Calculating indicators with PandasBiogeme

Michel Bierlaire
December 23, 2018

Report TRANSP-OR 181223
Transport and Mobility Laboratory
School of Architecture, Civil and Environmental Engineering
Ecole Polytechnique Fédérale de Lausanne
transp-or.epfl.ch

SERIES ON BIOGEME



This document is an updated version of Bierlaire (2017), adapted for
PandasBiogeme.

The package Biogeme (biogeme.epfl.ch) is designed to estimate the
parameters of various models using maximum likelihood estimation. It is
particularly designed for discrete choice models. But it can also be used to
extract indicators from an estimated model. In this document, we describe
how to calculate some indicators particularly relevant in the context of dis-
crete choice models: market shares, revenues, elasticities, and willingness to
pay. Clearly, the use of the software is not restricted to these indicators, nei-
ther to choice models. But these examples illustrate most of the capabilities.

We assume that the reader is already familiar with discrete choice mod-
els, and has successfully installed PandasBiogeme. Note that PythonBio-
geme and PandasBiogeme have a very similar syntax. The difference is that
PythonBiogeme is an independent software package written in C++, and
using the Python language for model specification. PandasBiogeme is a gen-
uine Python package written in Python and C++, that relies on the Pandas
library for the management of the data. The syntax for model specification is
almost identical, but there are slight differences. We refer the reader to Bier-
laire (2018) for a detailed discussion of these differences. This document has
been written using PandasBiogeme 3.1, but should remain valid for future
versions.

1 The model
See 0lnestedEstimation.py in Section [A]]

We consider a case study involving a transportation mode choice model,
using revealed preference data collected in Switzerland in 2009 and 2010 (see
Atasoy et al., 2013). The model is a nested logit model with 3 alternatives:
public transportation, car and slow modes. The utility functions are defined
as:

V_PT = BETATIMEFULLTIME % TimePT_scaled % fulltime +
BETA.TIME.OTHER * TimePT_scaled % notfulltime +
BETA COST * MarginalCostPT _scaled

V_CAR = ASC.CAR +
BETA_ TIMEFULLTIME % TimeCar_scaled x fulltime +
BETA_TIME.OTHER % TimeCar_scaled % notfulltime +
BETA_COST % CostCarCHF _scaled

VSM = ASCSM +
BETADIST MALE % distance_km_scaled x male +
BETADIST FEMALE x distance_km_scaled * female +
BETA DIST_UNREPORTED x distance_km _scaled % unreportedGender



where ASC_CAR, ASC_SM, BETA_TIME_FULLTIME, BETA_TIME_.OTHER, BETA_DIST_MALE,
BETA DIST_FEMALE, BETA DIST_UNREPORTED, BETA_COST, are parameters
to be estimated, TimePT _scale, MarginalCostPT_scaled, TimeCar_scale, CostCarCHF _scale,
distance_km_scale are attributes and fulltime, notfulltime, male, female, unreportedGender
are socio-economic characteristics. The two alternatives “public transporta-
tion” and “slow modes” are grouped into a nest. The complete specification
is available in the file 0lnestedEstimation.py reported in Section [A.1l We refer
the reader to Bierlaire (2018) for an introduction to the syntax.
The parameters are estimated using PandasBiogeme. Their values are
reported in Table [II

Robust
Parameter Coeft. Asympt.
number Description estimate std. error t-stat p-value
1 ASC.CAR 0.261 0.100 261  0.01
2 ASCSM 0.0591  0.217 0.273 0.785
3 BETA_COST -0.716 0.138 -5.18  0.00
4 BETA_DIST_.FEMALE -0.831 0.193 -4.31 0.00
5 BETA_DIST_MALE -0.686 0.161 -4.27 0.00
6 BETA_DIST_.UNREPORTED -0.703 0.196 -3.58  0.000344
7 BETA_TIME_FULLTIME -1.60 0.333 -4.80 0.00
8 BETA_TIME_OTHER -0.577 0.296 -1.95  0.0515
9 NEST.NOCAR 1.53 0.306 1.73*  0.08

Summary statistics

Number of observations = 1906
Number of excluded observations = 359
Number of estimated parameters = 9

L(Bo) = —2093.955
L(B) = —1298.498
—2[L(Bo) — L(B)] = 1590.913
p2 = 0.380
p? = 0.376

&¢-test against 1

Table 1: Nested logit model: estimated parameters



2 Market shares and revenues
See 02nestedSimulation.py in Section [A.2]

Once the model has been estimated, it must be used to derive useful in-
dicators. PandasBiogeme provides a simulation feature for this purpose. We
start by describing how to calculate market shares using sample enumera-
tion. It is necessary to have a sample of individuals from the population. For
each of them, the value of each of the variables involved in the model must
be known. Note that it is possible to use the same sample that was used
for estimation, but only if it contains revealed preferences data. Indeed, the
calculation of indicators require real values for the variables, not values that
have been designed and engineered for the sake of estimating parameters,
like in stated preferences data. It is the procedure used in this document.

More formally, consider a choice model P, (i|xn,Cy) providing the proba-
bility that individual n chooses alternative i within the choice set C,, given
the explanatory variables x,,. In order to calculate the market shares in the
population of size N, a sample of Ny individuals is drawn. As it is rarely
possible to draw from the population with equal sampling probability, it is
assumed that stratified sampling has been used, and that each individual n
in the sample is associated with a weight w,, correcting for sampling biases.
The weights are normalized such that

N
No= 3w 1)
n=1

An estimator of the market share of alternative i in the population is

N
1 : .
W, = N_s ; Wi Pr (1xn, Cn). (2)

If the alternative i involves a price variable pi,, the expected revenue gener-
ated by 1 is

N
N ZS .
Ri = N_s n=1 Wnpinpn(l|xn)pin’cﬂ)‘ <3)

In practice, the size of the population is rarely known, and the above quantity
is used only in the context of price optimization. In this case, the factor N/Ng
can be omitted.

To calculate (2)) and (B) with PandasBiogeme, a specification file must
be prepared. We describe how to build this file. We name the resulting file
02nestedSimulation.py, reported in Section [A.2}



. Start with a copy of the model estimation file 01nestedEstimation.py.

. Keep the part that builds the database, and defines the model specifi-
cation. In this example, we keep the first 106 lines.

. Define the choice probability for each alternative:

prob_pt = models.nested (V,av,nests ,0)
prob_car = models.nested (V,av,nests ,1)
prob_sm = models.nested (V,av, nests ,2)

. Define the quantities that must be simulated in a dictionary. In this
case, we calculate, for each individual

e the normalized weights, that verify (),
e the choice probability of each alternative,

e the revenues generated by public transportation.

This is specified using the following statement:

simulate = {’weight’: normalizedWeight ,
’Prob. car’: prob_car,
’Prob. public transportation’: prob_pt,
’Prob. slow modes’:prob_sm,
’Revenue public transportation’:prob_pt *x MarginalCostPT}

Each entry of this dictionary corresponds to a quantity that will be
calculated for each observation in the sample. The key of the entry is a
string, that will identify the column in the Pandas data structure that
will be generated. The value must be a valid formula describing the
calculation.

. We provide both the database and the formulas to be simulated to
Biogeme:

biogeme = bio .BIOGEME(database ,simulate)
biogeme . modelName = "O2nestedSimulation"

. Now, we need to retrieve the values of the parameters that were cal-
culated at the estimation stage. First, we obtain the names of the
parameters that we need for the simulation. Note that it may not be
exactly the same list as for estimation.

betas = biogeme.freeBetaNames

Then, we read the results of the estimation from the “pickle” file:



results = res.bioResults(pickleFile=’0lnestedEstimation.pickle’)

Now, we can retrieve the estimated values:

betaValues = results.getBetaValues ()

. We now perform the simulation itself:

simulatedValues = biogeme.simulate (betaValues)

It generates a Pandas data frame. Each row corresponds to an ob-
servation in the Biogeme database, and each column corresponds to a
quantity requested above.

. We can also calculate confidence intervals on these quantities, using
simulation. First, we draw 100 realizations of the maximum likeli-
hood estimator, and extract the parameters that we need for simulation
(identified by the list betas):

b = results.getBetasForSensitivityAnalysis (betas, size=100)

And we calculate 90% confidence intervals:

left ,right = biogeme.confidencelntervals(b,0.9)

The two Pandas data frames have the same structure as the simulated
values, and contain the left and right bounds of the intervals, respec-
tively.

. We can now calculate the market shares, and the confidence intervals.
First, we add a column to the data frames for the weighted probabilities
involved in (2):

simulatedValues [ ’Weighted prob. car’] = \

simulatedValues [’weight’]| % simulatedValues[’Prob. car’]
left [’Weighted prob. car’] = left[’weight’] * left [’Prob. car’|
right [’Weighted prob. car’] = right[’weight’]| % right[’Prob. car’]

The market shares as well as the confidence intervals, are simply the
mean of these new columns:
marketShare_car = simulatedValues|[’Weighted prob. car’]|.mean()

marketShare_car_left = left [’Weighted prob. car’].mean()
marketShare_car_right = right [’Weighted prob. car’].mean()

The market shares of the other models are calculated similarly.

. For the revenues, we use (B)) with N = Nj, for the sake of the example.
In this case, the sum of the new column is calculated instead of the
mean.



revenues_pt = (simulatedValues[’Revenue public transportation’] x
simulatedValues [’weight’]).sum/()

revenues_pt_left = (left [’Revenue public transportation’] x
left [weight’]).sum/()
revenues_pt_right = (right [’Revenue public transportation’] x

right [’weight’]).sum()

Note that, in the above code above, we did not include the line contin-
uation character \. Indeed, Python automatically implies line continu-
ation inside parentheses, brackets and braces.

The output of the Python script is as follows:

Running 02nestedSimulation.py ...

Number of males: 943

Number of females: 871

Unreported gender: 92

Market share for car: 65.3% [60.4% ,68.7%]
Market share for PT: 28.1% [23.8%,32.4%]
Market share for slow modes: 6.6% [4.7%,10.6%]
Revenues for PT: 3018.431 [2485.425,3771.998]

3 Elasticities

Consider now one of the variables involved in the model, for instance Xin,
the kth variable associated by individual n with alternative i. The objective
is to anticipate the impact of a change of the value of this variable on the
choice of individual n, and subsequently on the market share of alternative
i.

3.1 Point elasticities

If the variable is continuous, we assume that the relative (infinitesimal)
change of the variable is the same for every individual in the population,

that is
OXink . OXipk  OXix

- = ) (4)

Xink Xipk Xik
where
N
1
Xik = E Xink- (5)
N
n=1

The disaggregate direct point elasticity of the model with respect to the vari-
able xink is defined as

Pn(i) _ OP (ixn, Cr) Xink

E = . 6
Hink axink Pn (ﬂxn) Cn) ( )

6



It is called

o disaggregate, because it refers to the choice model related to a specific
individual,

e direct, because it measures the impact of a change of an attribute of
alternative 1 on the choice probability of the same alternative,

e point, because we consider an infinitesimal change of the variable.

The aggregate direct point elasticity of the model with respect to the average
value xi is defined as

- OWixy
BV = — = 7
Xik aXik Wi ( )
Using (2), we obtain
1 & 0P, (ixn, Cr) Xix
EW. _ N n ny bn _1.
Xik NS ;W aXik Wi <8)

From (), we obtain

Ny

aPn(an) C‘n) Xink
Y Wa - JEP I g
T e W NG e T ©)

1
A —
Xik N s

where the second equation is derived from (). Using (2) again, we obtain
N

EW. _ Z EPn(i) WnPn(an) Cn) . (10)
Y WP (ihxn, Cn)

n=1

This equation shows that the calculation of aggregate elasticities involves a
weighted sum of disaggregate elasticities. However, the weight is not w,, as
for the market share, but a normalized version of w;, Py (i|xn,Cr).

The disaggregate cross point elasticity of the model with respect to the
variable Xjny is defined as

Pn(i) __ aPn(ﬂXan) Xjnk

B = . 11
ik axjnk Pn(uxmcn) ( )

It is called cross elasticity because it measures the sensitivity of the model
for alternative i with respect to a modification of the attribute of another
alternative.



3.2 Arc elasticities

A similar derivation can be done for arc elasticities. In this case, the relative
change of the variable is not infinitesimal anymore. The idea is to analyze
a before/after scenario. The variable Xy in the before scenario becomes
Xink + AXink in the after scenario. As above, we assume that the relative
change of the variable is the same for every individual in the population,
that is

AxXink o Axipx o Axix (12)

Xink Xipk Xik ’

where xiy is defined by (Bl). The disaggregate direct arc elasticity of the model
with respect to the variable xiny is defined as

Pn(i) _ APn(ﬂxn) Cn) Xink
Hink Axink Pn(ﬂxn) Cn) '

(13)

The aggregate direct arc elasticity of the model with respect to the average
value xi is defined as
Wi _ %ﬂ
Xk AXik Wi )
The two quantities are also related by (I0), following the exact same deriva-
tion as for the point elasticity.

(14)

3.3 Using PandasBiogeme for point elasticities

See (03 nestedElasticities . pyl in Section [A.3]

The calculation of (6] involves derivatives. For simple models such as
logit, the analytical formula of these derivatives can easily be derived. How-
ever, their derivation for advanced models can be tedious. It is common
to make mistakes in the derivation itself, and even more common to make
mistakes in the implementation. Therefore, PandasBiogeme provides an op-
erator that calculates the derivative of a formula. It is illustrated in the file
03 nestedElasticities .py, reported in Section [A.3l We describe here the calcu-
lation of the elasticity of the demand for public transportation with respect
to the travel time of public transportation. Other elasticities are calculated
similarly. The calculation of the disaggregate elasticities for each individual
by PandasBiogeme are performed using the following statement:

direct_elas_pt_time = \
Derive (prob_pt,’TimePT’) x TimePT / prob_pt

and adding the corresponding entry in the simulation dictionary:


http://biogeme.epfl.ch/examples/indicators/python/03nestedElasticities.py
http://biogeme.epfl.ch/examples/indicators/python/03nestedElasticities.py

simulate = {’weight’: normalizedWeight ,
’Prob. car’: prob_car,
’Prob. public transportation’: prob_pt,
’Prob. slow modes’:prob_sm,
’direct_elas_pt_time’:direct_elas_pt_time ,
’direct_elas_pt_cost’:direct_elas_pt_cost ,
’direct_elas_car_time’:direct_elas_car_time ,
’direct_elas_car_cost’:direct_elas_car_cost ,
’direct_elas_sm_dist’:direct_elas_sm_dist}

The above syntax should be self-explanatory. But there is an important
aspect to take into account. In the context of the estimation of the param-
eters of the model, the variables are often scaled in order to improve the
numerical properties of the likelihood function, using statements like

TimePT_scaled = DefineVariable(’TimePT_scaled’, TimePT / 200 )

or

TimePT_scaled = TimePT / 200

The DefineVariable operator is designed to preprocess the data file, and can
be seen as a way to add another column in the data file, defining a new
variable. However, if it is used, the relationship between the new variable
and the original one is lost, for the sake of computational speed. Therefore,
prob_pt depends on TimePT scaled, but not on TimePT. Therefore, the result
of Derive(prob_pt,’ TimePT’) is zero.

Consequently, when you need to calculate derivatives, you may want to
replace statements like

TimePT_scaled = DefineVariable(’TimePT_scaled’, TimePT / 200 )

by

TimePT_scaled = TimePT / 200

in order to maintain the analytical structure of the formula to be derived.
The aggregate point elasticities can be obtained by aggregating the dis-

aggregate elasticities, using (I0)). This requires the calculation of the nor-
malization factors

Ny
D WiPn(ifn, Cn). (15)
n=1

This is performed with the following code, that first creates new columns in
the Pandas data frame, and then calculate their sum:
simulatedValues [ ’Weighted prob. PT’] = \

simulatedValues [ ’weight’] * simulatedValues|[’Prob. public transportation’ |
denominator_pt = simulatedValues|[’Weighted prob. PT’].sum/()



The calculation of the aggregate direct elasticity (I0) is performed as
follows:
direct_elas_term_pt_time = (simulatedValues|[’Weighted prob. PT’]

% simulatedValues[’direct_elas_pt_time’] / denominator_pt).sum()
Note that, in this case, we did not explicitly create a new column before
calculating the sum. Looking at the formula, we have

e the disaggregate elasticity: simulatedValues[’direct_elas_pt_time’] = Ezinn(,?,
e the numerator: simulatedValues[’Weighted prob. PT’] = WP, (ilxn,Cn),

calculated previously,

e the denominator denominator_pt = Z:; wi P (ixn, Cn), calculated pre-
viously.

The output of the Python script is as follows:

Running 03nestedElasticities.py...

Number of males: 943

Number of females: 871

Unreported gender: 92

Aggregate direct elasticity of car wrt time: —0.0441
Aggregate direct elasticity of car wrt cost: —0.0906
Aggregate direct elasticity of PT wrt time: —0.274
Aggregate direct elasticity of PT wrt cost: —0.32
Aggregate direct elasticity of SM wrt distance: —1.09

3.4 Using PandasBiogeme for cross elasticities

See 04 nestedElasticities .py in Section [A.4]

The calculation of (Il is performed in a similar way as the direct elas-
ticities ([6)), using the following statements:

cross_elas_pt_time = Derive(prob_pt,’TimeCar’) % TimeCar / prob_pt

The output of the Python script is the following:

Running 04nestedElasticities.py...

Number of males: 943

Number of females: 871

Unreported gender: 92

Aggregate cross elasticity of car wrt time: 0.107
Aggregate cross elasticity of car wrt cost: 0.123
Aggregate cross elasticity of PT wrt car time: 0.0953
Aggregate cross elasticity of PT wrt car cost: 0.2

Note that these values are now positive. Indeed, when the travel time or
travel cost of a competing mode increase, the market share increases.

10


http://biogeme.epfl.ch/examples/indicators/python/04nestedElasticities.py

3.5 Using PandasBiogeme for arc elasticities

See 05 nestedElasticities . py in Section [A.5]

Arc elasticities require a before and after scenarios. In this case, we
calculate the sensitivity of the market share of the slow modes alternative
when there is a uniform increase of 1 kilometer.

The “before” scenario is represented by the same model as above. The
after scenario is modeled using the following statements:

delta_dist =1
distance_km _scaled_after = (distance_km + delta_dist) / 5
V_SM _after = ASCSM + \
BETADIST MALE * distance_km_scaled_after % male + \
BETA DIST FEMALE * distance_km_scaled_after x female + \
BETA DIST_.UNREPORTED % distance_km _scaled_after % unreportedGender
V_after = {0: V_PT,

1: V.CAR,
2: V_SM_after}
prob_sm_after = nested(V_after ,av,nests ,2)

Then, the arc elasticity is calculated as

elas_sm_dist = \
(prob_sm_after — prob_sm) x distance_.km / (prob_sm % delta_dist)

The output of the Python script is as follows:

Running 05nestedElasticities.py...

Number of males: 943

Number of females: 871

Unreported gender: 92

Aggregate direct elasticity of slow modes wrt distance: —1.01

4 Willingness to pay
See [06nestedWTP.py in Section [A.6l

If the model contains a cost or price variable (like in this example), it
is possible to analyze the trade-off between any variable and money. This
reflects the willingness of the decision maker to pay for a modification of
another variable of the model. A typical example in transportation is the
value of time, that is the amount of money a traveler is willing to pay in
order to decrease her travel time.

Let c¢i, be the cost of alternative 1 for individual n. Let x;n be the value
of another variable of the model. Let Vi, (Cin, Xink) be the value of the utility
function. Consider a scenario where the variable of interest takes the value

11


http://biogeme.epfl.ch/examples/indicators/python/05nestedElasticities.py
http://biogeme.epfl.ch/examples/indicators/python/06nestedWTP.py

Xink +05. We denote by 65, the additional cost that would achieve the same
utility, that is

Vin(Cin + 051y Xink + 05) = Vin(Ciny Xink)- (16)

The willingness to pay to increase the value of xiny is defined as the additional
cost per unit of x, that is

égn/éicnk) (17)
and is obtained by solving Equation (I@]). If xin and cin, appear linearly in
the utility function, that is if

Vin(Ciny Xink) = BeCin + BxXink + (18)
and
Vin(Cin + 85, Xink + 8fnd) = BelCin + 85,) 4 BulXink + 8 +--- . (19)
Therefore, ([IT) is
85/t = —Bx/Be- (20)

If xink is a continuous variable, and if Vi, is differentiable in xin and ci,, we
can invoke Taylor’s theorem in (I6l):

Vin(Ciny Xink) = Vin(Cin + 85, Xink + 05

oV, . Vi
~ Vin(Ciny Xink) + 5&@(%1» Xink) + 5mkm(cim Xink)
(21)
Therefore, the willingness to pay is equal to
Oin o (avin/axink)(cin)xink). (22)

6¥nk B (avin/acin) (Cin) Xink)

Note that if xinx and ¢y, appear linearly in the utility function, (22) is the
same as (20). If we consider now a scenario where the variable under interest
takes the value xinx — 0%, the same derivation leads to the willingness to
pay to decrease the value of Xiny:

5%1 . (aVin/aka)(Cimek)

= . 23
&fnk (avin/acin) (Cin) Xink) ( )
The calculation of the value of time corresponds to such a scenario:
05, avin atin in tin
£ (0Vin/Otin) (Ciny tin) _ B "

g o (avin/aCin)(Cin»tin) - BC)

12



where the last equation assumes that V is linear in these variables. Note that,
in this special case of linear utility functions, the value of time is constant
across individuals, and is also independent of 8%, . This is not true in general.

The calculation of (23] involves the calculation of derivatives. It is done
in PandasBiogeme using the following statements:

WTPPT_TIME = Derive (VPT,’TimePT’) / Derive (V_PT, ’MarginalCostPT’)
WTP_CARTIME = Derive (V.CAR, ’TimeCar’) / Derive (V_CAR, >CostCarCHF’)

The full specification file can be found in Section [A.6l The output of the
Python script is as follows:

Running 06nestedWTP.py...

Number of males: 943

Number of females: 871

Unreported gender: 92

Average WIP for car: 3.96 CI:[1.81,6.65]
Unique values: [’2.42°, ’6.697]

WIP car for workers: 6.69 CI:[4.06,10.2]
WIP car for females: 3.17 CI:[1.16,5.62]
WIP car for males: 4.96 CI:[2.63,7.96]

The average value of time for car is 3.96 CHF /hour (confidence interval:
[1.81,6.65]). This value is abnormally low, which is a sign of a potential poor
specification of the model. Note also that, with this specification, the value
of time is the same for car and public transportation, as the coefficients of
the time and cost variables are generic.

Finally, it is important to look at the distribution of the willingness to
pay in the population/sample. We have implemented a Python function that
calculates the average willingness to pay for a subgroup of the population,
defined by a filter.

def wtpForSubgroup(filter ):
size = filter .sum()
sim = simulatedValues|[filter ]
totalWeight = sim[’weight’].sum()
weight = sim[’weight’] x size / totalWeight
wtpcar = (60 * sim[’WTP CAR time’] x weight ).mean()
wtpcar_left = (60 = left[filter |[’WTP CAR time’]| % weight ).mean()
wtpcar_right = (60 * right[filter |[’WTP CAR time’] x weight ).mean()
return wtpcar, wtpcar_left ,wtpcar_right

We start by calculating the number of entries in the filter that are True.

size = filter .sum()

Then, we extract the simulated values corresponding to the filter:

sim = simulatedValues|[filter |

We calculate the total weight of these observations:

13



totalWeight = sim[’weight’].sum()

We renormalize the weights in order to verify ([):
weight = sim|[’weight’] x size / totalWeight
We are now ready to calculate the average quantities:

wtpcar = (60 * sim[’WTP CAR time’]| x weight ).mean()
wtpcar_left = (60 x left [filter |[’WIP CAR time’] x weight ).mean()
wtpcar_right = (60 x right[filter |[’WIP CAR time’]| % weight ).mean()

They are returned as a Python tuple:

return wtpcar, wtpcar_left ,wtpcar_right

For instance, in order to obtain the value for full time workers, we use
the following code:
filter = database.data[’0ccupStat’] — 1
w,l,r = wtpForSubgroup (filter )
print (f"WTP car for workers: {w:.3g} CI:[{1l:.3g},{r:.3g}]l")
This exploits the functionalities of Pandas. We have two Pandas data frames
involved here: database.data is the Biogeme data file, and simulatedValues is the
output of the simulation. The variable filter is a vector of boolean variables
of length 1906 (the total number of observations in the sample).

We can also plot the distribution of the willingness to pay in the popula-
tion (see Figure[Il), using the following code:
import matplotlib.pyplot as plt
plt . hist (60*simulatedValues [’WITP CAR time’],

weights = simulatedValues|[’weight’])

plt.xlabel ("WTP (CHF/hour)")

plt . ylabel ("Individuals")
plt .show ()

In this case, they are only two values: 2.42 CHF /hour and 6.69 CHF /hour.
Unique values can be extracted in Pandas using the following statement:
60 * simulatedValues[’WTP CAR time’].unique ()

where the constant 60 is designed to report the output in CHF /hours instead
of CHF /min.

5 Conclusion

PandasBiogeme is a flexible tool that allows to extract useful indicators from
complex models. In this document, we have presented how some indicators
relevant for discrete choice models can be generated. As the output of the
simulation is a Pandas data frame, a great deal of analysis can be performed
using the functionalities of Python and Pandas.

14



1200 -

1000 -

8004

600

Individuals

2004

WTP (CHF/hour)

Figure 1: Distribution of the willingness to pay in the sample

15



O] U WN -

A Complete specification files

We provide here the code of the specification files used in this document.

A.l OlnestedEstimation.py

import pandas as pd

import biogeme.database as db
import biogeme.biogeme as bio
import biogeme.models as models

pandas = pd.read_table("optima.dat")
database = db.Database("optima" ,pandas)

# The Pandas data structure is available as database.data.
# Use all the Pandas functions to investigate the database.
# For instance:

#print (database.data. describe ())

from headers import =

exclude = (Choice == —1.0)
database.remove(exclude)

### List of parameters to be estimated

ASC_CAR = Beta(’ASC_CAR’ ,0,None, None,0)

ASC_PT = Beta(’ASC_PT’ ,0,None,None,1)

ASC_SM = Beta(’ASC_SM’ ,0,None,None,0)

BETA_TIME_FULLTIME = Beta(’BETA_TIME_FULLTIME’ ,0,None,None,0)
BETA_TIME.OTHER = Beta(’BETA_TIME_OTHER' ,0,None, None,0)
BETA_DIST_.MALE = Beta(’BETA_DIST_MALE’ ,0,None,None,0)

BETA_DIST_ FEMALE = Beta(’BETA_DIST_FEMALE’ ,0,None,None,0)
BETA_DIST.UNREPORTED = Beta(’BETA_DIST_UNREPORTED’ ,0,None, None,0)
BETA_COST = Beta(’BETA_COST’ ,0,None, None,0)

##Definition of wvariables :
For nmnumerical reasons, it is good practice to scale the data to
that the wvalues of the parameters are around 1.0.

The following statements are designed to preprocess the data.

It is like creating a mnew columns in the data file. This

should be preferred to the statement like

TimePT_scaled = Time_PT / 200.0

which will cause the division to be reevaluated again and again,
through the iterations. For models taking a long time to
estimate , it may make a significant difference.

IR IHFHR KR

TimePT_scaled = TimePT / 200

TimeCar_scaled = TimeCar / 200
MarginalCostPT_scaled = MarginalCostPT / 10
CostCarCHF _scaled = CostCarCHF / 10
distance_km_scaled = distance-km / 5

male = (Gender == 1)

female = (Gender == 2)

unreportedGender = (Gender == —1)

fulltime = (OccupStat == 1)
notfulltime = (OccupStat != 1)

### Definition of wutility functions:

V_PT = ASC_PT 4+ BETA_TIME_FULLTIME % TimePT_scaled x fulltime + \
BETA_TIME.OTHER % TimePT_scaled * notfulltime 4+ \
BETA_COST = MarginalCostPT_scaled

V_CAR = ASC_CAR + \

BETA_TIME_FULLTIME % TimeCar_scaled % fulltime + \
BETA_TIME.OTHER x TimeCar_scaled * notfulltime 4+ \
BETA_COST % CostCarCHF _scaled

V.SM = ASCSM + \

BETA_DIST_-MALE * distance_-km_scaled * male + \
BETA DIST_FEMALE % distance_km_scaled * female + \
BETA_DIST_.UNREPORTED x distance-km_scaled * unreportedGender

# Associate wutility functions with the numbering of alternatives

V = {0: V_PT,
1: V_CAR,

16



73 2: V.SM}

74

75 # Associate the awvailability conditions with the alternatives.

76 # In this example all alternatives are available for each individual.

77

78
79 av = {0: 1,
80 1: 1,
81 2: 1}
82

83 ### DEFINITION OF THE NESTS:
84 # 1: nests parameter
85 # 2: list of alternatives

86

87 MUNOCAR = Beta(’MU_NOCAR’ ,1.0,1.0,None,0)

88

89 CARNEST = 1.0 , [ 1]

90 NO_-CARNEST = MUNOCAR , [ 0, 2]

91 nests = CARNEST, NO_CAR_NEST

92

93 # The choice model is a mnested logit , with availability conditions
94 logprob = models.lognested (V,av,nests , Choice)
95 biogeme = bio.BIOGEME(database ,logprob)

96 biogeme . modelName = "OlnestedEstimation™"

97 results = biogeme.estimate ()

98 print("Estimated betas: {}".format(len(results.data.betaValues)))
99 print("Results=",results)

A.2 02nestedSimulation.py

import sys

import pandas as pd

import biogeme.database as db
import biogeme.biogeme as bio
import biogeme.models as models
import biogeme.results as res

print ("Running O2nestedSimulation.py...")

© 00D U R WN =

10 pandas = pd.read_-table("optima.dat")
11 database = db.Database("optima",6 pandas)

13 # The Pandas data structure is awvailable as database.data. Use all the
14 # Pandas functions to investigate the database
15 #print(database. data.describe ())

16

17 from headers import x*

18

19 exclude = (Choice == —1.0)
20 database.remove(exclude)
21

22  ### Normalize the weights
23 sumWeight = database.data[’Weight’].sum()
24 normalizedWeight = Weight * 1906 / 0.814484

26 ### Calculate the number of occurrences of a wvalue in the database
27 numberOfMales = database.count("Gender" 1)

28 print (f"Number of males: {number0OfMales}")

29 numberOfFemales = database.count("Gender" ,b2)

30 print(f"Number of females: {numberOfFemales}")

31 ### For more complex conditions , wusing directly Pandas

32 unreportedGender = \

33 database.data[(database.data["Gender"] != 1)

34 & (database.data["Gender"] != 2)].count ()["Gender"]
35 print (f"Unreported gender: {unreportedGender}")

36

37 ### List of parameters to be estimated

38 ASC_.CAR = Beta(’ASC_CAR’ ,0,None,None,0)

39 ASC_PT = Beta(’ASC_PT’,0,None,None,1)

40 ASC_SM = Beta(’ASC_SM’,0,None,None,0)

41 BETA_TIME_FULLTIME = Beta(’BETA_TIME_FULLTIME’ ,0,None,None,0)

42 BETA_TIME_.OTHER = Beta(’BETA_TIME_OTHER’ ,0,None,None,0)

43 BETA_DIST_-MALE = Beta(’BETA_DIST_MALE’ ,0,None, None,0)

44 BETA_DIST_LFEMALE = Beta(’BETA_DIST_FEMALE’ ,0,None,None,0)

45 BETA_DIST.UNREPORTED = Beta(’BETA_DIST_UNREPORTED’ ,0,None,None,0)
46 BETA_COST = Beta(’BETA_CO0ST’ ,0,None, None,0)

47

48

49

50 ###Definition of wvariables :

51 # For numerical reasons, it is good practice to scale the data to

17



52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
s
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

that the wvalues of the parameters are around 1.0.

The following statements are designed to preprocess the data.

It is like creating a mnew columns in the data file. This

should be preferred to the statement like

TimePT_scaled = Time-PT / 200.0

which will cause the division to be reevaluated again and again,
through the iterations. For models taking a long time to
estimate , it may make a significant difference.

IR HR®R H

TimePT_scaled = TimePT / 200

TimeCar_scaled = TimeCar / 200
MarginalCostPT_scaled = MarginalCostPT / 10
CostCarCHF _scaled = CostCarCHF / 10
distance_km_scaled = distance-km / 5

male = (Gender == 1)
female = (Gender == 2)
unreportedGender = (Gender == —1)

fulltime = (OccupStat == 1)
notfulltime = (OccupStat != 1)

### Definition of wutility functions:

V_PT = ASC_PT 4+ BETA_TIME_FULLTIME % TimePT_scaled x fulltime + \
BETA_TIME.OTHER % TimePT_scaled * notfulltime + \
BETA_COST = MarginalCostPT_scaled

V_CAR = ASC_.CAR + \

BETA_TIME_FULLTIME % TimeCar_scaled % fulltime + \
BETA_TIME.OTHER x TimeCar_scaled * notfulltime 4+ \
BETA_COST % CostCarCHF _scaled

VSM = ASCSM + \

BETA_DIST_-MALE #* distance_-km_scaled * male + \
BETA DIST_FEMALE % distance_km_scaled * female + \
BETA_DIST_.UNREPORTED x distance-km_scaled * unreportedGender

# Associate wutility functions with the numbering of alternatives
V = {0: V_PT,

1: V_CAR,

2: V.SM}

# Associate the awailability conditions with the alternatives.
# In this example all alternatives are available for each individual.

1,
1: 1,

2: 1}

### DEFINITION OF THE NESTS:
# 1: mnests parameter

# 2: list of alternatives

MUNOCAR = Beta(’MU_NOCAR’ ,1.0,1.0,None,0)
CARNEST = 1.0 , [ 1]

NO_.CARNEST = MUNOCAR , [ 0, 2]

nests = CARNEST, NO_CAR_NEST

# The choice model is a mnested logit

prob_pt = models.nested (V,av,nests ,0)
prob_car = models.nested (V,av,nests ,1)
prob_sm = models.nested (V,av,nests ,2)
simulate = {’weight’: normalizedWeight ,
>Prob. car’: prob._car,
’Prob. public transportation’: prob_pt,

’Prob. slow modes’:prob_sm,
’Revenue public transportation’:prob_pt * MarginalCostPT}

biogeme = bio.BIOGEME(database ,simulate)
biogeme . modelName = "O2nestedSimulation"

P P

Retrieve the mnames of the parameters
betas = biogeme.freeBetaNames

77”7 Read the estimation results from the file
results = res.bioResults(pickleFile=’0lnestedEstimation.pickle’)
777 Egxgtract the wvalues that are necessary 777

betaValues = results.getBetaValues ()

R

»n»

18



135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

© 0] U A WN =

simulatedValues ts a Panda data frame with the same number of rows as the
database , and as many columns as formulas to simulate.

» 9 »

simulatedValues = biogeme.simulate(betaValues)

P PR

Calculate confidence intervals
b = results.getBetasForSensitivityAnalysis(betas ,h size=100)

EEE)

Returns data frame containing, for each simulated value, the left and right
bounds of the confidence interval calculated by simulation .

nn»

left ,right = biogeme.confidencelntervals(b,0.9)

»n» EER

We calculate now the market shares and their confidence intervals

simulatedValues[’Weighted prob. car’] = \

simulatedValues [’weight’] * simulatedValues[’Prob. car’]
left [’Weighted prob. car’] = left[’weight’] % left[’Prob. car’]
right [’Weighted prob. car’] = right[’weight’] % right[’Prob. car’]
marketShare_car = simulatedValues|[’Weighted prob. car’].mean()
marketShare_car_left = left [’Weighted prob. car’].mean()
marketShare_car_right = right[’Weighted prob. car’].mean()

print (f"Market share for car: {100*marketShare_car:.1f}% [{100*marketShare_car_left:.1f}% ,{100*xmarketShare_car_r:

simulatedValues[’Weighted prob. PT’] = simulatedValues[’weight’] x simulatedValues[’Prob. public transportation’
marketShare_pt = simulatedValues|[’Weighted prob. PT’].mean()
marketShare_pt_left = (left [’Prob. public transportation’] % left[’weight’]).mean()
marketShare_pt_right = (right[’Prob. public transportation’] * right[’weight’]).mean()
print (f"Market share for PT: {100*marketShare_pt:.1f}% [{100*marketShare_pt_left:.1f}% ,{100*marketShare_pt_right
marketShare_sm = (simulatedValues|[’Prob. slow modes’] x
simulatedValues [’weight ’]).mean ()
marketShare_sm_left = (left [’Prob. slow modes’]| * left[’weight’]).mean()
marketShare_sm_right = (right [’Prob. slow modes’] * right[’weight’]).mean()

print (f"Market share for slow modes: {100*marketShare_sm:.1f}% [{100*marketShare_sm_left:.1f}%,{100*marketShare_;

777 and, similarly , the revenues 777
revenues_pt = (simulatedValues|[’Revenue public transportation’] =
simulatedValues[’weight’]).sum/()
revenues_pt_-left = (left [’Revenue public transportation’] =
left [*weight’]).sum()
revenues_pt_right = (right[’Revenue public transportation’] x*

right [’>weight ’]).sum/()
print (f"Revenues for PT: {revenues_pt:.3f} [{revenues_pt_left:.3f},{revenues_pt_right:.3£f}1")

A.3 03 nestedElasticities . Py

import sys

import pandas as pd

import biogeme.database as db
import biogeme.biogeme as bio
import biogeme.models as models
import biogeme.results as res

print ("Running O3nestedElasticities.py...")

pandas = pd.read_-table("optima.dat")
database = db.Database("optima" ,6 pandas)

# The Pandas data structure ts awvatlable as database.data. Use all the
# Pandas functions to investigate the database
#print (database.data. describe ())

from headers import =

exclude = (Choice == —1.0)
database.remove (exclude)

### Normalize the weights
sumWeight = database.data[’Weight ’].sum()
normalizedWeight = Weight * 1906 / 0.814484

### Calculate the number of occurrences of a wvalue in the database
numberOfMales = database.count("Gender" ,1)

print (f"Number of males: {number0OfMales}")
numberOfFemales = database.count("Gender" ,2)

print (f"Number of females: {numberOfFemales}")

### For more compler conditions, wusing directly Pandas
unreportedGender = \

19



33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
s
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

database.data[(database.data["Gender"] != 1)
& (database.data["Gender"] != 2)].count ()["Gender"]
print (f"Unreported gender: {unreportedGender}")

### List of parameters to be estimated

ASC_CAR = Beta(’ASC_CAR’ ,0,None, None,0)

ASC_PT = Beta(’ASC_PT’ ,0,None,None,1)

ASC_SM = Beta(’ASC_SM’ ,0,None,None,0)

BETA_TIME_FULLTIME = Beta(’BETA_TIME_FULLTIME’ ,0,None,None,0)
BETA_TIME_.OTHER = Beta(’BETA_TIME_OTHER’ ,0,None, None,0)
BETA_DIST_.MALE = Beta(’BETA_DIST_MALE’ ,0,None, None,0)

BETA_DIST_ FEMALE = Beta(’BETA_DIST_FEMALE’ ,0,None,None,0)

BETA DIST_.UNREPORTED = Beta(’BETA_DIST_UNREPORTED’ ,0,None, None,0)
BETA_COST = Beta(’BETA_COST’ ,0,None, None,0)

##Definition of wvariables :
For numerical reasons, it is good practice to scale the data to
that the wvalues of the parameters are around 1.0.

The following statements are designed to preprocess the data.

It is like creating a mew columns in the data file. This

should be preferred to the statement like

TimePT_scaled = Time-PT / 200.0

which will cause the division to be reevaluated again and again,
through the iterations. For models taking a long time to
estimate , it may make a significant difference.

IR KR

TimePT_scaled = TimePT / 200

TimeCar_scaled = TimeCar / 200
MarginalCostPT_scaled = MarginalCostPT / 10
CostCarCHF _scaled = CostCarCHF / 10
distance_km_scaled = distance-km / 5

male = (Gender == 1)
female = (Gender == 2)
unreportedGender = (Gender == —1)

fulltime = (OccupStat == 1)
notfulltime = (OccupStat != 1)

### Definition of wutility functions:

V_PT = ASC_PT + BETA_TIMEFULLTIME x TimePT_scaled % fulltime + \
BETA_TIME_.OTHER * TimePT_scaled * notfulltime + \
BETA_COST % MarginalCostPT_scaled

V_CAR = ASC_CAR + \

BETA_TIME_FULLTIME % TimeCar_scaled % fulltime + \
BETA_TIME.OTHER x TimeCar_scaled * notfulltime 4+ \
BETA_COST % CostCarCHF _scaled

V.SM = ASCSM + \

BETA_DIST_-MALE #* distance_-km_scaled * male + \
BETA DIST_FEMALE % distance_-km_scaled * female + \
BETA_DIST_.UNREPORTED x distance_km_scaled * unreportedGender

# Associate wutility functions with the numbering of alternatives
V = {0: V_PT,

1: V_CAR,

2: V.SM}

# Associate the awailability conditions with the alternatives.
# In this example all alternatives are available for each individual.

1,
1: 1,

2: 1}

### DEFINITION OF THE NESTS:
# 1: mests parameter

# 2: list of alternatives

MUNOCAR = Beta(’MU_NOCAR’ ,1.0,1.0,None,0)
CARNEST = 1.0 , [ 1]

NO_.CARNEST = MUNOCAR , [ 0, 2]

nests = CARNEST, NO_CAR_NEST

# The choice model is a mnested logit

prob_pt = models.nested (V,av,nests ,0)
prob_car = models.nested (V,av,nests ,1)
prob_sm = models.nested (V,av,nests ,2)

20



116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

T W N =

direct-elas_pt-time = \
Derive (prob_pt ,’TimePT’) x TimePT / prob_pt

direct_elas_pt_cost = \
Derive (prob_pt,’MarginalCostPT’) x MarginalCostPT / prob_pt
direct_elas_car_time = \

Derive(prob_car ,’TimeCar’) % TimeCar / prob_car
direct_elas_car_cost =

Derive(prob_car ,’CostCarCHF’) % CostCarCHF / prob_car
direct_elas_sm_dist = \

Derive (prob_sm,’distance_km’) x distance_.km / prob_sm

simulate = {’weight’: normalizedWeight ,
>Prob. car’: prob_car,
’Prob. public transportation’: prob_pt,
>Prob. slow modes’:prob_sm,
’direct_elas_pt_time’:direct-elas_pt-time ,
’direct_elas_pt_cost’:direct-elas_pt-cost ,

’direct_elas_car_time’:direct-elas_car_-time ,
’direct_elas_car_cost direct_elas_car_cost ,

’direct_elas_sm_dist’:direct_elas_sm_dist}
biogeme = bio.BIOGEME(database ,simulate)
biogeme.modelName = "O3nestedElasticties"

e ER

Retrieve the wvalues of the parameters

»»7  First, extract the names of parameters needed for the simulation 777
betas = biogeme.freeBetaNames

77”7 Read the estimation results from the file 777

results = res.bioResults(pickleFile=’0lnestedEstimation.pickle’)

777 Exztract the wvalues that are necessary 777

betaValues = results.getBetaValues(betas)

»n»

simulatedValues ts a Panda data frame with the same number of rows as the
database , and as many columns as formulas to simulate.
weighted_sinulated Values has the same structure.

» 9 »

simulatedValues = biogeme.simulate(betaValues)

»n» »n»

We calculate the elasticities

simulatedValues[’Weighted prob. car’] = \

simulatedValues[’weight’] % simulatedValues[’Prob. car’]
simulatedValues[’Weighted prob. PT’] = \

simulatedValues [’weight’] % simulatedValues[’Prob. public transportation’]
simulatedValues [’Weighted prob. SM’] = \

simulatedValues [?weight’] * simulatedValues[’Prob. slow modes’]
denominator_car = simulatedValues|[’Weighted prob. car’].sum()
denominator_-pt = simulatedValues[’Weighted prob. PT’].sum()
denominator-sm = simulatedValues[’Weighted prob. SM’].sum/()
direct_elas_term_car_time = (simulatedValues[’Weighted prob. car’]

* simulatedValues|[’direct_elas_car_time’] / denominator_car).sum()
print (f"Aggregate direct elasticity of car wrt time: {direct_elas_term_car_time:.3gl}")

direct_elas_term_car_cost = (simulatedValues|[’Weighted prob. car’]
* simulatedValues[’direct_elas_car_cost’] / denominator_car).sum()
print (f"Aggregate direct elasticity of car wrt cost: {direct_elas_term_car_cost:.3g}")

direct_elas_term_pt_time = (simulatedValues|[’Weighted prob. PT’]
* simulatedValues|[’direct_elas_pt_time’] / denominator_pt).sum()
print (f"Aggregate direct elasticity of PT wrt time: {direct_elas_term_pt_time:.3gl}")

direct_elas_term_pt_cost = (simulatedValues|[’Weighted prob. PT’]
* simulatedValues|[’direct_elas_pt_cost’] / denominator_pt).sum()
print (f"Aggregate direct elasticity of PT wrt cost: {direct_elas_term_pt_cost:.3gl}")

direct_elas_term_sm_dist = (simulatedValues|[’Weighted prob. SM’]
* simulatedValues|[’direct_elas_sm_dist’] / denominator_sm).sum()
print (f"Aggregate direct elasticity of SM wrt distance: {direct_elas_term_sm_dist:.3g}")

A.4 04 nestedElasticities . Py

import sys

import pandas as pd

import biogeme.database as db
import biogeme.biogeme as bio
import biogeme.models as models

21



[
(=R e

11
12
13

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88

import biogeme.results as res
print ("Running O4nestedElasticities.py...")

pandas = pd.read_table("optima.dat")
database = db.Database("optima",6pandas)

# The Pandas data structure is avatilable as database.data. Use all
# Pandas functions to investigate the database

#print (database. data. describe ())
from headers import =

exclude = (Choice == —1.0)
database.remove(exclude)

### Normalize the weights
sumWeight = database.data[’Weight ’].sum/()
normalizedWeight = Weight * 1906 / 0.814484

### Calculate the number of occurrences of a
numberOfMales = database.count("Gender" ,1)
print (f"Number of males: {number0fMales}")
numberOfFemales = database.count("Gender" ,b2)
print (f"Number of females: {numberOfFemales}"
### For more complexr conditions , wusing direct
unreportedGender = \

value in the database

)
ly Pandas

database.data[(database.data["Gender"] != 1)

& (database.data[" Gender"
print (f"Unreported gender: {unreportedGender}

### List of parameters to be estimated
ASC_CAR = Beta(’ASC_CAR’ ,0,None,None,0)
ASC_PT = Beta(’ASC_PT’ ,0,None, None,1)

ASC_SM = Beta(’ASC_SM’ ,0,None, None,0)
BETA_TIME_FULLTIME = Beta(’BETA_TIME_FULLTIME

] '= 2)].count()["Gender"]

")

> ,0,None, None,0)

BETA_TIME_.OTHER = Beta(’BETA_TIME_OTHER’ ,0,None,None,0)

BETA_DIST_MALE = Beta(’BETA_DIST_MALE’ ,0,None

,None,0)

BETA DIST_ FEMALE = Beta(’BETA_DIST_FEMALE’ ,0,None, None,0)
BETA_DIST_UNREPORTED = Beta(’BETA_DIST_UNREPORTED’ ,0,None,None,0)

BETA_COST = Beta(’BETA_COST’ ,0,None,None,0)

##Definition of wvariables:
For nmnumerical reasons, it is good practice

should be preferred to the statement like
TimePT_scaled = Time-PT / 200.0

through the iterations. For models taking a

RN R S R N

TimePT_scaled = TimePT / 200

TimeCar_scaled = TimeCar / 200
MarginalCostPT_scaled = MarginalCostPT / 10
CostCarCHF _scaled = CostCarCHF / 10

distance_km_scaled = distance_.km / 5
male = (Gender == 1)

female = (Gender == 2)
unreportedGender = (Gender == —1)
fulltime = (OccupStat == 1)
notfulltime = (OccupStat != 1)

### Definition of wutility functions:

to scale the data to

that the wvalues of the parameters are around 1.0.

The following statements are designed to preprocess the data.
It is like creating a new columns in the data file. This

which will cause the division to be reevaluated again and again,

long time to

estimate , it may make a significant difference.

V_PT = ASC_PT + BETA_TIMEFULLTIME x TimePT_scaled * fulltime + \
BETA_TIME.OTHER * TimePT_scaled * notfulltime + \

BETA_COST * MarginalCostPT_scaled
V_CAR = ASC.CAR + \
BETA_TIME_FULLTIME x TimeCar_scaled =

fulltime + \

BETA_TIME.OTHER % TimeCar_scaled * notfulltime 4 \

BETA_COST * CostCarCHF _scaled
VSM = ASCSM + \

BETA_DIST_.MALE * distance_km_scaled % male + \
BETA DIST_.FEMALE x distance_km_scaled * female + \
BETA_DIST_UNREPORTED x* distance_-km_scaled * unreportedGender

22



89 # Associate wutility functions with the mnumbering of alternatives
90 V = {0: V_PT,

91 1: V.CAR,
92 2: V.SM}
93

94 # Associate the availability conditions with the alternatives.
95 # In this example all alternatives are available for each individual.
96

97
98 av = {0: 1,
99 1: 1,
100 2: 1}
101

102 ### DEFINITION OF THE NESTS:
103 # 1: nests parameter
104 # 2: list of alternatives

105

106 MUNOCAR = Beta(’MU_NOCAR’ ,1.0,1.0,None,0)
107

108 CARNEST = 1.0 , [ 1]

109 NO_CARNEST = MUNOCAR , [ 0, 2]

110 nests = CARNEST, NO_CAR_NEST

111

112

113

114 # The choice model is a nested logit
115 prob_pt = models.nested (V,av,nests ,0)

116 prob_car = models.nested (V,av,nests ,1)
117 prob_sm = models.nested (V,av, nests ,2)

118

119 cross_elas_pt_-time = Derive(prob_pt,’TimeCar’) % TimeCar / prob_pt
120 cross_elas_pt-cost = Derive(prob_pt,’CostCarCHF’) % CostCarCHF / prob_pt
121 cross_elas_car_time = Derive(prob_car,’TimePT’) % TimePT / prob_car
122 cross_elas_car_cost = Derive(prob_car,’MarginalCostPT’) * MarginalCostPT / prob_car
123

124 simulate = {’weight’: normalizedWeight,

125 ’Prob. car’: prob_car,

126 ’Prob. public transportation’: prob_pt,

127 ’Prob. slow modes’:prob_sm,

128 ’cross_elas_pt_time’:cross_elas_pt_time ,

129 ’cross_elas_pt_cost’:cross_elas_pt_cost ,

130 ’cross_elas_car_time’:cross_elas_car_time ,

131 ’cross_elas_car_cost’:cross_elas_car_cost}

132

133 biogeme = bio.BIOGEME(database ,simulate)

134 biogeme.modelName = "O2nestedSimulation_b"

135

136 77”7 Retrieve the wvalues of the parameters 777

137 77”7 First, exztract the names of parameters needed for the simulation 777
138 betas = biogeme.freeBetaNames

139 77”7 Read the estimation results from the file 7”77

140 results = res.bioResults(pickleFile=’0lnestedEstimation.pickle’)
141 777 Eztract the values that are necessary 777

142 betaValues = results.getBetaValues(betas)

143

144 7

145 simulatedValues is a Panda data frame with the same number of rows as the
146 database , and as many columns as formulas to simulate.

147 weighted_sinulated Values has the same structure.

148 »

149 simulatedValues = biogeme.simulate (betaValues)

150

151 777 We calculate the elasticities 777

152

153 simulatedValues[’Weighted prob. car’]| = simulatedValues|[’weight’] \
154 * simulatedValues|[’Prob. car’]

155 simulatedValues[’Weighted prob. PT’] = simulatedValues[’weight’] \
156 * simulatedValues|[’Prob. public transportation’]

157

158 denominator_car = simulatedValues|’Weighted prob. car’].sum()

159 denominator_pt = simulatedValues|[’Weighted prob. PT’].sum()

160

161 cross.elas_term_car_time = (simulatedValues[’Weighted prob. car’]
162 * simulatedValues[’cross_elas_car_time’] / denominator_car).sum()

163 print (f"Aggregate cross elasticity of car wrt time: {cross_elas_term_car_time:.3g}")
164

165 cross-elas_term_car_cost = (simulatedValues|[’Weighted prob. car’]

166 * simulatedValues|[’cross_elas_car_cost’] / denominator_car).sum()

167 print (f"Aggregate cross elasticity of car wrt cost: {cross_elas_term_car_cost:.3gl}")
168

169
170 cross_elas_term_pt_-time = (simulatedValues[’Weighted prob. PT’]
171 * simulatedValues|[’cross_elas_pt_time’] / denominator_pt).sum()

23



172
173
174
175
176

OO U WN -

print (f"Aggregate cross elasticity of PT wrt car time: {cross_elas_term_pt_time:.3gl}")

cross_elas_term_pt_cost = (simulatedValues|[’Weighted prob. PT’]
* simulatedValues|[’cross_elas_pt_cost’] / denominator_pt).sum()
print (f"Aggregate cross elasticity of PT wrt car cost: {cross_elas_term_pt_cost:.3gl}")

A.5 05 nestedElasticities . Py

import sys

import pandas as pd

import biogeme.database as db
import biogeme.biogeme as bio
import biogeme.models as models
import biogeme.results as res

print ("Running Ob5nestedElasticities.py...")

pandas = pd.read_table("optima.dat")
database = db.Database("optima" ,pandas)

# The Pandas data structure is awvailable as database.data. Use all the
# Pandas functions to investigate the database
#print (database.data. describe ())

from headers import =

exclude = (Choice == —1.0)
database.remove(exclude)

### Normalize the weights
sumWeight = database.data[’Weight’].sum()
normalizedWeight = Weight * 1906 / 0.814484

### Calculate the number of occurrences of a wvalue in the database

numberOfMales = database.count("Gender" ,1)
print (f"Number of males: {number0fMales}")
numberOfFemales = database.count("Gender" ,2)
print (f"Number of females: {numberOfFemales}")
### For more complex conditions , wusing directly Pandas
unreportedGender = \
database.data[(database.data["Gender"] != 1)
& (database.data|["Gender"] != 2)].count()["Gender"]

print (f"Unreported gender: {unreportedGender}")

### List of parameters to be estimated

ASC_CAR = Beta(’ASC_CAR’ ,0,None, None,0)

ASC_PT = Beta(’ASC_PT’ ,0,None, None,1)

ASC_SM = Beta(’ASC_SM’ ,0,None,None,0)

BETA_TIME_FULLTIME = Beta(’BETA_TIME_FULLTIME’ ,0,None,None,0)
BETA_TIME_.OTHER = Beta(’BETA_TIME_OTHER’ ,0,None, None,0)
BETA_DIST_.MALE = Beta(’BETA_DIST_MALE’ ,0,None, None,0)
BETA DIST FEMALE = Beta(’BETA_DIST_FEMALE’ ,0,None,None,0)
BETA_DIST_.UNREPORTED = Beta(’BETA_DIST_UNREPORTED’,0,None,None,0)
BETA_COST = Beta(’BETA_COST’ ,0,None, None,0)

##Definition of wvariables :
For numerical reasons, it is good practice to scale the data to
that the wvalues of the parameters are around 1.0.

The following statements are designed to preprocess the data.

It is like creating a new columns in the data file. This

should be preferred to the statement like

TimePT_scaled = Time-PT / 200.0

which will cause the division to be reevaluated again and again,
through the iterations. For models taking a long time to
estimate , it may make a significant difference.

FI I I IR W

TimePT_scaled = TimePT / 200

TimeCar_scaled = TimeCar / 200
MarginalCostPT_scaled = MarginalCostPT / 10
CostCarCHF _scaled = CostCarCHF / 10

distance_km_scaled = distance_-km / 5

delta_-dist = 1.0

distance_-km_scaled_after = (distance_km + delta_dist) / 5
male = (Gender == 1)

female = (Gender == 2)

unreportedGender = (Gender == —1)

fulltime = (OccupStat == 1)

24



74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

notfulltime = (OccupStat !=

### Definition of wutility fu

V_PT = ASC_PT 4+ BETA_TIME_FULLTIME x*

1)

nctions :

BETA_TIME.OTHER % TimePT_scaled * notfu
BETA_COST * MarginalCostPT_scaled

V_CAR = ASC.CAR + \
BETA_TIME_FULLTIME =
BETA_TIME_.OTHER x* Ti

TimeCar_scaled =*
meCar_scaled * not

BETA_COST % CostCarCHF _scaled

VSM = ASCSM + \

BETA_DIST_-MALE * distance_km_scaled

TimePT_scaled * fulltime + \

1ltime + \

fulltime + \
fulltime + \

* male + \

BETA DIST_.FEMALE x distance_km_scaled * female + \

BETA DIST_.UNREPORTED x* distance_-km_scaled * unreportedGender

V_SM_after = ASCSM + \

BETA_DIST_-MALE * distance_-km_scaled_-after * male + \
BETA DIST_ FEMALE % distance_-km_scaled_-after * female + \

BETA DIST_.UNREPORTED % distance_km_scaled_after

# Associate wutility function
V = {0: V_PT,

1: V_CAR,
2: V.SM}
V_after = {0: V_PT,
1: V.CAR,
2: V_SM_after}

# Associate the awvailability
# In this example all altern

1,
1: 1,

2: 1}

### DEFINITION OF THE NESTS:
# 1: mests parameter

# 2: list of alternatives

MUNOCAR = Beta(’MU_NOCAR’ ,1

CARNEST = 1.0 , [ 1]
NO_CARNEST = MUNOCAR , [ 0

s with the numbering of alternatives

conditions with the alternatives.
le for each individual.

atives are availab

.0,1.0,None,0)

, 2]

nests = CARNEST, NO_CAR-NEST

# The choice model is a nest
prob_sm = models.nested (V,av

ed logit
,nests ,2)

prob_sm_after = models.nested (V_after ,av,nests ,2)

direct-elas_sm_dist = \
(prob_sm_after — prob_sm)

simulate = {’weight’: normal
’Prob. slow mode

* distance_.km / (p

izedWeight ,
s’ :prob_sm,

rob_sm * delta_dist)

’direct_elas_sm_dist’:direct_elas_sm_dist}

biogeme = bio.BIOGEME(datab
biogeme.modelName = "O5neste

nn»

»»7 First, extract the names
betas = biogeme.freeBetaName

Retrieve the wvalues of the parameters

ase ,simulate)
dElasticities"
» 3

of parameters mnee
s

77”7 Read the estimation results from the file
results = res.bioResults(pickleFile=’0lnestedEstimation.pickle’)

777 Extract the values that

are mecessary 777

betaValues = results.getBetaValues(betas)

» 9 »

simulatedValues ts a Panda data frame with the
database , and as many columns as formulas to s
the same structure.

weighted_sinulated Values has

simulatedValues = biogeme.simulate (betaValues)

e

We calculate the elastic

simulatedValues[’Weighted pr
simulatedValues [>weight ’]

e

ities

ob. slow modes’]| =
* simulatedValues |

ded for the simulation

nn»

same number of Tows
imulate .

\
’Prob. slow modes’]

denominator.sm = simulatedValues[’Weighted prob. slow modes’].sum()

25

as

* unreportedGender

e

the



157

158 direct_elas_sm_dist = (simulatedValues[’Weighted prob. slow modes’]
159 * simulatedValues[’direct_elas_sm_dist’] /
160 denominator_sm ).sum()

161 print (f"Aggregate direct elasticity of slow modes wrt distance: {direct_elas_sm_dist:.3g}")

A.6 06nested WTP.py

import sys

import pandas as pd

import biogeme.database as db
import biogeme.biogeme as bio
import biogeme.models as models
import biogeme.results as res

import matplotlib.pyplot as plt

OO U WN -

10 print("Running O6nestedWTP.py...")

12 pandas = pd.read_-table("optima.dat")
13 database = db.Database("optima" ,6 pandas)

15 confidencelnterval = True

17 # The Pandas data structure is awvailable as database.data. Use all the
18 # Pandas functions to investigate the database
19 #print(database. data.describe ())

21 from headers import =

23 exclude = (Choice == —1.0)
24 database.remove(exclude)

27  ### Normalize the weights
28 sumWeight = database.data[’Weight’].sum()
29 normalizedWeight = Weight * 1906 / 0.814484

31 ### Calculate the number of occurrences of a value in the database
32 numberOfMales = database.count("Gender" 1)

33 print(f"Number of males: {number0fMales}")

34 numberOfFemales = database.count("Gender" ,b2)

35 print(f"Number of females: {numberOfFemales}")

36 ### For more complex conditions , wusing directly Pandas

37 unreportedGender = \

38 database.data[(database.data["Gender"] != 1)

39 & (database.data["Gender"] != 2)].count ()["Gender"]
40 print(f"Unreported gender: {unreportedGenderl}")

41

42 ### List of parameters to be estimated

43 ASC_.CAR = Beta(’ASC_CAR’ ,0,None,None,0)

44 ASC_PT = Beta(’ASC_PT’,0,None,None,1)

45 ASC_SM = Beta(’ASC_SM’ ,0,None, None,0)

46 BETA_TIME_FULLTIME = Beta(’BETA_TIME_FULLTIME’ ,0,None,None,0)

47 BETA_TIME.OTHER = Beta(’BETA_TIME_OTHER’ ,0,None,None,0)

48 BETA_DIST_-MALE = Beta(’BETA_DIST_MALE’ ,0,None, None,0)

49 BETA_DIST_FEMALE = Beta(’BETA_DIST_FEMALE’ ,0,None,None,0)

50 BETA_DIST.UNREPORTED = Beta(’BETA_DIST_UNREPORTED’,0,None, None,0)
51 BETA_COST = Beta(’BETA_COST’ ,0,None,None,0)

52
53
54
55 ###Definition of wvariables :
56 # For numerical reasons, it is good practice to scale the data to
57 # that the wvalues of the parameters are around 1.0.
58
59 # The following statements are designed to preprocess the data.
60 # It is like creating a new columns in the data file. This
61 # should be preferred to the statement like
62 # TimePT_scaled = Time-PT / 200.0
63 # which will cause the division to be reevaluated again and again,
64 # through the iterations. For models taking a long time to
#

estimate , it may make a significant difference.

67 TimePT_scaled = TimePT / 200

68 TimeCar_scaled = TimeCar / 200

69 MarginalCostPT_scaled = MarginalCostPT / 10
70 CostCarCHF_scaled = CostCarCHF / 10

71 distance_km_scaled = distance_.km / 5
72
73 male = (Gender == 1)

26



74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

female = (Gender == 2)
unreportedGender = (Gender == —1)

fulltime = (OccupStat == 1)
notfulltime = (OccupStat != 1)

### Definition of wutility functions:

V_PT = ASC_PT 4+ BETA_TIME_FULLTIME % TimePT_scaled x fulltime + \
BETA_TIME_.OTHER * TimePT_scaled * notfulltime + \
BETA_COST = MarginalCostPT_scaled

V_CAR = ASC_CAR + \

BETA_TIME_FULLTIME % TimeCar_scaled % fulltime + \
BETA_TIME.OTHER x TimeCar_scaled * notfulltime + \
BETA_COST % CostCarCHF _scaled

VSM = ASCSM + \

BETA_DIST_-MALE #* distance_-km_scaled * male + \
BETA DIST_FEMALE % distance_km_scaled * female + \
BETA_DIST_.UNREPORTED x distance-km_scaled * unreportedGender

# Assoctiate wutility functions with the numbering of alternatives
V = {0: V_PT,

1: V_CAR,

2: V.SM}

# Associate the awailability conditions with the alternatives.
# In this example all alternatives are available for each individual.

g 1,
1: 1,

2: 1}

### DEFINITION OF THE NESTS:
# 1: mnests parameter

# 2: list of alternatives

MUNOCAR = Beta(’MU_NOCAR’ ,1.0,1.0,None,0)

CARNEST = 1.0 , [ 1]
NO_.CARNEST = MUNOCAR , [ 0, 2]
nests = CARNEST, NO_CAR_NEST

WTP_PT_TIME = Derive (V_PT,’TimePT’) / Derive(V_PT, ’MarginalCostPT’)
WTP_CAR.TIME = Derive (V_.CAR, >TimeCar’) / Derive(V_-CAR, ’CostCarCHF )
#WTP_PT_-TIME = WTP_PT_-TIME. setBetaValues (betaValues)

#WTP_.CAR-TIME = WTP_.CAR.TIME. setBetaValues (betaValues)

simulate = {’weight’: normalizedWeight ,

>WTP PT time’: WTP_PT.TIME,
>WTP CAR time’: WTP_.CAR.TIME}

biogeme = bio .BIOGEME(database ,simulate)

biogeme . modelName = "O6nestedWTP"

betas = biogeme.freeBetaNames

results = res.bioResults(pickleFile=’0lnestedEstimation.pickle’)
betaValues = results.getBetaValues(betas)

e

simulatedValues is a Panda data frame with the same number of rows as the

database , and as many columns as formulas to simulate.
» 3

simulatedValues = biogeme.simulate(betaValues)

wtpcar = (60 * simulatedValues[’WTP CAR time’] * simulatedValues[’weight’]).mean()
777 Calculate confidence intervals 777
b = results.getBetasForSensitivityAnalysis(betas ,size=1)
539
Returns data frame containing, for each simulated value, the left and right

bounds of the confidence interval calculated by simulation.

left ,right = biogeme.confidencelntervals(b,0.9)
wtpcar_left = (60 * left [>WTP CAR time’] = left[’weight’]).mean()
wtpcar_right = (60 % right [’WTP CAR time’] x right[’weight’]).mean()

print (f"Average WTP for car: {wtpcar:.3g} CI:[{wtpcar_left:.3g},{wtpcar_right:.3g}]")

nn»

In this specific case, there are only two distinct values in the

population: for workers and non workers
53

27



157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205

print ("Unique values: ", [f"{i:.3g}" for i in 60 * simulatedValues[’WTP CAR time’].unique()])

77”7 Check the wvalue for groups of the population. Define a function
that work for any filter to avoid repeating code 777

def wtpForSubgroup(filter ):

size = filter .sum()

sim = simulatedValues|[filter ]

totalWeight = sim[’weight’].sum()

weight = sim[’weight’] % size / totalWeight

wtpcar = (60 * sim [’WTP CAR time’] x weight ).mean()

wtpcar_left = (60 % left [filter |[’?WTP CAR time’] x weight ).mean()
wtpcar_right = (60 = right[filter |[’WTP CAR time’] * weight ).mean()

return wtpcar, wtpcar_left ,wtpcar_right

»n»

full time workers.
R

filter = database.data[’0OccupStat’] == 1
w,l,r = wtpForSubgroup(filter)
print (f"WTP car for workers: {w:.3g} CI:[{1:.3g},{r:.3g}1")

»n»

females .

»

filter = database.data[’Gender’] ==

w,l,r = wtpForSubgroup(filter)

print (f"WTP car for females: {w:.3g} CI:[{1:.3g},{r:.3g}1")

»n»

males .
539

filter = database.data|’Gender’] == 1
w,l,r = wtpForSubgroup(filter)
print (f"WTP car for males: {w:.3g} CI:[{1:.3g},{r:.3g}1")

P

We draw the distribution of WIP in the population. In this case,
there are only two wvalues

e

plt. hist (60xsimulatedValues[’WTP CAR time’],
weights = simulatedValues[’weight’])

plt.xlabel ("WTP (CHF/hour)")

plt.ylabel ("Individuals")

plt .show ()

28



References

Atasoy, B., Glerum, A. and Bierlaire, M. (2013). Attitudes towards mode
choice in switzerland, disP - The Planning Review 49(2): 101-117.

Bierlaire, M. (2017). Calculating indicators with pythonbiogeme, Technical
Report TRANSP-OR 170517, Transport and Mobility Laboratory, Ecole
Polytechnique Fédérale de Lausanne.

Bierlaire, M. (2018). PandasBiogeme: a short introduction, Technical Re-
port TRANSP-OR 181219, Transport and Mobility Laboratory, Ecole
Polytechnique Fédérale de Lausanne.

29



	The model
	Market shares and revenues
	Elasticities
	Point elasticities
	Arc elasticities
	Using PandasBiogeme for point elasticities
	Using PandasBiogeme for cross elasticities
	Using PandasBiogeme for arc elasticities

	Willingness to pay
	Conclusion
	Complete specification files
	01nestedEstimation.py
	02nestedSimulation.py
	03nestedElasticities.py
	04nestedElasticities.py
	05nestedElasticities.py
	06nestedWTP.py


