, and the probability that each alternative is se-

lected. However, there are some differences between the sampling of alternatives

and the sampling of individuals.

• It is useful to perform importance sampling as opposed to simple random

sampling within each stratum. Importance sampling is a variance reduction

method used in Monte-Carlo integration. In the context of sampling of al-

ternatives, the idea consists in defining the sampling probability from an a

priori estimate of the corresponding choice probability. Indeed, the inclu-

sion of largely dominated alternatives adds little information. The model

should be exposed to competing alternatives. However, it is critical that the

importance sampling strategy is truly exogenous.

• It may be required that some alternatives are included in the sampled choice

set. Typically, during estimation, the chosen alternative must be in the

choice set with probability one.

• The choice set varies across individuals. Therefore, a different sampling

procedure may be necessary for different individuals.

As a consequence, a different set of alternatives is sampled for each individual.

The outcome of the sampling is a subset Dn ⊆ C. The probability for alternative i

to be included in the choice set of individual n must take into account the design

of the strata, if applicable, and the possible strategy for importance sampling.

Therefore, it typically depends on the exogenous variables xn, so that we denote

it qi(xn). Note that, although qi(xn) may be defined from an estimate of the

choice probability, it is exogenous, and does not depend on the chosen alternative,

or the choice model itself. As all decisions are independent, the probability to

generate the set Dn is

π(Dn|xn) =
∏

i∈Dn

qi(xn)
∏

i 6∈Dn

(1− qi(xn)). (33)

This method is not valid if alternative i is required to be in the choice set. A pos-

sible modification of the process consists in enumerating all available alternatives

j such that j 6= i and, for each of them, including it in the subset with probabil-

ity qj(xn). Then, i is added to Dn. Again, as all decisions are independent, the
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probability to generate the set Dn, conditional on i is

π(Dn|i, xn) =
∏

j∈Dn,j 6=i

qj(xn)
∏

j6∈Dn

(1− qj(xn)),

=
1

qi(xn)

∏

j∈Dn

qj(xn)
∏

j6∈Dn

(1− qj(xn)),

=
1

qi(xn)
π(Dn|xn).

(34)

Note that, by construction, we have that

π(Dn|i, xn) = 0 if i 6∈ Dn. (35)

McFadden (1978) introduces two important properties for the sampling prob-

ability. First, the positive conditioning property says that a set D could be gener-

ated by the sampling protocol if any of the alternatives that it contains were the

observed choice. It is expressed as

π(D|j, x) > 0,∀j ∈ D. (36)

Second, the uniform conditioning property says that the probability to generate D

is the same whatever alternative in D is actually chosen. It is expressed as

If i, j ∈ D then π(D|i, x) = π(D|j, x). (37)

In that case, we have

π(D|i, x) = π ′(D|x)δD(i), (38)

where δD(i) is 1 if i ∈ D and 0 otherwise. Note that (34) verifies the positive

conditioning property. It verifies the uniform conditioning property if importance

sampling is not used, that is if qi(xn) = qj(xn) for all i, j ∈ D. We refer the

reader to McFadden (1978, Section 7) and Ben-Akiva and Lerman (1985, Section

9.3) for the description of other sampling processes.

3.1 Conditional maximum likelihood estimation

We now investigate how the maximum likelihood estimation process described in

Section 2.1 must be adapted when a sample of alternatives is used.

Suppose that we have at our disposal a data set corresponding to a sample of

individuals selected from the population. For each individual n, in addition to the

explanatory variables xn, the observed choice in, and the estimate of the sampling

probability R̂(in, xn), we also have
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• a sample of alternatives Dn, such that in ∈ Dn,

• the probability π(Dn|in, xn; θ) that the subset Dn has been generated for

individual n, obtained from the sampling protocol. We assume that it ver-

ifies (35) and the positive conditioning property. Note that we have made

explicit that this probability depends on the unknown parameters θ, as a

consequence that it is calculated based on the chosen alternative.

Even if the sampling of individuals is based on an exogenous strategy, the pres-

ence of the sampling of alternatives precludes the use of maximum likelihood, and

conditional maximum likelihood should be preferred. The conditional maximum

likelihood estimation problem consists in solving

max
θ

L(θ) =

N∑

n=1

ln Pr(in|xn, Dn, sn; θ), (39)

if it is endogenous. It is shown in Appendix B that the contribution of individual

n to the conditional likelihood function is

Pr(in|xn, Dn, sn; θ) =
R(in, xn; θ)π(Dn|in, xn; θ)P(in|xn; θ)∑
j∈Dn

R(j, xn; θ)π(Dn|j, xn; θ)P(j|xn; θ)
. (40)

Note that the positive conditioning property guarantees that the denominator is

non zero. This is the version of (20) in the context of sampling of alternatives.

The simplifications discussed in Section 2.2 apply here as well. In particular,

if the choice model is logit, we obtain

Pr(in|xn, Dn, sn; θ) =
exp(Vin + lnR(in, xn; θ) + lnπ(Dn|in, xn; θ))∑
j∈Dn

exp(Vjn + lnR(j, xn; θ) + lnπ(Dn|j, xn; θ))
.

(41)

Note that the discussions after (23) also apply: both corrections lnR(in, xn; θ)

and lnπ(Dn|in, xn; θ) are confounded with the constants. Therefore, the model

can be estimated using ESML, pretending that Dn is the actual choice set, to

obtain consistent estimates of all parameters except the constants, which can be

corrected afterwards.

Similarly, if the choice model is MEV, we use (21) in (40) to obtain:

Pr(in|xn, Dn, sn; θ) =

exp(Vin + lnGi(e
V1n, . . . , eVJn) + lnR(in, xn; θ) + lnπ(Dn|in, xn; θ))∑

j∈Dn
exp(Vjn + lnGj(eV1n, . . . , eVJn) + lnR(j, xn; θ) + lnπ(Dn|j, xn; θ))

.

(42)
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The issue with this specification is that the calculation of Gi involves the utility

of all alternatives in C, which cannot be achieved in our context, where the number

of alternatives is too large. Guevara and Ben-Akiva (2013a) have shown that,

under some conditions, a version of (42) where Gi is replaced by an approximation

involving only the utility functions of the alternatives in Dn leads to consistent

estimation of the parameters, and the estimators are asymptotically normal. For

instance, the probability generating function of a nested logit model with M nests

is

G(eV1n, . . . , eVJn) =

M∑

m=1

(
∑

j∈Cmn

eµmVjn

) µ
µm

, (43)

so that the term involved in (42) is

lnGi(e
V1n, . . . , eVJn) =

(
µ

µm

− 1

)(
ln

∑

j∈Cmn

eµmVjn

)
+ lnµ+ (µm − 1)Vin,

(44)

where m is the nest containing alternative i. Guevara and Ben-Akiva (2013a)

propose to replace the term ∑

j∈Cmn

eµmVjn (45)

by a term involving only alternatives in Dn:
∑

j∈Cmn∩Dn

wjne
µmVjn, (46)

where the expansion factors wjn are designed to guarantee the consistency of the

estimator, and depend on the sampling protocol used to draw Dn. The factor must

be the ratio between the actual and the expected number of times alternative j has

been included in Dn. We refer the interested reader to Guevara and Ben-Akiva

(2013a) for a derivation of the weights for various sampling protocols. Guevara

and Ben-Akiva (2013a) also present a similar discussion for the cross-nested logit

model.

Note that if the sampling probability π(Dn|in, xn; θ) verifies the uniform con-

ditioning property (37), the corresponding terms cancel out from the formulations

so that (41) becomes

Pr(in|xn, Dn, sn; θ) =
exp(Vin + lnR(in, xn; θ))∑
j∈Dn

exp(Vjn + lnR(j, xn; θ))
. (47)

and (42) becomes

Pr(in|xn, Dn, sn; θ) =
exp(Vin + lnGi(e

V1n, . . . , eVJn) + lnR(in, xn; θ))∑
j∈Dn

exp(Vjn + lnGj(eV1n, . . . , eVJn) + lnR(j, xn; θ))
.

(48)
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These elegant simplifications are valid only for the logit and MEV models.

However, similar ideas can be applied to models with a logit flavor, such as mix-

tures of logit models (Guevara and Ben-Akiva, 2013b), or with non-RUM models,

such as random regret minimization (Guevara et al., 2014).

3.2 Prediction

Applying a choice model for aggregation and forecasting involves the calculation

of the choice probability of a given alternative i, such as in the calculation of the

market shares (25), for instance. But in the presence of very large choice sets,

the choice probability may be impossible to calculate. In this case, we have to

rely on Monte-Carlo simulation to draw synthetic choices from the choice model.

The suggested algorithm is called Metropolis-Hastings (Metropolis et al., 1953,

Hastings, 1970, Ross, 2012, Chapter 12). The reason for its use is that only ratios

of probability are requested by the algorithm. Consequently, the normalization

part of the probability formula is not needed, and the choice set must not be enu-

merated. Typically, for logit, only the numerator eVin(xn;θ) is requested. We refer

the reader to Flötteröd and Bierlaire (2013) for an example of the application of the

Metropolis-Hastings algorithm in the context of route choice, and to Yamamoto

et al. (2001) in the context of activity pattern choice.

For each individual n in the sample, we draw R times from the choice model,

and we define ŷinr = 1 if alternative i has been generated by draw r for individual

n, and 0 otherwise. We can then approximate the choice probability by

P(i|xn) ≈

∑R
r=1 yinr

R
, (49)

where the numerator is the number of times that alternative i has been generated

by the simulation algorithm. An advantage of this procedure is that the analyst

controls the trade-off between computational burden and precision with the pa-

rameter R, thanks to the asymptotic property of simulation:

P(i|xn) = lim
R→∞

∑R
r=1 yinr

R
. (50)

The approximation (49) can also be used in (26) for the estimation of the

market shares:

W(i) =
1

NR

N∑

n=1

R∑

r=1

yinr. (51)
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4 Experiments

We illustrate the concepts outlined in the previous sections in several experiments

using semi-synthetic and fully-synthetic data sets. Section 4.1 focuses on the sam-

pling of observations, and Section 4.2 focuses on the sampling of alternatives. The

methods which are analysed in this section are implemented in PandasBiogeme

(Bierlaire, 2020).2

4.1 Sampling of observations

In this subsection, we demonstrate the sampling of observations in logit (Sec-

tion 4.1.1) and nested logit (Section 4.1.2).

4.1.1 Logit

We illustrate the sampling of observations in logit using a semi-synthetic popula-

tion, which we generate based on the Swissmetro data set (Bierlaire et al., 2001)

from a stated preference survey concerned with the analysis of the demand for

a hypothetical high-speed train system in Switzerland. The Swissmetro data set

contains, 6,768 observations, and there are three alternatives, namely i) train, ii)

Swissmetro and iii) car. We suppose that the alternatives are characterized by only

two attributes, namely travel time and travel cost. To synthesize the population,

we replicate the original data set 100 times, and perturb the attributes of the al-

ternatives through the addition of a noise term drawn from N (0, 0.12). For each

choice set in the population, we synthesize a chosen alternative based on a stan-

dard logit model with a linear-in-parameters utility function. We estimate logit

on the original data set and use the obtained parameters in the synthesis of the

choices.

We draw 200 samples, each consisting of 10,000 observations, from the popu-

lation using the choice-based sampling protocol defined in Table 5. Subsequently,

we apply the conditional maximum likelihood (CML) estimator described in Sec-

tion 2.2 and the weighted exogenous sample maximum likelihood (WESML) es-

timator described in Section 2.3 to each of the samples.

2The estimation code is publicly available at https://github.com/RicoKrueger/

sampling.
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Stratum WgN Wg Hg HgNs Rg lnRg

Train 91690 0.135 0.7 7000 0.076 -2.573

Swissmetro 407971 0.603 0.1 1000 0.002 -6.011

Car 77139 0.262 0.2 2000 0.011 -4.484

Table 5: Choice-based sampling protocol for logit

We evaluate the finite sample properties of the estimators using the same cri-

teria as Bhat and Lavieri (2018):

• The mean estimated value (MEV) denotes the average value of the point

estimates across samples.

• The absolute percentage bias (APB) is a standardised measure of the finite

sample bias. It is given by APB =
∣∣MEV−True value

True value

∣∣× 100.

• The asymptotic standard error (ASE) is given by the mean standard error of

each parameter across samples.

• The finite sample standard error (FSSE) corresponds to the empirical stan-

dard error. It is given by the standard deviation of each parameter estimate

across samples.

• ASE is a theoretical approximation of FSSE. For a sufficient estimator, the

ratio of ASE and FSSE is 1. The average percentage bias of the asymptotic

standard error (APBASE) is a standardised measure of the bias of ASE with

respect to FSSE. It is given by APBASE =
∣∣ASE−FSSE

FSSE

∣∣× 100.

• Finally, coverage denotes the empirical probability that the 95%-confidence

interval contains the true value.

A lower APB, a lower APBASE and a higher empirical coverage probability in-

dicate superior statistical performance of an estimator.

Tables 7 and 8 give the results of the CML and WESML estimators across

the 200 samples. Recall that in the logit case, the contribution of an observation

to CML is given by (23). Therefore, the procedure consists of using ESML with

a post-estimation adjustment of the alternative-specific constants (ASCs). The

ASCs must be shifted downwards by the corresponding lnRg from Table 5. How-

ever, to reflect that the ASC of the reference alternative is fixed to 0 for identifica-

tion, we also shift the ASCs of the non-reference alternatives upwards by the lnRg

of the reference alternative. Hence, we report ASCTrain + lnRSwissmetro − lnRTrain

and ASCCar + lnRSwissmetro − lnRCar in Table 7. Table 6 details the post-estimation

adjustment of the ASCs.
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True MEV - ESML lnRSwissmetro lnRg MEV - CML

ASC_TRAIN -0.701 2.744 -4.484 -2.573 -0.695

ASC_CAR -0.155 1.374 -4.484 -6.011 -0.154

Table 6: Post-estimation adjustment of the alternative-specific constants in CML

Overall, Tables 7 and 8 show that CML outperforms WESML in terms of re-

covery of parameter values and precision. Compared to WESML, CML yields

slightly less biased estimates of most parameters. Nonetheless, APB of all param-

eters is less than 1.5% for both CML and WESML. Furthermore, the APBASE

values indicate that CML performs better than WESML at recovering the preci-

sion of the estimates of the parameters pertaining to alternative-specific attributes,

but worse at recovering the precision of the estimates of the ASCs. Notwithstand-

ing these differences, APBASE is on average lower for CML than for WESML.

CML also produces higher coverage probabilities for all model parameters, which

further evidences the superior ability of CML to recover parameters.

True MEV APB ASE FSSE APBASE Coverage

ASC_TRAIN -0.701 -0.695 0.942 0.054 0.045 20.583 0.985

ASC_CAR -0.155 -0.154 0.545 0.050 0.033 50.289 1.000

B_TIME -1.278 -1.278 0.024 0.052 0.054 4.085 0.935

B_COST -1.084 -1.086 0.181 0.049 0.048 2.582 0.955

Table 7: Performance of the conditional maximum likelihood estimator for logit

across 200 samples

True MEV APB ASE FSSE APBASE Coverage

ASC_TRAIN -0.701 -0.699 0.270 0.045 0.060 25.861 0.850

ASC_CAR -0.155 -0.157 1.327 0.035 0.050 29.859 0.820

B_TIME -1.278 -1.270 0.626 0.046 0.075 38.981 0.755

B_COST -1.084 -1.077 0.641 0.042 0.070 40.018 0.760

Table 8: Performance of the weighted exogenous maximum likelihood estimator

for logit across 200 samples

4.1.2 Nested logit

Next, we consider sampling of observations in nested logit. We construct a semi-

synthetic population in the same way as in the previous experiment, with the only
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difference that the underlying choice model is nested logit. The postulated model

includes two nests, one for the public modes train and Swissmetro and another one

for the private driving mode. We estimate the postulated nested logit model on the

original Swissmetro data and use the obtained point estimates of the taste vector

and the nest parameter to generate the chosen alternatives of the semi-synthetic

population. Note that only the nest parameter of the former nest can be estimated;

the nest parameters of the latter nest is fixed to one, as the nest contains only one

alternative.

We draw 200 samples, each consisting of 10,000 observations, from the popu-

lation using the sampling protocol defined in Table 9. We use each of the samples

to estimate the postulated nested logit model via ESML, CML and WESML, as

defined in (18), (22) and (24), respectively. We rely on the same criteria as in the

previous experiment to evaluate the finite sample properties of the estimators.

Stratum WgN Wg Hg HgNs Rg lnRg

Train 90181 0.133 0.7 7000 0.078 -2.560

Swissmetro 408556 0.604 0.1 1000 0.002 -6.013

Car 178063 0.263 0.2 2000 0.011 -4.489

Table 9: Choice-based sampling protocol for nested logit

In Tables 10–12, we report the results for the three estimators. Our first obser-

vation is that the ESML estimator, which ignores the non-random selection of the

cases, leads to strongly biased estimates. We make similar observations regard-

ing the relative performance of CML and WESML as in the previous experiment.

APB of all parameters is less than 2% for both CML and WESML. In addition,

the APBASE values indicate that compared to CML performs considerably better

than WESML at recovering the precision of the estimates of B_TIME, B_COST

and MU, but worse than WESML at recovering the precision of the estimates

of the ASCs. CML yields higher coverage probabilities for all model parameters,

which suggests that CML performs better than WESML at recovering parameters.

True MEV APB ASE FSSE APBASE Coverage

ASC_TRAIN -0.512 2.516 591.382 0.055 0.042 32.031 0.000

ASC_CAR -0.167 2.045 1323.383 0.040 0.023 74.369 0.000

B_TIME -0.899 -0.708 21.233 0.080 0.078 3.383 0.300

B_COST -0.857 -0.648 24.338 0.072 0.074 2.082 0.175

MU 2.054 2.745 33.649 0.315 0.329 4.012 0.360

Table 10: Performance of the exogenous sample maximum likelihood estimator

for nested logit across 200 samples
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True MEV APB ASE FSSE APBASE Coverage

ASC_TRAIN -0.512 -0.503 1.753 0.043 0.026 66.402 1.000

ASC_CAR -0.167 -0.168 0.286 0.047 0.028 69.207 1.000

B_TIME -0.899 -0.909 1.115 0.057 0.054 6.462 0.965

B_COST -0.857 -0.865 0.993 0.057 0.056 1.730 0.960

MU 2.054 2.061 0.348 0.125 0.125 0.035 0.970

Table 11: Performance of the conditional maximum likelihood estimator for

nested logit across 200 samples

True MEV APB ASE FSSE APBASE Coverage

ASC_TRAIN -0.512 -0.503 1.845 0.037 0.038 1.987 0.955

ASC_CAR -0.167 -0.166 0.552 0.030 0.036 16.486 0.910

B_TIME -0.899 -0.912 1.543 0.042 0.065 35.618 0.800

B_COST -0.857 -0.866 1.132 0.038 0.066 42.466 0.730

MU 2.054 2.053 0.067 0.107 0.132 19.313 0.880

Table 12: Performance of the weighted exogenous sample maximum likelihood

estimator for nested logit across 200 samples

4.2 Sampling of alternatives

Finally, we illustrate the sampling of alternatives in logit using a fully-synthetic

population. The data generating process of the synthetic population is inspired by

Athey et al. (2018)’s revealed preference analysis of restaurant visits in the San

Francisco Bay Area.

We suppose that 10,000 customers and 1,000 restaurants are randomly dis-

tributed in a square-shaped metropolitan area of size 100km×100km. Each restau-

rant belongs to one of eight categories, namely “American”, “Chinese”, “Japanese”,

“Korean”, “Indian”, “French”, “Mexican”, “Lebanese” and “Ethiopian”, with

probabilities 0.3, 0.1, 0.075, 0.1, 0.075, 0.05, 0.15, 0.075 and 0.075, respec-

tively. We further suppose that each restaurant has a user rating ranging from

one to five stars and belongs to one of the four price categories “$”, “$$”, “$$$”

and “$$$$”. The user rating and price category of each restaurant are drawn

from categorical distributions with probability vectors (0.1, 0.1, 0.2, 0.4, 0.2)⊤

and (0.3, 0.4, 0.2, 0.1)⊤, respectively. In addition, the utility of a restaurant de-

pends on the logarithm of the Euclidean distance between the customer’s and

the restaurant’s locations. The synthetic choices are derived from a standard

logit model with a linear-in-parameters utility function. To be specific, we let
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Vin(xn; θ) = x⊤inθ, where xin is vector of attributes describing alternative i of ob-

servation n, and where θ denotes vector of taste parameters. The assumed values

of θ are enumerated in the first columns of Tables 14–16. The error rate in the

generation of the chosen alternatives is approximately 30%, i.e. in roughly 30%

of the cases, decision-makers deviate from the deterministically-best alternative

due to the presence of the stochastic error term.

For our experiment, we draw 200 resamples of the population and estimate

logit with simple random sampling of alternatives. We evaluate the finite-sample

properties of the maximum likelihood estimator for different numbers of sampled

alternatives. More specifically, we let Js take a value in {5, 10, 20, 50, 100, 200}

for all observations in the data. Since the chosen alternative must be included in

the sampled choice set with probability one, we first select the chosen alternative

and then randomly draw Js − 1 non-chosen alternatives without replacement and

equal probabilities from the remaining set of alternatives. A different choice set

is sampled for each observation. The data generating process verifies the uniform

conditioning property given in (37). Thus, the correction terms in (41) cancel out.

We use the same criteria as in the previous two sections to assess the finite-

sample properties of the estimators. Nerella and Bhat (2004) conduct a similar

experiment, which also considers the sampling of alternatives in mixed logit.

In Table 13, we report the mean estimation time across resamples as well as

the average APB and FSSE values across all parameters for different numbers of

sampled alternatives. The results illustrate a trade-off between computational ef-

ficiency on the one hand as well as estimation accuracy and precision on the other

hand. As expected, estimation times increase, while APB and FSSE decrease, as

more alternatives are considered in the estimation. Interestingly, parameter re-

covery is satisfactory, even when only relatively few alternatives are included in

the sampled choice set. For less than 20 alternatives, APB is less than ten percent.

APB drops below one percent when at least 50 alternatives are sampled. However,

as the average FSSE values suggest, sampling fewer alternatives also reduces the

precision of the estimates. For example, average FSSE is 0.193 for 10 sampled

alternatives, but is only 0.065 for 100 sampled alternatives.

In Tables 14–16, we present detailed results for 5, 50 and 200 sampled alter-

natives. The results provide a further illustration of the trade-off between compu-

tational efficiency as well as estimation accuracy and precision for the sampling

of alternatives.
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Alternatives Est. time [s] APB FSSE

5 29.8 7.007 0.311

10 53.9 3.205 0.193

20 100.1 2.100 0.130

50 218.9 0.525 0.089

100 406.2 0.235 0.065

200 1057.6 0.112 0.049

Table 13: Estimation time, bias and precision of logit with random sampling of

alternatives across 200 resamples

True MEV APB ASE FSSE APBASE Coverage

B_rating 1.500 1.602 6.791 0.163 0.178 8.669 0.955

B_price -0.800 -0.854 6.716 0.096 0.106 9.573 0.950

B_category_Chinese 1.500 1.629 8.571 0.351 0.381 7.691 0.945

B_category_Japanese 2.500 2.668 6.710 0.375 0.396 5.218 0.945

B_category_Korean 1.500 1.596 6.397 0.351 0.355 1.146 0.955

B_category_Indian 2.000 2.137 6.859 0.359 0.359 0.056 0.955

B_category_French 1.500 1.593 6.216 0.387 0.398 2.742 0.935

B_category_Mexican 2.500 2.678 7.105 0.371 0.398 6.687 0.945

B_category_Lebanese 1.500 1.622 8.154 0.363 0.357 1.706 0.955

B_category_Ethiopian 1.000 1.066 6.600 0.402 0.364 10.636 0.975

B_log_dist -1.200 -1.283 6.954 0.112 0.126 11.186 0.945

Table 14: Performance of logit with 5 randomly sampled alternatives across 200

resamples
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True MEV APB ASE FSSE APBASE Coverage

B_rating 1.500 1.507 0.499 0.046 0.048 6.067 0.935

B_price -0.800 -0.803 0.430 0.027 0.028 5.338 0.935

B_category_Chinese 1.500 1.508 0.527 0.101 0.104 2.633 0.935

B_category_Japanese 2.500 2.516 0.644 0.106 0.110 2.873 0.935

B_category_Korean 1.500 1.507 0.489 0.102 0.102 0.410 0.950

B_category_Indian 2.000 2.006 0.306 0.103 0.108 4.614 0.925

B_category_French 1.500 1.510 0.655 0.112 0.110 1.945 0.935

B_category_Mexican 2.500 2.512 0.483 0.105 0.109 3.419 0.925

B_category_Lebanese 1.500 1.504 0.286 0.105 0.110 4.351 0.945

B_category_Ethiopian 1.000 1.009 0.854 0.117 0.121 3.814 0.940

B_log_dist -1.200 -1.207 0.603 0.030 0.031 3.136 0.925

Table 15: Performance of logit with 50 randomly sampled alternatives across 200

resamples

True MEV APB ASE FSSE APBASE Coverage

B_rating 1.500 1.501 0.074 0.026 0.025 6.539 0.985

B_price -0.800 -0.801 0.140 0.016 0.015 5.676 0.965

B_category_Chinese 1.500 1.500 0.029 0.060 0.057 5.186 0.970

B_category_Japanese 2.500 2.503 0.122 0.062 0.059 6.059 0.970

B_category_Korean 1.500 1.499 0.093 0.060 0.059 0.824 0.965

B_category_Indian 2.000 2.002 0.082 0.060 0.058 3.976 0.975

B_category_French 1.500 1.500 0.023 0.066 0.062 6.119 0.970

B_category_Mexican 2.500 2.501 0.045 0.061 0.058 5.144 0.970

B_category_Lebanese 1.500 1.500 0.004 0.062 0.057 8.915 0.960

B_category_Ethiopian 1.000 1.005 0.477 0.069 0.071 3.332 0.950

B_log_dist -1.200 -1.202 0.147 0.017 0.016 4.998 0.955

Table 16: Performance of logit with 200 randomly sampled alternatives across

200 resamples

5 Additional literature

The discussions presented in this chapter are far from exhaustive. Here, we pro-

vide some additional references for the interested reader.

Imbens (1992) derives a method of moments estimator for discrete choice

models with endogenous samples. Wang et al. (1997) present a two-stage estima-

tor for the estimation of choice models with endogenous samples. Furthermore,
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Morgenthaler and Vardi (1986) study a non-parametric maximum likelihood esti-

mation procedure for choice-based sampling. Fox (2007) analyzes the sampling

of alternatives in a semiparametric, pairwise maximum score estimator. Besides,

Waldman (2000) presents a short tutorial on WESML for choice models with en-

dogeneous samples.

Wang et al. (2015) propose a poststratification strategy for producing predic-

tions from non-representative survey data.

Lemp and Kockelman (2012) present an iterative estimation procedure for

mixed logit models with strategic sampling of alternatives. Daly et al. (2014) sug-

gest a modification of the approach by Guevara and Ben-Akiva (2013a) to handle

the sampling of alternatives in nested logit.

The sampling of alternatives has been applied in various contexts including,

but not limited to, route choice (Frejinger et al., 2009, Lai and Bierlaire, 2015),

residential location choice (McFadden, 1978, Lee and Waddell, 2010), activity

location choice (Mariante et al., 2018), recreational destination choice (Hassan

et al., 2019) and crime location choice (Bernasco, 2010).
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A Derivation of the aggregate elasticities

Let’s assume that each variable xink changes infinitesimally, in such a way that

∂xink

xink
=

∂xipk

xipk
=

∂xik

xik
,∀n, p = 1, . . . ,N, (52)

where

xik =
1

N

∑

n

xink. (53)

The aggregate direct point elasticity of the market share is defined as

EWi
xik

=
∂Wi

∂xik

xik

Wi

. (54)
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Using (26), we obtain

EWi
xik

=
1

Ns

∑

n

wn

∂P(i|xn)

∂xik

xik

Wi

. (55)

Now, because of (52), we can write for each n

∂P(i|xn)

∂xik
xik =

∂P(i|xn)

∂xink
xink. (56)

Using the definition (29) of the disaggregate elasticity, we have

∂P(i|xn)

∂xik
xik =

∂P(i|xn)

∂xink
xink = EP(i|xn)

xink
P(i|xn). (57)

Therefore, (55) becomes

EWi
xik

=
1

Ns

∑

n

wnE
P(i|xn)
xink

P(i|xn)
1

Wi

. (58)

Using (26) again, we finally obtain

EWi
xik

=
1

Ns

∑

n

EP(i|xn)
xink

wnP(i|xn)∑
m wmP(i|xm)

. (59)

B Derivation of the CML with sample of alterna-

tives

We derive the contribution Pr(in|xn, Dn, sn; θ) of individual n to the conditional

likelihood function (39). We first use Bayes theorem as in Section 2.2 to derive

the version of (20) with a sample of alternatives:

Pr(in|xn, Dn, sn; θ) =
R(in, xn; θ)Pr(in|Dn, xn)∑
j∈C R(j, xn; θ)Pr(j|Dn, xn)

. (60)

We use again Bayes theorem to derive

Pr(in|Dn, xn) =
Pr(Dn|in, xn)Pr(in|xn)∑
j∈Dn

Pr(Dn|j, xn)Pr(j|xn)
=

π(Dn|in, xn; θ)P(in|xn; θ)∑
j∈Dn

π(Dn|j, xn; θ)P(j|xn; θ)
.

(61)

Using (61) into (60), we obtain

Pr(in|xn, Dn, sn; θ) =
R(in, xn; θ)π(Dn|in, xn; θ)P(in|xn; θ)∑
j∈C R(j, xn; θ)π(Dn|j, xn; θ)P(j|xn; θ)

, (62)
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because the denominator of (61) cancels out. Because of (35), the sum over all

alternatives at the denominator involves only the alternatives in Dn, so that we

obtain (40):

Pr(in|xn, Dn, sn; θ) =
R(in, xn; θ)π(Dn|in, xn; θ)P(in|xn; θ)∑
j∈Dn

R(j, xn; θ)π(Dn|j, xn; θ)P(j|xn; θ)
.
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