
A short introduction to PandasBiogeme

Michel Bierlaire

June 5, 2020

Report TRANSP-OR 200605
Transport and Mobility Laboratory

School of Architecture, Civil and Environmental Engineering
Ecole Polytechnique Fédérale de Lausanne

transp-or.epfl.ch

Series on Biogeme

This is an updated version of Bierlaire (2018), adapted for Biogeme 3.2.6.

1

The package Biogeme (biogeme.epfl.ch) is designed to estimate the pa-
rameters of various models using maximum likelihood estimation. It is par-
ticularly designed for discrete choice models. In this document, we present
step by step how to specify a simple model, estimate its parameters and
interpret the output of the package. We assume that the reader is already
familiar with discrete choice models (Ben-Akiva and Lerman, 1985), and
has successfully installed PandasBiogeme. Note that PythonBiogeme and
PandasBiogeme have a very similar syntax. The difference is that Python-
Biogeme is an independent software package written in C++, and using the
Python language for model specification.

PandasBiogeme is a genuine Python package written in Python and C++,
that relies on the Pandas library for the management of the data. This is the
standard mode of operations of more and more data scientists. The syntax for
model specification is almost identical, but there are slight differences, that
are highlighted at the end of the document. This document has been written
using PandasBiogeme 3.2.6, but should remain valid for future versions.

1 Data

Biogeme assumes that a Pandas database is available, containing only nu-
merical entries. Each column corresponds to a variable, each row to an
observation.

If you are not familiar with Pandas, prepare a file that contains in its
first line a list of labels corresponding to the available data, and that each
subsequent line contains the exact same number of numerical data, each row
corresponding to an observation. Delimiters can be tabs or spaces.

The data file used for this example is swissmetro.dat. It can be down-
loaded from the “Data” section of biogeme.epfl.ch.

2 Python

PandasBiogeme is a package of the Python programming language. There-
fore, estimating a model amounts to writing a script in Python. Online
tutorials and documentation about Python can easily be found. Although it
is not necessary to master the Python language to specify models for Bio-
geme, it would definitely help to learn at least the basics. In this Section, we
report some useful information when using the package Biogeme.

• Two versions of Python are commonly used: 2 and 3. Biogeme works
only with Python version 3.

1

http://biogeme.epfl.ch

• Python is available on Linux, MacOSX and Windows. PandasBiogeme
is platform independent.

• The syntax of Python is case sensitive. It means that varname and
Varname, for instance, would represent two different entities.

• The indentation of the code is important in Python. It is advised to
use a text editor that has a “Python mode” to help managing these
indentations.

• A Python statement must be on a single line. Sometimes, for the sake
of readability, it is convenient to split the statement on several lines. In
that case, the character \ must be inserted at the end of a line to inform
Python that the statement continues at the following line. There are
several examples below, for instance in the specification of the utility
functions.

3 The model

The model is a logit model with 3 alternatives: train, Swissmetro and car.
The utility functions are defined as:

V1 = ASC_TRAIN + \

B_TIME * TRAIN_TT_SCALED + \

B_COST * TRAIN_COST_SCALED

V2 = ASC_SM + \

B_TIME * SM_TT_SCALED + \

B_COST * SM_COST_SCALED

V3 = ASC_CAR + \

B_TIME * CAR_TT_SCALED + \

B_COST * CAR_CO_SCALED

where

• TRAIN_TT_SCALED,

• TRAIN_COST_SCALED,

• SM_TT_SCALED,

• SM_COST_SCALED,

• CAR_TT_SCALED,

• CAR_CO_SCALED

2

are variables, and

• ASC_TRAIN,

• ASC_SM,

• ASC_CAR,

• B_TIME,

• B_COST

are parameters to be estimated. Note that it is not possible to identify all
alternative specific constants ASC_TRAIN, ASC_SM, ASC_CAR from data. Conse-
quently, ASC_SM is normalized to 0.

The availability of an alternative i is determined by the variable yi, i=1,
2, 3, which is equal to 1 if the alternative is available, and 0 otherwise. The
probability of choosing an available alternative i is given by the logit model:

P(i|{1, 2, 3}; x, β) =
yie

Vi(x,β)

y1eV1(x,β) + y2eV2(x,β) + y3eV3(x,β)
. (1)

Given a data set of N observations, the log likelihood of the sample is

L =
∑

n

log P(in|{1, 2, 3}; xn, β) (2)

where in is the alternative actually chosen by individual n, and xn are the
explanatory variables associated with individual n.

4 Model specification: PandasBiogeme

The model specification file must have an extension .py. The file 01logit.py

is reported in Section A.1. We describe here its content.
The objective is to provide to PandasBiogeme the formula of the log

likelihood function to maximize, using a syntax based on the Python pro-
gramming language, and extended for the specific needs of Biogeme. The file
can contain comments, designed to document the specification. Single-line
comments are included using the characters #, consistently with the Python
syntax. All characters after this command, up to the end of the current line,
are ignored by Python. Multiple lines comments are created by adding a
delimiter (""") at the beginning and the end of the comment. In our exam-
ple, the file starts with comments describing the name of the file, its author
and the date when it was created. A short description of its content is also
provided.

3

""" File 01 logit.py

:author: Michel Bierlaire , EPFL

:date: Thu Sep 6 15:14:39 2018

Example of a logit model.

Three alternatives: Train , Car and Swissmetro

SP data

"""

These comments are completely ignored by Python. However, it is recom-
mended to use many comments to describe the model specification, for future
reference, or to help other persons to understand the specification.

The specification file must start by loading the Python libraries needed
by PandasBiogeme. The following libraries must be loaded:

• pandas, the generic package for data management,

• biogeme.database, the Biogeme module for data management,

• biogeme.biogeme, the core Biogeme module,

• biogeme.models, the Biogeme module for choice models.

It is custom in Python to use shortcuts to simplify the syntax. Here, we
use pd, db, bio, and models, respectively. Finally, we need to import the
expressions to build the model specification. In this example, we use only
the expression Beta that defines parameters to be estimated.

import pandas as pd

import biogeme.database as db

import biogeme.biogeme as bio

import biogeme.models as models

from biogeme.expressions import Beta

The next step consists in preparing the Pandas database. If you have a
data file formatted for previous versions of Biogeme, this can easily be done
using the following statements:

df = pd.read_csv(’swissmetro.dat’, ’\t’)

database = db.Database(’swissmetro ’, df)

The first statement reads the data from the file, using tabs as delimiters.
It stores it in a Pandas data structure. The second statement prepares the
database for Biogeme. Clearly, if you prefer to create your Pandas database
in another way, it is possible. In that case, you still have to use the second
statement to transfer the Pandas database to Biogeme.

4

The name of the columns in the database characterize the variables for
your model. In order to make them available as a Python variable, the
following statement must be included:

globals (). update(database.variables)

It is possible to tell PandasBiogeme to ignore some observations in the
data file. A boolean expression must be defined, that is evaluated for each
observation in the data file. Each observation such that this expression is
“true” is discarded from the sample. In our example, the modeler has devel-
oped the model only for work trips, so that every observation such that the
trip purpose is not 1 or 3 is removed.

Observations such that the dependent variable CHOICE is 0 are also re-
moved. The convention is that “false” is represented by 0, and “true” by 1,
so that the ‘*’ can be interpreted as a “and”, and the ‘+’ as a “or”. Note
also that the result of the ‘+’ can be 2, so that we test if the result is equal
to 0 or not. The exclude condition in our example is therefore interpreted
as: either (PURPOSE different from 1 and PURPOSE different from 3), or CHOICE

equal to 0.

exclude = ((PURPOSE != 1) * (PURPOSE != 3) + (CHOICE == 0)) > 0

database.remove(exclude)

• We have conveniently used an intermediary Python variable exclude in
this example. It is not necessary. The above statement is completely
equivalent to

database.remove (((PURPOSE != 1) * (PURPOSE != 3) +\

(CHOICE == 0)) > 0)

• The same result can be obtained using Pandas directly, using the fol-
lowing syntax:

remove = (((database.data.PURPOSE != 1) & \

(database.data.PURPOSE != 3)) | \

(database.data.CHOICE == 0))

database.data.drop(database.data[remove].index ,inplace=True)

Pandas provides more powerful tools to manage the database. If you
need to perform sophisticated data manipulations, it is advised to use
Pandas instead of Biogeme for these purposes. Refer to the online
Pandas documentation and the many tutorials available online.

The next statements use the function Beta to define the parameters to be
estimated. For each parameter, the following information must be mentioned:

5

1. the name of the parameter,

2. the default value,

3. a lower bound (or None, if no bound is specified),

4. an upper bound, (or None, if no bound is specified),

5. a flag that indicates if the parameter must be estimated (0) or if it
keeps its default value (1).

ASC_CAR = Beta(’ASC_CAR ’,0,None ,None ,0)

ASC_TRAIN = Beta(’ASC_TRAIN ’,0,None ,None ,0)

ASC_SM = Beta(’ASC_SM ’,0,None ,None ,1)

B_TIME = Beta(’B_TIME ’,0,None ,None ,0)

B_COST = Beta(’B_COST ’,0,None ,None ,0)

• In Python, case sensitivity is enforced, so that varname and Varname

would represent two different variables. In our example, the default
value of each parameter is 0. If a previous estimation had been per-
formed before, we could have used the previous estimates as default
value.

• For the parameters that are estimated by PandasBiogeme, the de-
fault value is used as the starting value for the optimization algorithm.
For the parameters that are not estimated, the default value is used
throughout the estimation process. In our example, the parameter
ASC_SM is not estimated (as specified by the 1 in the fifth argument on
the corresponding line), and its value is fixed to 0.

• A lower bound and an upper bound must be specified. If no bound is
meaningful, use None.

• Nothing prevents to write

car_cte = Beta(’ASC_CAR ’,0,None , None ,0)

and to use car_cte later in the specification. We strongly advise
against this practice, and suggest to use the exact same name for the
Python variable on the left hand side, and for the PandasBiogeme vari-
able, appearing as the first argument of the function, as illustrated in
this example.

It is possible to define new variables in addition to the variables defined
in the data files.

6

SM_COST = SM_CO * (GA == 0)

TRAIN_COST = TRAIN_CO * (GA == 0)

CAR_AV_SP = CAR_AV * (SP != 0)

TRAIN_AV_SP = TRAIN_AV * (SP != 0)

When boolean expressions are involved, the value True is represented
by 1, and the value False is represented by 0. Therefore, a multiplication
involving a boolean expression is equivalent to a “and” operator. The above
code is interpreted in the following way:

• CAR_AV_SP is equal to CAR_AV if SP is different from 0, and is equal to 0
otherwise. TRAIN_AV_SP is defined similarly.

• SM_COST is equal to SM_CO if GA is equal to 0, that is, if the traveler does
not have a yearly pass (called “general abonment”). If the traveler
possesses a yearly pass, then GA is different from 0, and the variable
SM_COST is zero. The variable TRAIN_COST is defined in the same way.

Variables can be also be rescaled. For numerical reasons, it is good prac-
tice to scale the data so that the values of the estimated parameters are
around 1. A previous estimation with the unscaled data has generated pa-
rameters around -0.01 for both cost and time. Therefore, time and cost are
divided by 100.

TRAIN_TT_SCALED = TRAIN_TT / 100

TRAIN_COST_SCALED = TRAIN_COST / 100

SM_TT_SCALED = SM_TT / 100

SM_COST_SCALED = SM_COST / 100

CAR_TT_SCALED = CAR_TT / 100

CAR_CO_SCALED = CAR_CO / 100

We now write the specification of the utility functions.

V1 = ASC_TRAIN + \

B_TIME * TRAIN_TT_SCALED + \

B_COST * TRAIN_COST_SCALED

V2 = ASC_SM + \

B_TIME * SM_TT_SCALED + \

B_COST * SM_COST_SCALED

V3 = ASC_CAR + \

B_TIME * CAR_TT_SCALED + \

B_COST * CAR_CO_SCALED

We need to associate each utility function with the number, the identifier,
of the alternative, using the same numbering convention as in the data file.
In this example, the convention is described in Table 1.

To do this, we use a Python dictionary:

7

Train 1
Swissmetro 2

Car 3

Table 1: Numbering of the alternatives

V = {1: V1 ,

2: V2 ,

3: V3}

We use also a dictionary to describe the availability conditions of each alter-
native:

av = {1: TRAIN_AV_SP ,

2: SM_AV ,

3: CAR_AV_SP}

We now define the choice model. The function models.loglogit provides
the logarithm of the choice probability of the logit model. It takes three
arguments:

1. the dictionary describing the utility functions,

2. the dictionary describing the availability conditions,

3. the alternative for which the probability must be calculated.

In this example, we obtain

logprob = models.loglogit(V, av , CHOICE)

We are now ready to create the BIOGEME object, using the following syntax:

biogeme = bio.BIOGEME(database , logprob)

The constructor accepts two mandatory arguments:

• the database object containing the data,

• the formula for the contribution to the log likelihood of each row in the
database.

It is advised to give a name to the model using the following statement:

biogeme.modelName = ’01 logit ’

The estimation of the model parameters is performed using the following
statement.

results = biogeme.estimate ()

8

5 Running PandasBiogeme

The script is executed like any python script. Typically, by typing

python 01 logit.py

is a terminal, or by typing “shift-return” in a Jupyter notebook.
By default, running PandasBiogeme is silent, in the sense that it does not

produce any output. Two files are generated:

• 01logit.html reports the results of the estimation is HTML format, and
can be opened in your favorite browser.

• 01logit.pickle is a snapshot of the results of the estimation, and can
be used in another Python script.

In order to avoid erasing previously generated results, the name of the
files may vary from one run to the next. Therefore, it is important to verify
the latest files created in the directory.

You can also print the name of the files that were actually created using
the following Python statement:

print(f’HTML file: {results.data.htmlFileName}’)

print(f’Pickle file: {results.data.pickleFileName }’)

9

6 PandasBiogeme: the report file

The report file generated by PandasBiogeme gathers information about the
result of the estimation. First, some information about the version of Bio-
geme, and some links to relevant URLs is provided. Next, the name of the
report file and the name of the database are reported.

The estimation report follows, including

• The number of parameters that have been estimated.

• The sample size, that is, the number of rows in the data file that have
not been excluded.

• The number of excluded observations.

• Init log likelihood is the log likelihood Li of the sample for the
model defined with the default values of the parameters.

• Final log likelihood is the log likelihood L∗ of the sample for the
estimated model.

• Likelihood ratio test for the init. model is

−2(Li − L∗) (3)

where Li is the log likelihood of the init model as defined above, and
L∗ is the log likelihood of the sample for the estimated model.

• Rho-square for the init. model is

ρ2 = 1−
L∗

Li
. (4)

• Rho-square-bar for the init. model is

ρ2 = 1−
L∗ − K

Li
. (5)

where K is the number of estimated parameters.

• Akaike Information Criterion is:

2K− 2L∗, (6)

where K is the number of estimated parameters.

10

• Bayesian Information Criterion is:

−2L∗ + K ln(N), (7)

where K is the number of estimated parameters, and N is the sample
size.

• Final gradient norm is the gradient of the log likelihood function
computed for the estimated parameters.

• Nbr of threads is the number of processors used by Biogeme to cal-
culate the log likelihood at each iteration.

• Algorithm is the optimization algorithm used to solve the maximum
likelihood estimation problem.

• Proportion analytical hessian is the proportion of iterations where
the analytical second derivatives matrix (called “hessian”) has been cal-
culated.

• Relative projected gradient is the norm of the projected gradient,
scaled to account for the level of magnitude of the log likelihood. This
quantity is used as stopping criterion for the algorithm.

• Number of iterations is the number of iterations performed by the
optimization algorithms.

• Number of function evaluations reports the number of times that
the log likelihood function has been calculated.

• Number of gradient evaluations reports the number of times that
the gradient of the log likelihood function has been calculated.

• Number of hessian evaluations reports the number of times that
the second derivatives matrix (or hessian) of the log likelihood function
has been calculated.

• Cause of termination provides the reason why the optimization al-
gorithm has stopped.

• Optimization time is the actual time used by the algorithm.

The following section reports the estimates of the parameters of the utility
function, together with some statistics. For each parameter βk, the following
is reported:

11

• The name of the parameter.

• The estimated value βk.

• The standard error σk of the estimate, calculated as the square root of
the kthdiagonal entry of the Rao-Cramer bound (see Appendix B).

• The t statistics, calculated as tk = βk/σk.

• The p value, calculated as 2(1 −Φ(tk)), where Φ(·) is the cumulative
distribution function of the univariate standard normal distribution.

• The robust standard error σR
k of the estimate, calculated as the square

root of the kthdiagonal entry of the robust estimate of the variance
covariance matrix. (see Appendix B).

• The robust t statistics, calculated as tRk = βk/σ
R
k.

• The robust p value, calculated as 2(1 −Φ(tRk)), where Φ(·) is the cu-
mulative density function of the univariate normal distribution.

The last section reports, for each pair of parameters k and ℓ,

• the name of βk,

• the name of βℓ,

• the entry Σk,ℓ of the Rao-Cramer bound (see Appendix B),

• the correlation between βk and βℓ, calculated as

Σk,ℓ√
Σk,kΣℓ,ℓ

, (8)

• the t statistics, calculated as

tk,ℓ =
βk − βℓ√

Σk,k + Σℓ,ℓ − 2Σk,ℓ

, (9)

• the p value, calculated as 2(1−Φ(tk,ℓ)), where Φ(·) is the cumulative
density function of the univariate standard normal distribution,

• the entry ΣR
k,ℓ of ΣR, the robust estimate of the variance covariance

matrix (see Appendix B),

12

• the robust correlation between βk and βℓ, calculated as

ΣR
k,ℓ√

ΣR
k,kΣ

R
ℓ,ℓ

, (10)

• the robust t statistics, calculated as

tRk,ℓ =
βk − βℓ√

ΣR
k,k + ΣR

ℓ,ℓ − 2ΣR
k,ℓ

, (11)

• the robust p value, calculated as 2(1−Φ(tRk,ℓ)), where Φ(·) is the cumu-
lative density function of the univariate standard normal distribution,

The final lines report the value of the smallest and the largest eigenvalues, as
well as the ratio between the two, called the “condition number”. If smallest
eigenvalue is close to zero, it is a sign of singularity, that may be due to a
lack of variation in the data or an unidentified model.

7 The results as Python variables

The estimation function returns an object that contains the results of the
estimation as well as the associated statistics. This object can be printed on
screen:

print("Results=",results)

If results is the object returned by the estimation function, the results
of the estimation can be accessed in results.data:

• results.data.modelName: the model name.

• results.data.nparam: the number K of estimated parameters.

• results.data.betaValues: a Numpy array containing the estimated val-
ues of the parameters, in an arbitrary order.

• results.data.betaNames: a list containing the name of the estimated
parameters, in the same order as the values above.

• results.data.initLogLike: the value Li is the initial log likelihood.

• results.data.betas: a list of objects corresponding to the parameters.
Each of these objects contains the following entries, which should be
self explanatory.

13

– beta.name,

– beta.value,

– beta.stdErr,

– beta.lb,

– beta.ub,

– beta.tTest,

– beta.pValue,

– beta.robust_stdErr,

– beta.robust_tTest,

– beta.robust_pValue,

– beta.bootstrap_stdErr,

– beta.bootstrap_tTest,

– beta.bootstrap_pValue.

• results.data.logLike: the value L∗ of the log likelihood at the final
value of the parameters.

• results.data.g: the gradient of the log likelihood at the final value of
the parameters.

• results.data.H: the second derivatives matrix of the log likelihood at
the final value of the parameters.

• results.data.bhhh: the BHHH matrix (16) at the final value of the
parameters.

• results.data.dataname: the name of the database.

• results.data.sampleSize: the sample size N.

• results.data.numberOfObservations: the number of rows in the data file.
If the data is not panel, it is the same as the sample size.

• results.data.monteCarlo: a boolean that is True if the model involves
Monte-Carlo simulation for the calculation of integrals.

• results.data.numberOfDraws: number of draws used for Monte-Carlo
simulation.

• results.data.typesOfDraws: type of draws used for Monte-Carlo simula-
tion.

14

• results.data.excludedData: number of excluded data.

• results.data.dataProcessingTime: time needed to process the data be-
fore estimation.

• results.data.drawsProcessingTime: time needed to generate the draws
for Monte-Carlo simulation.

• results.data.optimizationTime: time used by the optimization algo-
rithm.

• results.data.gradientNorm: norm of the gradient of the log likelihood
at the final value of the parameters.

• results.data.optimizationMessages: message returned by the optimiza-
tion routine.

• results.data.numberOfFunctionEval: number of time the log likelihood
function has been evaluated.

• results.data.numberOfIterations: number of iterations of the optimiza-
tion algorithm.

• results.data.numberOfThreads: number of processors used.

• results.data.htmlFileName: name of the HTML file.

• results.data.pickleFileName: name of the Pickle file.

• results.data.bootstrap: a boolean that is True if the calculation of
statistics using bootstrapping has been requested.

• results.data.bootstrapTime: the time needed for calculating the statis-
tics with bootstrapping, if applicable.

In addition the robust variance-covariance matrix can be obtained using

results.data.getRobustVarCovar ()

If you are just interested in the estimates of the parameters, they can be
obtained as a dict:

betas = results.getBetaValues ()

for k,v in betas.items ():

print(f"{k}=\t{v:.3g}")

The general statistics can also be obtained as a dict:

gs = results.getGeneralStatistics ()

15

The results can also be obtained as a Pandas data frame:

pandasResults = results.getEstimatedParameters ()

and

correlationResults = results.getCorrelationResults ()

References

Ben-Akiva, M. E. and Lerman, S. R. (1985). Discrete Choice Analysis: The-
ory and Application to Travel Demand, MIT Press, Cambridge, Ma.

Berndt, E. K., Hall, B. H., Hall, R. E. and Hausman, J. A. (1974). Estimation
and inference in nonlinear structural models, Annals of Economic and
Social Measurement 3/4: 653–665.

Bierlaire, M. (2018). PandasBiogeme: a short introduction, Technical Report
TRANSP-OR 181219, Transport and Mobility Laboratory, Ecole Poly-
technique Fédérale de Lausanne.
URL: transp-or.epfl.ch/documents/technicalReports/Bier18.pdf

Kauermann, G. and Carroll, R. (2001). A note on the efficiency of sand-
wich covariance matrix estimation, Journal of the American Statistical
Association 96(456).

White, H. (1982). Maximum likelihood estimation of misspecified models,
Econometrica 50: 1–25.

16

A Complete specification file

A.1 01logit.py

1 ””” F i l e 01 l o g i t . py
2

3 : author : Michel B i e r l a i r e , EPFL
4 : date : Thu Sep 6 15 :14 :39 2018
5

6 Example o f a l o g i t model .
7 Three a l t e r n a t i v e s : Train , Car and Swissmetro
8 SP data
9 ”””

10

11 import pandas as pd
12 import biogeme . database as db
13 import biogeme . biogeme as bio
14 import biogeme . models as models
15 from biogeme . e xp r e s s i on s import Beta
16

17 # Read the data
18 df = pd . r ead c sv (’swissmetro.dat’ , ’\t’)
19 database = db . Database (’swissmetro’ , d f)
20

21 # The f o l l ow i n g s ta tement a l l ow s you to use the names o f the
22 # va r i a b l e as Python v a r i a b l e .
23 g l oba l s () . update (database . v a r i a b l e s)
24

25 # Removing some ob s e r va t i on s
26 exc lude = ((PURPOSE != 1) ∗ (PURPOSE != 3) + (CHOICE == 0)) > 0
27 database . remove (exc lude)
28

29 # Parameters to be es t imated
30 ASC CAR = Beta (’ASC_CAR’ , 0 , None , None , 0)
31 ASC TRAIN = Beta (’ASC_TRAIN’ , 0 , None , None , 0)
32 ASC SM = Beta (’ASC_SM’ , 0 , None , None , 1)
33 B TIME = Beta (’B_TIME’ , 0 , None , None , 0)
34 B COST = Beta (’B_COST’ , 0 , None , None , 0)
35

36

37 # De f i n i t i on o f new v a r i a b l e s
38 SM COST = SM CO ∗ (GA == 0)
39 TRAIN COST = TRAIN CO ∗ (GA == 0)
40 CAR AV SP = CAR AV ∗ (SP != 0)
41 TRAIN AV SP = TRAIN AV ∗ (SP != 0)
42 TRAIN TT SCALED = TRAIN TT / 100
43 TRAIN COST SCALED = TRAIN COST / 100
44 SM TT SCALED = SM TT / 100

17

45 SM COST SCALED = SM COST / 100
46 CAR TT SCALED = CAR TT / 100
47 CAR CO SCALED = CAR CO / 100
48

49 # De f i n i t i on o f the u t i l i t y f unc t i on s
50 V1 = ASC TRAIN + \
51 B TIME ∗ TRAIN TT SCALED + \
52 B COST ∗ TRAIN COST SCALED
53 V2 = ASC SM + \
54 B TIME ∗ SM TT SCALED + \
55 B COST ∗ SM COST SCALED
56 V3 = ASC CAR + \
57 B TIME ∗ CAR TT SCALED + \
58 B COST ∗ CAR CO SCALED
59

60 # Assoc ia te u t i l i t y f unc t i on s wi th the numbering o f a l t e r n a t i v e s
61 V = {1 : V1 ,
62 2 : V2 ,
63 3 : V3}
64

65 # Assoc ia te the a v a i l a b i l i t y cond i t i on s wi th the a l t e r n a t i v e s
66 av = {1 : TRAIN AV SP,
67 2 : SM AV,
68 3 : CAR AV SP}
69

70 # De f i n i t i on o f the model . This i s the c on t r i b u t i on o f each
71 # obse r va t i on to the l o g l i k e l i h o o d func t i on .
72 logprob = models . l o g l o g i t (V, av , CHOICE)
73

74 # Create the Biogeme o b j e c t
75 biogeme = bio .BIOGEME(database , logprob)
76 biogeme . modelName = ’01logit’

77

78 # Estimate the parameters
79 r e s u l t s = biogeme . e s t imate ()
80

81 # Get the r e s u l t s in a pandas t a b l e
82 pandasResults = r e s u l t s . getEst imatedParameters ()
83 pr in t (pandasResults)

18

B Estimation of the variance-covariance ma-

trix

Under relatively general conditions, the asymptotic variance-covariance ma-
trix of the maximum likelihood estimates of the vector of parameters θ ∈ R

K

is given by the Cramer-Rao bound

−E
[
∇2L(θ)

]−1
=

{

−E

[
∂2L(θ)
∂θ∂θT

]}−1

. (12)

The term in square brackets is the matrix of the second derivatives of the
log likelihood function with respect to the parameters evaluated at the true
parameters. Thus the entry in the kth row and the ℓth column is

∂2L(θ)
∂θk∂θℓ

. (13)

Since we do not know the actual values of the parameters at which to
evaluate the second derivatives, or the distribution of xin and xjn over which
to take their expected value, we estimate the variance-covariance matrix by
evaluating the second derivatives at the estimated parameters θ̂ and the
sample distribution of xin and xjn instead of their true distribution. Thus we
use

E

[
∂2L(θ)
∂θk∂θℓ

]
≈

N
∑

n=1

[
∂2 (yin lnPn(i) + yjn lnPn(j))

∂θk∂θℓ

]

θ=θ̂

, (14)

as a consistent estimator of the matrix of second derivatives.
Denote this matrix as Â. Note that, from the second order optimality

conditions of the optimization problem, this matrix is negative semi-definite,
which is the algebraic equivalent of the local concavity of the log likelihood
function. If the maximum is unique, the matrix is negative definite, and the
function is locally strictly concave.

An estimate of the Cramer-Rao bound (12) is given by

Σ̂CR

θ = −Â−1. (15)

If the matrix Â is negative definite then −Â is invertible and the Cramer-Rao
bound is positive definite.

Another consistent estimator of the (negative of the) second derivatives
matrix can be obtained by the matrix of the cross-products of first derivatives
as follows:

−E

[
∂2L(θ)
∂θ∂θT

]
≈

n
∑

n=1

(
∂ℓn(θ̂)

∂θ

)(
∂ℓn(θ̂)

∂θ

)T

= B̂, (16)

19

where (
∂ℓn(θ̂)

∂θ

)
=

∂

∂θ
(log P(in|Cn; θ̂)) (17)

is the gradient vector of the likelihood of observation n. This approximation
is employed by the BHHH algorithm, from the work by Berndt et al. (1974).
Therefore, an estimate of the variance-covariance matrix is given by

Σ̂BHHH

θ = B̂−1, (18)

although it is rarely used. Instead, B̂ is used to derive a third consistent
estimator of the variance-covariance matrix of the parameters, defined as

Σ̂R

θ = (−Â)−1 B̂ (−Â)−1 = Σ̂CR

θ (Σ̂BHHH

θ)−1 Σ̂CR

θ . (19)

It is called the robust estimator, or sometimes the sandwich estimator,
due to the form of equation (19). Biogeme reports statistics based on both
the Cramer-Rao estimate (15) and the robust estimate (19).

When the true likelihood function is maximized, these estimators are
asymptotically equivalent, and the Cramer-Rao bound should be preferred
(Kauermann and Carroll, 2001). When other consistent estimators are used,
the robust estimator must be used (White, 1982). Consistent non-maximum
likelihood estimators, known as pseudo maximum likelihood estimators, are
often used when the true likelihood function is unknown or difficult to com-
pute. In such cases, it is often possible to obtain consistent estimators by
maximizing an objective function based on a simplified probability distribu-
tion.

C Differences with PythonBiogeme

The syntax of PandasBiogeme has been designed to be as close as possible
to the syntax of PythonBiogeme. There are some differences though that we
mention in this Section.

• There is no need anymore to specify an iterator.

• The BIOGEME_OBJECT and its variables (ESTIMATE, PARAMETERS, etc.) are
obsolete.

• The exclusion of data was done as follows in PythonBiogeme:

exclude = ((PURPOSE != 1) * (PURPOSE != 3) +\

(CHOICE == 0)) > 0

BIOGEME_OBJECT .EXCLUDE = exclude

20

It is done as follows is PandasBiogeme:

exclude = ((PURPOSE != 1) * (PURPOSE != 3) +\

(CHOICE == 0)) > 0

database.remove(exclude)

• For the specification of the parameters using the Beta function, the
PythonBiogeme syntax is still valid here. But it is slightly extended.
In PythonBiogeme, it was mandatory to explicitly specify a lower and
an upper bound. In PandasBiogeme, it is now possible to specify None if
no bound is desired. Note that, in PythonBiogeme, the last argument
of the Beta function allowed to give a text description of the parameter.
This argument can still be provided (for compatibility reasons), but is
ignored by PandasBiogeme.

• DefineVariable: the syntax is similar to PythonBiogeme, but not iden-
tical. The function DefineVariable requires a third argument, which is
the name of the database. This allows to work with different databases
in the same specification file.

• The name of the output files is defined by the statement

biogeme.modelName = "01 logit"

In PythonBiogeme, it was defined by the name of the script. In Pan-
dasBiogeme, as it is technically possible to define several models in the
same script, the name has to be explicitly mentioned.

• As discussed above, the estimation results are available in a Python
object. This object is actually saved in a file with the extension pickle.
This file can be read using the following statements:

import biogeme.results as res

results = res.bioResults(pickleFile =01 logit.pickle ’)

and the object results is recovered exactly how it was generated after
the estimation.

21

	Data
	Python
	The model
	Model specification: PandasBiogeme
	Running PandasBiogeme
	PandasBiogeme: the report file
	The results as Python variables
	Complete specification file
	01logit.py

	Estimation of the variance-covariance matrix
	Differences with PythonBiogeme

