
A short introduction to Biogeme

Michel Bierlaire

April 20, 2023

Report TRANSP-OR 230620
Transport and Mobility Laboratory

School of Architecture, Civil and Environmental Engineering
Ecole Polytechnique Fédérale de Lausanne

transp-or.epfl.ch

Series on Biogeme

This is an updated version of Bierlaire (2020), adapted for Biogeme 3.2.11.

1

The package Biogeme (biogeme.epfl.ch) is designed to estimate the
parameters of various models using maximum likelihood estimation. It is
particularly designed for discrete choice models. In this document, we present
step by step how to specify a simple model, estimate its parameters and
interpret the output of the package. We assume that the reader is already
familiar with discrete choice models (Ben-Akiva and Lerman, 1985), and has
successfully installed Biogeme.

Biogeme is a Python package written in Python and C++, that relies on
the Pandas library for the management of the data. This is the standard
mode of operations of more and more data scientists. This document has
been written using Biogeme 3.2.11.

1 Data

Biogeme assumes that a Pandas database is available, containing only nu-
merical entries. Each column corresponds to a variable, each row to an
observation.

If you are not familiar with Pandas, prepare a file that contains in its
first line a list of labels corresponding to the available data, and that each
subsequent line contains the exact same number of numerical data, each row
corresponding to an observation. Delimiters can be tabs or spaces.

The data file used for this example is swissmetro.dat. It can be down-
loaded from the “Data” section of biogeme.epfl.ch.

2 Python

Biogeme is a package of the Python programming language. Therefore, es-
timating a model amounts to writing a script in Python. Online tutorials
and documentation about Python can easily be found. Although it is not
necessary to master the Python language to specify models for Biogeme, it
would definitely help to learn at least the basics. In this Section, we report
some useful information when using the package Biogeme.

• Two versions of Python are commonly used: 2 and 3. Biogeme works
only with Python version 3.

• Python is available on Linux, MacOSX and Windows. Biogeme is
platform independent.

• The syntax of Python is case sensitive. It means that varname and
Varname, for instance, would represent two different entities.

1

http://biogeme.epfl.ch

• The indentation of the code is important in Python. It is advised to
use a text editor that has a “Python mode” to help managing these
indentations.

• A Python statement must be on a single line, except if it is surrounded
by parentheses. Sometimes, for the sake of readability, it is convenient
to split the statement on several lines. In that case, make sure to include
the parentheses. There are several examples below, for instance in the
specification of the utility functions.

3 The model

The model is a logit model with 3 alternatives: train, Swissmetro and car.
The utility functions are defined as:

V1 = (

ASC_TRAIN +

B_TIME * TRAIN_TT_SCALED +

B_COST * TRAIN_COST_SCALED

)

V2 = (

ASC_SM +

B_TIME * SM_TT_SCALED +

B_COST * SM_COST_SCALED

)

V3 = (

ASC_CAR +

B_TIME * CAR_TT_SCALED +

B_COST * CAR_CO_SCALED

)

where

• TRAIN_TT_SCALED,

• TRAIN_COST_SCALED,

• SM_TT_SCALED,

• SM_COST_SCALED,

• CAR_TT_SCALED,

• CAR_CO_SCALED

are variables, and

2

• ASC_TRAIN,

• ASC_SM,

• ASC_CAR,

• B_TIME,

• B_COST

are parameters to be estimated. Note that it is not possible to identify all
alternative specific constants ASC_TRAIN, ASC_SM, ASC_CAR from data. Conse-
quently, ASC_SM is normalized to 0.

The availability of an alternative i is determined by the variable yi, i=1,
2, 3, which is equal to 1 if the alternative is available, and 0 otherwise. The
probability of choosing an available alternative i is given by the logit model:

P(i|{1, 2, 3}; x, β) =
yie

Vi(x,β)

y1eV1(x,β) + y2eV2(x,β) + y3eV3(x,β)
. (1)

Given a data set of N observations, the log likelihood of the sample is

L =
∑

n

log P(in|{1, 2, 3}; xn, yN, β) (2)

where in is the alternative actually chosen by individual n, and xn are the
explanatory variables associated with individual n.

4 Data preparation

It is advised to perform the data preparation in a separate file. For instance,
the file swissmetro_data.py is reported in Section A.1.

The file can contain comments, designed to document the specification.
Single-line comments are included using the characters #, consistently with
the Python syntax. All characters after this command, up to the end of the
current line, are ignored by Python. Multiple lines comments are created by
adding a delimiter (""") at the beginning and the end of the comment. In
our example, the file starts with comments describing the name of the file, its
author and the date when it was created. A short description of its content
is also provided.

""" File swissmetro_data.py

:author: Michel Bierlaire , EPFL

3

:date: Mon Mar 6 15:17:03 2023

Data preparation for Swissmetro , and definition of the variables

"""

These comments are completely ignored by Python. However, it is recom-
mended to use many comments to describe the content of the script, for
future reference, or to help other persons to understand it.

The file must start by loading the Python libraries needed by Biogeme.
For data preparation, the following libraries must be loaded:

• pandas, the generic package for data management,

• biogeme.database, the Biogeme module for data management.

It is custom in Python to use shortcuts to simplify the syntax. Here, we
use pd for pandas, and db for biogeme.database. Finally, we need to import
some mathematical expressions useful to build the model specification. In
the data preparation file, we use only the expression Variable that defines
the variables available in the database.

import pandas as pd

import biogeme.database as db

from biogeme.expressions import Variable

The next step consists in preparing the Pandas database. For instance,
if the data file is separated by tabs, you can use the following statements:

df = pd.read_csv(’swissmetro.dat’, sep=’\t’)

database = db.Database(’swissmetro ’, df)

The first statement reads the data from the file, using tabs as delimiters.
It stores it in a Pandas data structure. The second statement prepares the
database for Biogeme. Clearly, if you prefer to create your Pandas database
in another way, it is possible. In that case, you still have to use the second
statement to transfer the Pandas database to Biogeme.

The name of the columns in the database characterize the variables for
your model. In order to make them available as a Python variable, the
following statements must be included:

PURPOSE = Variable(’PURPOSE ’)

CHOICE = Variable(’CHOICE ’)

GA = Variable(’GA’)

LUGGAGE = Variable(’LUGGAGE ’)

TRAIN_CO = Variable(’TRAIN_CO ’)

CAR_AV = Variable(’CAR_AV ’)

SP = Variable(’SP’)

TRAIN_AV = Variable(’TRAIN_AV ’)

4

TRAIN_TT = Variable(’TRAIN_TT ’)

SM_TT = Variable(’SM_TT ’)

CAR_TT = Variable(’CAR_TT ’)

CAR_CO = Variable(’CAR_CO ’)

SM_CO = Variable(’SM_CO ’)

SM_AV = Variable(’SM_AV ’)

MALE = Variable(’MALE’)

GROUP = Variable(’GROUP ’)

TRAIN_HE = Variable(’TRAIN_HE ’)

SM_HE = Variable(’SM_HE ’)

INCOME = Variable(’INCOME ’)

Although not formally necessary, it is highly recommended to use the
exact same same for the Python variable (on the left hand side) and the
Biogeme variable (on the right hand side).

It is possible to tell Biogeme to ignore some observations in the data file.
A boolean expression must be defined, that is evaluated for each observation
in the data file. Each observation such that this expression is “true” is
discarded from the sample. In our example, the modeler has developed the
model only for work trips, so that every observation such that the trip purpose
is not 1 or 3 is removed.

Observations such that the dependent variable CHOICE is 0 are also re-
moved. The convention is that “false” is represented by 0, and “true” by
1, so that the multiplication sign ‘*’ can be interpreted as a “and”, and the
addition sign ‘+’ as a “or”. Note also that the result of the ‘+’ can be 2,
so that we test if the result is equal to 0 or not. The exclude condition in
our example is therefore interpreted as: either (PURPOSE different from 1 and
PURPOSE different from 3), or CHOICE equal to 0.

exclude = ((PURPOSE != 1) * (PURPOSE != 3) + (CHOICE == 0)) > 0

database.remove(exclude)

• We have conveniently used an intermediary Python variable exclude in
this example. It is not necessary. The above statement is completely
equivalent, but may be less readable:

database.remove(

(

(PURPOSE != 1) *

(PURPOSE != 3) +

(CHOICE == 0)

) > 0

)

• The same result can be obtained using Pandas directly, using the fol-
lowing syntax:

5

remove = (

(

(database.data.PURPOSE != 1) &

(database.data.PURPOSE != 3)

) |

(database.data.CHOICE == 0)

)

database.data.drop(

database.data[remove].index ,

inplace=True

)

Pandas provides more powerful tools to manage the database. If you
need to perform sophisticated data manipulations, it is advised to use
Pandas instead of Biogeme for these purposes. Refer to the online
Pandas documentation and the many tutorials available online.

It is possible to define new variables in addition to the variables defined
in the data files.

SM_COST = SM_CO * (GA == 0)

TRAIN_COST = TRAIN_CO * (GA == 0)

CAR_AV_SP = CAR_AV * (SP != 0)

TRAIN_AV_SP = TRAIN_AV * (SP != 0)

When boolean expressions are involved, the value True is represented
by 1, and the value False is represented by 0. Therefore, a multiplication
involving a boolean expression is equivalent to a “and” operator. The above
code is interpreted in the following way:

• CAR_AV_SP is equal to CAR_AV if SP is different from 0, and is equal to 0
otherwise. TRAIN_AV_SP is defined similarly.

• SM_COST is equal to SM_CO if GA is equal to 0, that is, if the traveler does
not have a yearly pass (called “Generalabonnement” in German). If
the traveler possesses a yearly pass, then GA is different from 0, and the
variable SM_COST is zero. The variable TRAIN_COST is defined in the same
way.

Variables can be also be rescaled. For numerical reasons, it is good prac-
tice to scale the data so that the values of the estimated parameters are
around 1. A previous estimation with the unscaled data has generated pa-
rameters around -0.01 for both cost and time. Therefore, time and cost are
divided by 100.

TRAIN_TT_SCALED = TRAIN_TT / 100

TRAIN_COST_SCALED = TRAIN_COST / 100

6

SM_TT_SCALED = SM_TT / 100

SM_COST_SCALED = SM_COST / 100

CAR_TT_SCALED = CAR_TT / 100

CAR_CO_SCALED = CAR_CO / 100

The Python syntax presented above is well suited for readability of the
code. However, the calculations that are involved will be redone again and
again each time the variable is needed, that is for each observation, and for
each iteration of the estimation algorithm.

Therefore, it is advised to create new columns in the database that store
the new variables, so that they are calculated once for all. This can be done
using the following syntax:

SM_COST = database.DefineVariable (

’SM_COST ’, SM_CO * (GA == 0)

)

TRAIN_COST = database.DefineVariable (

’TRAIN_COST ’, TRAIN_CO * (GA == 0)

)

CAR_AV_SP = database.DefineVariable (

’CAR_AV_SP ’, CAR_AV * (SP != 0)

)

TRAIN_AV_SP = database.DefineVariable (

’TRAIN_AV_SP ’, TRAIN_AV * (SP != 0)

)

TRAIN_TT_SCALED = database.DefineVariable (

’TRAIN_TT_SCALED ’, TRAIN_TT / 100

)

TRAIN_COST_SCALED = database.DefineVariable (

’TRAIN_COST_SCALED ’, TRAIN_COST / 100

)

SM_TT_SCALED = database.DefineVariable (

’SM_TT_SCALED ’, SM_TT / 100

)

SM_COST_SCALED = database.DefineVariable (

’SM_COST_SCALED ’, SM_COST / 100

)

CAR_TT_SCALED = database.DefineVariable (

’CAR_TT_SCALED ’, CAR_TT / 100

)

CAR_CO_SCALED = database.DefineVariable (

’CAR_CO_SCALED ’, CAR_CO / 100

)

7

5 Model specification: Biogeme

The file b01logit.py is reported in Section A.2. We describe here its content.
The objective is to provide to Biogeme the formula of the log likelihood
function to maximize, using a syntax based on the Python programming
language, and extended for the specific needs of Biogeme.

Like any Python script, the file must start by loading the Python libraries
needed by Biogeme (after the comments describing the content of the file).
The following libraries must be loaded:

• biogeme.biogeme, the core of Biogeme, that we rename bio,

• biogeme.models, containing the specification of useful models, such as
the logit model.

We need also to import some mathematical expressions useful to build
the model specification. In this specification file, we use only the expression
Beta that defines the unknown parameters to be estimated. Other expressions
such as log or exp can also be used.

import biogeme.biogeme as bio

from biogeme import models

from biogeme.expressions import Beta

Then, we need to import from the data preparation file (described in
Section 4) the variables that are used for the model specification, as well as
the database object.

from swissmetro_data import (

database ,

CHOICE ,

SM_AV ,

CAR_AV_SP ,

TRAIN_AV_SP ,

TRAIN_TT_SCALED ,

TRAIN_COST_SCALED ,

SM_TT_SCALED ,

SM_COST_SCALED ,

CAR_TT_SCALED ,

CAR_CO_SCALED ,

)

The next statements use the function Beta to define the parameters to be
estimated. For each parameter, the following information must be mentioned:

1. the name of the parameter,

2. the default value,

8

3. a lower bound (or None, if no bound is specified),

4. an upper bound, (or None, if no bound is specified),

5. a flag that indicates if the parameter must be estimated (0) or if it
keeps its default value (1).

ASC_CAR = Beta(’ASC_CAR ’, 0, None , None , 0)

ASC_TRAIN = Beta(’ASC_TRAIN ’, 0, None , None , 0)

ASC_SM = Beta(’ASC_SM ’, 0, None , None , 1)

B_TIME = Beta(’B_TIME ’, 0, None , None , 0)

B_COST = Beta(’B_COST ’, 0, None , None , 0)

• In Python, case sensitivity is enforced, so that varname and Varname

would represent two different variables. In our example, the default
value of each parameter is 0. If a previous estimation had been per-
formed before, we could have used the previous estimates as default
value.

• For the parameters that are estimated by Biogeme, the default value
is used as the starting value for the optimization algorithm. For the
parameters that are not estimated, the default value is used through-
out the estimation process. In our example, the parameter ASC_SM is
not estimated (as specified by the 1 in the fifth argument on the corre-
sponding line), and its value is fixed to 0.

• A lower bound and an upper bound may be specified. If no bound is
meaningful, use None.

• As for the definition of the variables, nothing prevents to write

car_cte = Beta(’ASC_CAR ’, 0, None , None , 0)

and to use car_cte later in the specification. We strongly advise
against this practice, and suggest to use the exact same name for the
Python variable on the left hand side, and for the Biogeme variable,
appearing as the first argument of the function, as illustrated in this
example.

We now write the specification of the utility functions. Note the use of
parentheses to split the specification on several lines, improving readability.

V1 = (

ASC_TRAIN +

B_TIME * TRAIN_TT_SCALED +

9

B_COST * TRAIN_COST_SCALED

)

V2 = (

ASC_SM +

B_TIME * SM_TT_SCALED +

B_COST * SM_COST_SCALED

)

V3 = (

ASC_CAR +

B_TIME * CAR_TT_SCALED +

B_COST * CAR_CO_SCALED

)

We need to associate each utility function with the identifier, of the al-
ternative, using the same numbering convention as in the data file. In this
example, the convention is described in Table 1.

Train 1
Swissmetro 2

Car 3

Table 1: Numbering of the alternatives

To do this, we use a Python dictionary:

V = {1: V1 , 2: V2 , 3: V3}

We use also a dictionary to describe the availability conditions of each alter-
native:

av = {1: TRAIN_AV_SP , 2: SM_AV , 3: CAR_AV_SP}

We now define the choice model. The function models.loglogit provides
the logarithm of the choice probability of the logit model. It takes three
arguments:

1. the dictionary describing the utility functions,

2. the dictionary describing the availability conditions,

3. the alternative for which the probability must be calculated.

In this example, we obtain

logprob = models.loglogit(V, av , CHOICE)

We are now ready to create the BIOGEME object, using the following syntax:

the_biogeme = bio.BIOGEME(database , logprob)

10

Avoid using the name biogeme for the variable storing the Biogeme object,
as this name refers to the package. Prefer the_biogeme, for instance. The
constructor accepts two mandatory arguments:

• the database object containing the data,

• the formula for the contribution to the log likelihood of each row in the
database.

It is advised to give a name to the model using the following statement:

the_biogeme.modelName = ’b01logit ’

This name will be used to name the output files, generated once the model
is estimated. In particular, a file named b01logit.html is generated, that can
be opened in any browser.

It is custom to calculate the likelihood of the model where all coefficients
are zero. This requires the knowledge of the choice set of each individual.
Therefore, it relies on the availability conditions. This can be done using the
following syntax:

the_biogeme.calculateNullLoglikelihood(av)

The estimation of the model parameters is then performed using the
following statement.

results = the_biogeme.estimate ()

6 Running Biogeme

The script is executed like any python script. Typically, by typing

python b01logit.py

in a terminal, or by typing “shift-return” in a Jupyter notebook.
Two files are generated:

• b01logit.html reports the results of the estimation in HTML format,
and can be opened in your favorite browser.

• b01logit.pickle is a snapshot of the results of the estimation, and can
be used in another Python script.

In order to avoid erasing previously generated results, the name of the
files may vary from one run to the next. Therefore, it is important to verify
the latest files created in the directory.

You can also print the name of the files that were actually created using
the following Python statement:

11

print(f’HTML file: {results.data.htmlFileName}’)

print(f’Pickle file: {results.data.pickleFileName }’)

12

7 Biogeme: the report file

The report file generated by Biogeme gathers information about the result of
the estimation. First, some information about the version of Biogeme, and
some links to relevant URLs is provided. Next, the name of the report file
and the name of the database are reported.

The estimation report follows, including

• The number of parameters that have been estimated.

• The sample size, that is, the number of rows in the data file that have
not been excluded.

• The number of excluded observations.

• Null log likelihood is the log likelihood L0 of the sample for a model
where all parameters are zero (if its calculation has been requested),

• Init log likelihood is the log likelihood Li of the sample for the
model defined with the default values of the parameters. Note that, if
the default values of the parameters are all zero, it coincides with the
null loglikelihood.

• Final log likelihood is the log likelihood L∗ of the sample for the
estimated model.

• Likelihood ratio test for the null model is

−2(L0 − L∗) (3)

where L0 is the log likelihood of the null model as defined above, and
L∗ is the log likelihood of the sample for the estimated model.

• Rho-square for the null model is

ρ2 = 1−
L∗

L0
. (4)

• Rho-square-bar for the null model is

ρ̄2 = 1−
L∗ − K

L0
. (5)

where K is the number of estimated parameters.

13

• Likelihood ratio test for the init. model is

−2(Li − L∗) (6)

where Li is the log likelihood of the init model as defined above, and
L∗ is the log likelihood of the sample for the estimated model.

• Rho-square for the init. model is

ρ2 = 1−
L∗

Li
. (7)

• Rho-square-bar for the init. model is

ρ̄2 = 1−
L∗ − K

Li
. (8)

where K is the number of estimated parameters.

• Akaike Information Criterion is:

2K− 2L∗, (9)

where K is the number of estimated parameters.

• Bayesian Information Criterion is:

−2L∗ + K ln(N), (10)

where K is the number of estimated parameters, and N is the sample
size.

• Final gradient norm is the gradient of the log likelihood function
computed for the estimated parameters.

• Nbr of threads is the number of processors used by Biogeme to cal-
culate the log likelihood at each iteration.

• Algorithm is the optimization algorithm used to solve the maximum
likelihood estimation problem.

• Proportion analytical hessian is the proportion of iterations where
the analytical second derivatives matrix (called “hessian”) has been cal-
culated.

14

• Relative projected gradient is the norm of the projected gradient,
scaled to account for the level of magnitude of the log likelihood. This
quantity is used as stopping criterion for the algorithm.

• Relative change is the norm of the relative change between two con-
secutive iterates of the algorithm. This quantity is also used as a stop-
ping criterion for the algorithm.

• Number of iterations is the number of iterations performed by the
optimization algorithms.

• Number of function evaluations reports the number of times that
the log likelihood function has been calculated.

• Number of gradient evaluations reports the number of times that
the gradient of the log likelihood function has been calculated.

• Number of hessian evaluations reports the number of times that
the second derivatives matrix (or hessian) of the log likelihood function
has been calculated.

• Cause of termination provides the reason why the optimization al-
gorithm has stopped.

• Optimization time is the actual time used by the algorithm.

The following section reports the estimates of the parameters of the utility
function, together with some statistics. For each parameter βk, the following
is reported:

• The name of the parameter.

• The estimated value βk.

• The robust standard error σR
k of the estimate, calculated as the square

root of the kth diagonal entry of the robust estimate of the variance
covariance matrix. (see Appendix B).

• The robust t statistics, calculated as tRk = βk/σ
R
k.

• The robust p value, calculated as 2(1 −Φ(tRk)), where Φ(·) is the cu-
mulative density function of the univariate normal distribution.

The last section reports, for each pair of parameters k and ℓ,

• the name of βk,

15

• the name of βℓ,

• the entry Σk,ℓ of the Rao-Cramer bound (see Appendix B),

• the correlation between βk and βℓ, calculated as

Σk,ℓ√
Σk,kΣℓ,ℓ

, (11)

• the t statistics, calculated as

tk,ℓ =
βk − βℓ√

Σk,k + Σℓ,ℓ − 2Σk,ℓ

, (12)

• the p value, calculated as 2(1−Φ(tk,ℓ)), where Φ(·) is the cumulative
density function of the univariate standard normal distribution,

• the entry ΣR
k,ℓ of ΣR, the robust estimate of the variance covariance

matrix (see Appendix B),

• the robust correlation between βk and βℓ, calculated as

ΣR
k,ℓ√

ΣR
k,kΣ

R
ℓ,ℓ

, (13)

• the robust t statistics, calculated as

tRk,ℓ =
βk − βℓ√

ΣR
k,k + ΣR

ℓ,ℓ − 2ΣR
k,ℓ

, (14)

• the robust p value, calculated as 2(1−Φ(tRk,ℓ)), where Φ(·) is the cumu-
lative density function of the univariate standard normal distribution,

The final lines report the value of the smallest and the largest eigenvalues,
as well as the ratio between the two, called the “condition number”. If the
smallest eigenvalue is close to zero, it is a sign of singularity, that may be
due to a lack of variation in the data or an unidentified model.

8 The results as Python variables

The estimation function returns an object that contains the results of the
estimation as well as the associated statistics. It provides some functions for
reporting. For instance, the statement

16

print(results.shortSummary ())

generates the following output:

Results for model b01logit

Nbr of parameters: 4

Sample size: 6768

Excluded data: 3960

Null log likelihood: -6964.663

Final log likelihood: -5331.252

Likelihood ratio test (null): 3266.822

Rho square (null): 0.235

Rho bar square (null): 0.234

Akaike Information Criterion: 10670.5

Bayesian Information Criterion: 10697.78

The values of the estimated parameters, as well as the corresponding
statistics, can be organized in a Pandas dataframe. For instance, the follow-
ing statements

pandas_results = results.getEstimatedParameters ()

print(pandas_results)

generate the following output:

Value Rob. Std err Rob. t-test Rob. p-value

ASC_CAR -0.154633 0.058163 -2.658590 0.007847

ASC_TRAIN -0.701187 0.082562 -8.492857 0.000000

B_COST -1.083790 0.068225 -15.885521 0.000000

B_TIME -1.277859 0.104254 -12.257120 0.000000

If results is the object returned by the estimation function, the results
of the estimation can be accessed in results.data:

• results.data.modelName: the model name.

• results.data.userNotes: optional notes provided by the user to include
in the report.

• results.data.nparam: the number K of estimated parameters.

• results.data.betaValues: a Numpy array containing the estimated val-
ues of the parameters, in an arbitrary order.

• results.data.betaNames: a list containing the name of the estimated
parameters, in the same order as the values above.

• results.data.nullLogLike: the value L0 is the null log likelihood.

• results.data.initLogLike: the value Li is the initial log likelihood.

17

• results.data.betas: a list of objects corresponding to the parameters.
Each of these objects contains the following entries, which should be
self explanatory.

– beta.name,

– beta.value,

– beta.stdErr,

– beta.lb,

– beta.ub,

– beta.tTest,

– beta.pValue,

– beta.robust_stdErr,

– beta.robust_tTest,

– beta.robust_pValue,

– beta.bootstrap_stdErr,

– beta.bootstrap_tTest,

– beta.bootstrap_pValue.

• results.data.logLike: the value L∗ of the log likelihood at the final
value of the parameters.

• results.data.g: the gradient of the log likelihood at the final value of
the parameters.

• results.data.H: the second derivatives matrix of the log likelihood at
the final value of the parameters.

• results.data.bhhh: the BHHH matrix (19) at the final value of the
parameters.

• results.data.dataname: the name of the database.

• results.data.sampleSize: the sample size N.

• results.data.numberOfObservations: the number of rows in the data file.
If the data is not panel, it is the same as the sample size.

• results.data.monteCarlo: a boolean that is True if the model involves
Monte-Carlo simulation for the calculation of integrals.

18

• results.data.numberOfDraws: number of draws used for Monte-Carlo
simulation.

• results.data.typesOfDraws: type of draws used for Monte-Carlo simula-
tion.

• results.data.excludedData: number of excluded data.

• results.data.dataProcessingTime: time needed to process the data be-
fore estimation.

• results.data.drawsProcessingTime: time needed to generate the draws
for Monte-Carlo simulation.

• results.data.optimizationTime: time used by the optimization algo-
rithm.

• results.data.gradientNorm: norm of the gradient of the log likelihood
at the final value of the parameters.

• results.data.optimizationMessages: informations returned by the opti-
mization routine.

• results.data.numberOfThreads: number of processors used.

• results.data.htmlFileName: name of the HTML file.

• results.data.pickleFileName: name of the Pickle file.

• results.data.latexFileName: name of the LATEX file.

• results.data.F12FileName: name of the ALogit F12 file.

• results.data.bootstrap: a boolean that is True if the calculation of
statistics using bootstrapping has been requested.

• results.data.bootstrapTime: the time needed for calculating the statis-
tics with bootstrapping, if applicable.

In addition the robust variance-covariance matrix can be obtained using

results.data.secondOrderTable

19

References

Ben-Akiva, M. E. and Lerman, S. R. (1985). Discrete Choice Analysis: The-

ory and Application to Travel Demand, MIT Press, Cambridge, Ma.

Berndt, E. K., Hall, B. H., Hall, R. E. and Hausman, J. A. (1974). Estimation
and inference in nonlinear structural models, Annals of Economic and

Social Measurement 3/4: 653–665.

Bierlaire, M. (2020). A short introduction to pandasbiogeme, Technical Re-
port TRANSP-OR 200605, Transport and Mobility Laboratory, Ecole
Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

Kauermann, G. and Carroll, R. (2001). A note on the efficiency of sand-
wich covariance matrix estimation, Journal of the American Statistical

Association 96(456).

White, H. (1982). Maximum likelihood estimation of misspecified models,
Econometrica 50: 1–25.

20

A Complete specification files

A.1 swissmetro_data.py

1 ””” F i l e sw i s smetro da ta . py
2

3 : author : Michel B i e r l a i r e , EPFL
4 : date : Mon Mar 6 15 :17 :03 2023
5

6 Data prepara t ion f o r Swissmetro , and d e f i n i t i o n o f the v a r i a b l e s
7 ”””
8

9 import pandas as pd
10 import biogeme . database as db
11 from biogeme . e xp r e s s i on s import Var iab le
12

13 # Read the data
14 df = pd . r ead c sv (’swissmetro.dat’ , sep=’\t’)
15 database = db . Database (’swissmetro’ , d f)
16

17 PURPOSE = Var iab le (’PURPOSE’)
18 CHOICE = Var iab le (’CHOICE’)
19 GA = Var iab le (’GA’)
20 LUGGAGE = Var iab le (’LUGGAGE’)
21 TRAIN CO = Var iab le (’TRAIN_CO’)
22 CAR AV = Var iab le (’CAR_AV’)
23 SP = Var iab le (’SP’)
24 TRAIN AV = Var iab le (’TRAIN_AV’)
25 TRAIN TT = Var iab le (’TRAIN_TT’)
26 SM TT = Var iab le (’SM_TT’)
27 CAR TT = Var iab le (’CAR_TT’)
28 CAR CO = Var iab le (’CAR_CO’)
29 SM CO = Var iab le (’SM_CO’)
30 SM AV = Var iab le (’SM_AV’)
31 MALE = Var iab le (’MALE’)
32 GROUP = Var iab le (’GROUP’)
33 TRAIN HE = Var iab le (’TRAIN_HE’)
34 SM HE = Var iab le (’SM_HE’)
35 INCOME = Var iab le (’INCOME’)
36 # Removing some ob s e r va t i on s can be done d i r e c t l y us ing pandas .
37 # remove = (((database . data .PURPOSE != 1) &
38 # (database . data .PURPOSE != 3)) |
39 # (database . data .CHOICE == 0))
40 # database . data . drop (database . data [remove] . index , i np l a c e=True)
41 # Here we use the ”biogeme” way :
42 exc lude = ((PURPOSE != 1) ∗ (PURPOSE != 3) + (CHOICE == 0)) > 0
43 database . remove (exc lude)
44

21

45

46 # De f i n i t i on o f new v a r i a b l e s
47 SM COST = database . De f ineVar iab l e (
48 ’SM_COST’ , SM CO ∗ (GA == 0)
49)
50 TRAIN COST = database . De f ineVar iab l e (
51 ’TRAIN_COST’ , TRAIN CO ∗ (GA == 0)
52)
53 CAR AV SP = database . De f ineVar iab l e (
54 ’CAR_AV_SP’ , CAR AV ∗ (SP != 0)
55)
56 TRAIN AV SP = database . De f ineVar iab l e (
57 ’TRAIN_AV_SP’ , TRAIN AV ∗ (SP != 0)
58)
59 TRAIN TT SCALED = database . De f ineVar iab l e (
60 ’TRAIN_TT_SCALED’ , TRAIN TT / 100
61)
62 TRAIN COST SCALED = database . De f ineVar iab l e (
63 ’TRAIN_COST_SCALED’ , TRAIN COST / 100
64)
65 SM TT SCALED = database . De f ineVar iab l e (
66 ’SM_TT_SCALED’ , SM TT / 100
67)
68 SM COST SCALED = database . De f ineVar iab l e (
69 ’SM_COST_SCALED’ , SM COST / 100
70)
71 CAR TT SCALED = database . De f ineVar iab l e (
72 ’CAR_TT_SCALED’ , CAR TT / 100
73)
74 CAR CO SCALED = database . De f ineVar iab l e (
75 ’CAR_CO_SCALED’ , CAR CO / 100
76)

A.2 b01logit.py

1 ””” F i l e b 0 1 l o g i t . py
2

3 : author : Michel B i e r l a i r e , EPFL
4 : date : Sun Apr 9 17 :02 :18 2023
5

6 Example o f a l o g i t model .
7 Three a l t e r n a t i v e s : Train , Car and Swissmetro
8 SP data
9 ”””

10 import biogeme . biogeme as bio
11 from biogeme import models
12 from biogeme . e xp r e s s i on s import Beta
13 from swis smetro data import (
14 database ,

22

15 CHOICE,
16 SM AV,
17 CAR AV SP,
18 TRAIN AV SP,
19 TRAIN TT SCALED,
20 TRAIN COST SCALED,
21 SM TT SCALED,
22 SM COST SCALED,
23 CAR TT SCALED,
24 CAR CO SCALED,
25)
26

27 # Parameters to be es t imated
28 ASC CAR = Beta (’ASC_CAR’ , 0 , None , None , 0)
29 ASC TRAIN = Beta (’ASC_TRAIN’ , 0 , None , None , 0)
30 ASC SM = Beta (’ASC_SM’ , 0 , None , None , 1)
31 B TIME = Beta (’B_TIME’ , 0 , None , None , 0)
32 B COST = Beta (’B_COST’ , 0 , None , None , 0)
33

34

35 # De f i n i t i on o f the u t i l i t y f unc t i on s
36 V1 = (
37 ASC TRAIN +
38 B TIME ∗ TRAIN TT SCALED +
39 B COST ∗ TRAIN COST SCALED
40)
41 V2 = (
42 ASC SM +
43 B TIME ∗ SM TT SCALED +
44 B COST ∗ SM COST SCALED
45)
46 V3 = (
47 ASC CAR +
48 B TIME ∗ CAR TT SCALED +
49 B COST ∗ CAR CO SCALED
50)
51

52 # Assoc ia te u t i l i t y f unc t i on s wi th the numbering o f a l t e r n a t i v e s
53 V = {1 : V1 , 2 : V2 , 3 : V3}
54

55 # Assoc ia te the a v a i l a b i l i t y cond i t i on s wi th the a l t e r n a t i v e s
56 av = {1 : TRAIN AV SP, 2 : SM AV, 3 : CAR AV SP}
57

58 # De f i n i t i on o f the model . This i s the c on t r i b u t i on o f each
59 # obse r va t i on to the l o g l i k e l i h o o d func t i on .
60 logprob = models . l o g l o g i t (V, av , CHOICE)
61

62 # Create the Biogeme o b j e c t
63 the biogeme = bio .BIOGEME(database , logprob)

23

64 the biogeme . modelName = ’b01logit’

65

66 # Ca l cu l a t e the n u l l l o g l i k e l i h o o d f o r r epo r t i n g .
67 the biogeme . c a l c u l a t eNu l l L o g l i k e l i h o od (av)
68

69 # Estimate the parameters
70 r e s u l t s = the biogeme . e s t imate ()
71 pr in t (r e s u l t s . shortSummary ())
72

73 # Get the r e s u l t s in a pandas t a b l e
74 panda s r e su l t s = r e s u l t s . getEst imatedParameters ()
75 pr in t (panda s r e su l t s)

24

B Estimation of the variance-covariance ma-

trix

Under relatively general conditions, the asymptotic variance-covariance ma-
trix of the maximum likelihood estimates of the vector of parameters θ ∈ R

K

is given by the Cramer-Rao bound

−E
[
∇2L(θ)

]−1
=

{

−E

[
∂2L(θ)
∂θ∂θT

]}−1

. (15)

The term in square brackets is the matrix of the second derivatives of the
log likelihood function with respect to the parameters evaluated at the true
parameters. Thus the entry in the kth row and the ℓth column is

∂2L(θ)
∂θk∂θℓ

. (16)

Since we do not know the actual values of the parameters at which to
evaluate the second derivatives, or the distribution of xin and xjn over which
to take their expected value, we estimate the variance-covariance matrix by
evaluating the second derivatives at the estimated parameters θ̂ and the
sample distribution of xin and xjn instead of their true distribution. Thus we
use

E

[
∂2L(θ)
∂θk∂θℓ

]
≈

N
∑

n=1

[
∂2 (yin lnPn(i) + yjn lnPn(j))

∂θk∂θℓ

]

θ=θ̂

, (17)

as a consistent estimator of the matrix of second derivatives.
Denote this matrix as Â. Note that, from the second order optimality

conditions of the optimization problem, this matrix is negative semi-definite,
which is the algebraic equivalent of the local concavity of the log likelihood
function. If the maximum is unique, the matrix is negative definite, and the
function is locally strictly concave.

An estimate of the Cramer-Rao bound (15) is given by

Σ̂CR

θ = −Â−1. (18)

If the matrix Â is negative definite then −Â is invertible and the Cramer-Rao
bound is positive definite.

Another consistent estimator of the (negative of the) second derivatives
matrix can be obtained by the matrix of the cross-products of first derivatives
as follows:

−E

[
∂2L(θ)
∂θ∂θT

]
≈

n
∑

n=1

(
∂ℓn(θ̂)

∂θ

)(
∂ℓn(θ̂)

∂θ

)T

= B̂, (19)

25

where (
∂ℓn(θ̂)

∂θ

)
=

∂

∂θ
(log P(in|Cn; θ̂)) (20)

is the gradient vector of the likelihood of observation n. This approximation
is employed by the BHHH algorithm, from the work by Berndt et al. (1974).
Therefore, an estimate of the variance-covariance matrix is given by

Σ̂BHHH

θ = B̂−1, (21)

although it is rarely used. Instead, B̂ is used to derive a third consistent
estimator of the variance-covariance matrix of the parameters, defined as

Σ̂R

θ = (−Â)−1 B̂ (−Â)−1 = Σ̂CR

θ (Σ̂BHHH

θ)−1 Σ̂CR

θ . (22)

It is called the robust estimator, or sometimes the sandwich estimator,
due to the form of equation (22). Biogeme reports statistics based on both
the Cramer-Rao estimate (18) and the robust estimate (22).

When the true likelihood function is maximized, these estimators are
asymptotically equivalent, and the Cramer-Rao bound should be preferred
(Kauermann and Carroll, 2001). When other consistent estimators are used,
the robust estimator must be used (White, 1982). Consistent non-maximum
likelihood estimators, known as pseudo maximum likelihood estimators, are
often used when the true likelihood function is unknown or difficult to com-
pute. In such cases, it is often possible to obtain consistent estimators by
maximizing an objective function based on a simplified probability distribu-
tion.

26

	Data
	Python
	The model
	Data preparation
	Model specification: Biogeme
	Running Biogeme
	Biogeme: the report file
	The results as Python variables
	Complete specification files
	swissmetrodata.py
	b01logit.py

	Estimation of the variance-covariance matrix

