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Abstract
Variational Bayes (VB) methods have emerged as a fast and computationally-efficient
alternative to Markov chain Monte Carlo (MCMC) methods for scalable Bayesian esti-
mation of mixed multinomial logit (MMNL) models. It has been established that VB
is substantially faster than MCMC at practically no compromises in predictive accuracy.
In this paper, we address two critical gaps concerning the usage and understanding of
VB for MMNL. First, extant VB methods are limited to utility specifications involving
only individual-specific taste parameters. Second, the finite-sample properties of VB es-
timators and the relative performance of VB, MCMC and maximum simulated likelihood
estimation (MSLE) are not known. To address the former, this study extends several VB
methods for MMNL to admit utility specifications including both fixed and random utility
parameters. To address the latter, we conduct an extensive simulation-based evaluation
to benchmark the extended VB methods against MCMC and MSLE in terms of estima-
tion times, parameter recovery and predictive accuracy. The results suggest that all VB
variants with the exception of the ones relying on an alternative variational lower bound
constructed with the help of the modified Jensen’s inequality perform as well as MCMC
and MSLE at prediction and parameter recovery. In particular, VB with nonconjugate
variational message passing and the delta-method (VB-NCVMP-∆) is up to 16 times
faster than MCMC and MSLE. Thus, VB-NCVMP-∆ can be an attractive alternative to
MCMC and MSLE for fast, scalable and accurate estimation of MMNL models.

Keywords: Variational Bayes; Bayesian inference; mixed logit; nonconjugate variational
message passing.
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1 Introduction
The mixed multinomial logit (MMNL) model (McFadden and Train, 2000) is the workhorse
model in many disciplines—such as economics, health, marketing and transportation—
that are concerned with the analysis and prediction of individual choice behavior. While
maximum simulated likelihood estimation (MSLE; see Train, 2009) is the predominant
estimation strategy for MMNL models, the Bayesian approach represents an alternative
estimation strategy, which entails the key benefit that the whole posterior distribution of all
model parameters including the individual-specific parameters can be obtained. Posterior
inference in MMNL models is typically performed with the help of Markov chain Monte
Carlo (MCMC) methods, which approximate the posterior distribution of the MMNL
model parameters through samples from a Markov chain whose stationary distribution is
the posterior distribution of interest (see Rossi et al., 2012, Train, 2009). While MCMC
methods constitute a powerful framework for posterior inference in complex probabilistic
models (see e.g. Gelman et al., 2013), these methods are subject to several bottlenecks,
which inhibit their scalability to large datasets, namely i) long computation times, ii) high
costs for the storage of the posterior draws and iii) difficulties in assessing convergence
(Blei et al., 2017, Braun and McAuliffe, 2010, Depraetere and Vandebroek, 2017, Tan,
2017).
Variational Bayes (VB) methods (e.g. Blei et al., 2017, Jordan et al., 1999, Ormerod
and Wand, 2010) have emerged as an alternative to MCMC and promise to address the
shortcomings of MCMC methods. The basic intuition behind VB is to view approxi-
mate Bayesian inference as an optimization problem rather than a sampling problem. VB
aims at finding a parametric variational distribution over the unknown model parame-
ters, whereby the parameters of the variational distribution are optimized such that the
probability distance (typically measured in terms of the Kullback-Leibler divergence) be-
tween the exact posterior distribution and the variational distribution is minimal. A key
challenge in the application of VB to posterior inference in MMNL models is that the
expectation of the logarithm of the choice probabilities—or, to be precise, the expecta-
tion of the log-sum of exponentials (E-LSE) term—cannot be expressed in closed form,
because there is no general conjugate prior for the multinomial logit model. As a con-
sequence, updates for variational factors pertaining to utility parameters require special
treatment. The literature proposes different methods to facilitate VB for posterior infer-
ence in MMNL models (Braun and McAuliffe, 2010, Depraetere and Vandebroek, 2017,
Tan, 2017). In essence, these approaches proceed as follows: The E-LSE term is approx-
imated either analytically or by simulation, or an alternative variational lower bound is
defined. Then, updates for the nonconjugate variational factors are performed with the
help of either quasi-Newton (QN) methods (e.g. Nocedal and Wright, 2006) or the non-
conjugate variational message passing (NCVMP) approach (Knowles and Minka, 2011).
Extant studies of VB methods for posterior inference in MMNL models establish that
VB is substantially faster than MCMC at negligible compromises in predictive accuracy
(Braun and McAuliffe, 2010, Depraetere and Vandebroek, 2017, Tan, 2017). However,
these studies find wanting in several important ways. First, the QN and NCVMP updating
strategies have been studied in isolation from each other and their relative performance
is not known. Second, none of these studies compare VB to the widely-used MSLE
method. Third, the performance of the considered estimation approaches has only been
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evaluated in terms of predictive accuracy, while the finite sample properties, i.e. the abil-
ity to recover true parameters, of the estimators are not known. Fourth, VB methods
have only been implemented and tested for posterior inference in MMNL models with
only individual-specific utility parameters despite the practical relevance of fixed utility
parameters in discrete choice modeling applications.
Consequently, the objective of this paper is twofold: First, we extend several VB methods
to allow for posterior inference in MMNL models with a more general utility specification
including both fixed and random utility parameters.1 Then, we carry out a comprehensive
simulation-based evaluation, in which we contrast the performance of different VB meth-
ods, MCMC and MSLE in terms of estimation times, parameter recovery and predictive
accuracy.2

We emphasize that the inclusion of fixed utility parameters, in addition to individual-
specific utility parameters, is important in practice (Bansal et al., 2018): First, alternative-
specific fixed effects can be introduced by including alternative-specific constants (ASCs)
in the utility specification. Assuming ASCs to be random may result in empirical identi-
fication issues, especially if their distribution is similar to that of the error term (Train,
2009). Second, utility parameters corresponding to individual-specific characteristics
(e.g. age, gender etc.) are typically assumed to be fixed. Treating these alternative-
specific parameters as random may not provide substantive behavioral insights and may
unnecessarily inflate the number of random parameters so that the “curse of dimension-
ality” becomes a concern (also see Cherchi and Guevara, 2012). Third, systematic taste
variation can be parsimoniously represented through the inclusion of additional fixed pa-
rameters that pertain to interactions of the alternative-specific attribute (e.g. cost or travel
time) and relevant individual-specific attributes (e.g. age, household income etc.; see
Bhat, 1998).
In the case of MSLE, one can easily accommodate fixed utility parameters by specifying
them as random utility parameters with a constrained variance, because the individual-
specific parameters are integrated out so that that the fixed parameters can be jointly up-
dated with the parameters of the mixing distribution. This approach is not feasible for
Bayesian estimation methods, because the individual-specific parameters are directly es-
timated (see Train, 2009, Rossi et al., 2012, for the MCMC sampler). If the fixed utility
parameters were specified as random with a constrained variance in VB estimation, the re-
spective variational factors would have to be identical across decision-makers. However,

1Strictly, all model parameters are random quantities in Bayesian estimation. Here, we adopt the nomen-
clature used by Train (2009) and refer to utility parameters that are invariant across decision-makers as fixed
utility parameters and to utility parameters that are individual-specific and (normally) distributed across
decision-makers as random utility parameters.

2In this paper, we compare VB and MCMC with MSLE, as MSLE continues to represent the most widely
used estimation strategy for MMNL models. We acknowledge that Bhat and co-authors have developed the
Maximum Approximate Composite Marginal Likelihood (MACML) approach (Bhat and Sidharthan, 2011)
for frequentist estimation of mixed multinomial probit (MMNP) models. MACML has been shown to be
faster and more accurate than MSLE (Patil et al., 2017). In addition, the approach is flexible, as it has been
used for the estimation of integrated choice and latent variable models (Bhat and Dubey, 2014) and MMNP
models with non-normal parametric mixing distributions (Bhat and Lavieri, 2018). Despite its limitation
to MMNP, MACML thus represents an attractive alternative to MSLE for frequentist estimation of mixed
random utility models. However, we concur with Bhat and Lavieri (2018) that MMNP is no more or less
general than MMNL. Comparisons between Bayesian estimation methods for MMNL and MACML for
MMNP are admittedly intriguing but are beyond the scope of the current paper.
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it is not straightforward to impose this restriction in the existing VB methods. This is
because the variational factors of the individual-specific parameters are updated indepen-
dently for each individual, while updates for the variational factors of the fixed parameters
necessarily depend on all observations.
We organize the remainder of this paper as follows: First, we provide a fully Bayesian
formulation of the MMNL model (Section 2). To be self-contained, we present the de-
fault MCMC method for posterior inference in MMNL models (Section 3). Then, we
describe different VB methods for posterior inference in MMNL models with a more
general utility specification including a combination of both fixed and individual-specific
utility parameters (Section 4). Next, we present the simulation-based evaluation (Section
5) and finally, we conclude (Section 6).

2 Mixed multinomial logit model
The mixed multinomial logit (MMNL) model (McFadden and Train, 2000) is established
as follows: We consider a standard discrete choice setup, in which on choice occasion
t ∈ {1, . . . Tn}, a decision-maker n ∈ {1, . . .N} derives utility Untj = V(Xntj, Γn) + εntj
from alternative j in the set Cnt. Here, V() denotes the representative utility, Xntj is a
row-vector of covariates, Γn is a collection of taste parameters, and εntj is a stochastic
disturbance. The assumption εntj ∼ Gumbel(0, 1) leads to a multinomial logit (MNL)
kernel such that the probability that decision-maker n chooses alternative j ∈ Cnt on
choice occasion t is

P(ynt = j|Xntj, Γn) =
exp {V(Xntj, Γn)}∑

k∈Cnt exp {V(Xntk, Γn)}
, (1)

where ynt ∈ Cnt captures the observed choice. The choice probability can be iterated
over choice scenarios to obtain the probability of observing a decision-maker’s sequence
of choices yn:

P(yn|Xn, Γn) =

Tn∏
t=1

P(ynt = j|Xnt, Γn). (2)

In this paper, we consider a general utility specification under which tastes Γn are par-
titioned into fixed taste parameters α, which are invariant across decision-makers, and
random taste parameters βn, which are individual-specific, such that Γn =

[
α> β>n

]>
,

whereby α and βn are vectors of lengths L and K, respectively. Analogously, the row-
vector of covariates Xntj is partitioned into attributes Xntj,F, which pertain to the fixed
parameters α, as well as into attributes Xntj,R, which pertain to the individual-specific
parameters βn, such that Xntj =

[
Xntj,F Xntj,R

]
. For simplicity, we assume that the

representative utility is linear-in-parameters, i.e.

V(Xntj, Γn) = XntjΓn = Xntj,Fα+ Xntj,Rβn. (3)

The distribution of tastes β1:N is assumed to be multivariate normal, i.e. βn ∼ N(ζ,Ω)
for n = 1, . . . ,N, where ζ is a mean vector and Ω is a covariance matrix. In a fully
Bayesian setup, the invariant (across individuals) parameters α, ζ,Ω are also considered
to be random parameters and are thus given priors. We use normal priors for the fixed
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parametersα and for the mean vector ζ. Following Tan (2017) and Akinc and Vandebroek
(2018), we employ Huang’s half-t prior (Huang and Wand, 2013) for covariance matrix
Ω, as this prior specification exhibits superior noninformativity properties compared to
other prior specifications for covariance matrices (Huang and Wand, 2013, Akinc and
Vandebroek, 2018). In particular, (Akinc and Vandebroek, 2018) show that Huang’s half-
t prior outperforms the inverse Wishart prior, which is often employed in fully Bayesian
specifications of MMNL models (e.g. Train, 2009), in terms of parameter recovery.
Stated succinctly, the generative process of the fully Bayesian MMNL model is:

α|λ0,Ξ0 ∼ N(λ0,Ξ0) (4)
ζ|µ0,Σ0 ∼ N(µ0,Σ0) (5)

ak|Ak ∼ Gamma
(
1

2
,
1

A2k

)
, k = 1, . . . , K, (6)

Ω|ν,a ∼ IW (ν+ K− 1, 2νdiag(a)) , a =
[
a1 . . . aK

]> (7)
βn|ζ,Ω ∼ N(ζ,Ω), n = 1, . . . ,N, (8)
ynt|α,βn,Xnt ∼ MNL(α,βn,Xnt), n = 1, . . . ,N, t = 1, . . . , Tn,

(9)

where (6) and (7) induce Huang’s half-t prior (Huang and Wand, 2013). {λ0,Ξ0,µ0,Σ0, ν,A1:K}
are known hyper-parameters, and θ = {α, ζ,Ω,a,β1:N} is a collection of model param-
eters whose posterior distribution we wish to estimate.
The generative process implies the following joint distribution of data and model param-
eters:

P(y1:N,θ) =

(
N∏
n=1

P(yn|Xn, Γn)

)
P(α|λ0,Ξ0)

(
N∏
n=1

P(βn|ζ,Ω)

)

P(ζ|µ0,Σ0)P(Ω|ω,B)

(
K∏
k=1

P(ak|s, rk)

)
,

(10)

where ω = ν + K − 1, B = 2νdiag(a), s = 1
2

and rk = A−2
k .3 By Bayes’ rule, the

posterior distribution of interest is then given by

P(θ|y1:N) =
P(y1:N,θ)∫
P(y1:N,θ)dθ

∝ P(y1:N,θ). (11)

Exact inference of this posterior distribution is not possible, because the model evidence∫
P(y1:N,θ)dθ is not tractable. In the following sections, we discuss different strategies

to approximate the posterior distribution of the MMNL model parameters and provide our
extensions to some of these strategies under the more general linear-in-parameters utility
specification including both fixed and and random taste parameters.

3To be clear, the following forms of the Gamma and inverse Wishart distributions are considered:

P(ak|s, rk) ∝ as−1k exp(−rkak),

P(Ω|ω,B) ∝ |B|
ω
2 |Ω|−

ω+K+1
2 exp

(
−
1

2
tr
(
BΩ−1

))
,

wherebyΩ and B are K× K positive-definite matrices.
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3 Markov chain Monte Carlo
The general idea of Markov chain Monte Carlo (MCMC) methods is to approximate a
difficult-to-compute posterior distribution through samples from a Markov chain whose
stationary distribution is the posterior distribution of interest (see Robert and Casella,
2004, for a general treatment).
In the present application, a Markov chain for the posterior distribution of the MMNL
model parameters θ can be constructed by taking samples from the conditional distribu-
tions of θ. Direct sampling from the conditional distributions of ζ, Ω and a is possible,
because the conditional distributions belong to known families of distributions. How-
ever, updates for α and β1:N need to be generated with the help of random-walk (RW)
Metropolis algorithms, because the nonconjugacy of the multinomial logit kernel and the
normal priors leads to unrecognizable conditional distributions. The resulting MCMC al-
gorithm is a blocked Gibbs sampler with two embedded Metropolis steps. A pseudo-code
representation of the sampler is shown in Algorithm 1. Here, ρα and ρβ denote step sizes,
which need to be tuned.4 The sampling scheme outlined in Algorithm 1 is identical to
the one studied by Akinc and Vandebroek (2018) with the only difference that updates for
the fixed parameters α are incorporated. It is also known as the Allenby-Train procedure
(Rossi et al., 2012, Train, 2009).
A bottleneck of Algorithm 1 is its reliance on two RW Metropolis steps for the fixed and
the individual-specific parameters, respectively. Notwithstanding that these steps are easy
to implement and to vectorize, the RW Metropolis algorithm can be inefficient when it
is tuned suboptimally (see e.g. Rossi et al., 2012). If the step size is too small, the chain
moves too quickly and the draws exhibit high serial correlation. If the step size is too
large, the posterior is not properly explored and the algorithm can get stuck. The RW
Metropolis algorithm can be replaced by an independence Metropolis algorithm (Rossi
et al., 2012), which takes draws around the posterior mode. However, a complication of
this approach is that at each iteration, a maximization needs to be performed to find the
posterior mode, which is particularly challenging for the individual-specific parameters.
An emerging method to generate samples from a Markov chain is Hamiltonian Monte
Carlo (HMC; e.g. Neal et al., 2011). HMC uses information contained in the gradient
of the log target density to efficiently explore the posterior distribution of interest and
to reduce the amount of serial correlation in the chains. A variant of HMC is the No-
U-Turn sampler (Hoffman and Gelman, 2014), which automatically adapts the number
of leapfrog steps required for the discretization of the Hamiltonian dynamics underlying
HMC. NUTS is interfaced by Stan (Carpenter et al., 2017), a probabilistic programming
language that enables posterior inference on a wide variety of user-defined models. How-
ever, the generality of Stan comes at an immense computational cost, which is further
aggravated when the model of interest depends on many parameters as is the case for
MMNL.5

4In the subsequent applications of the sampling scheme, we apply the same tuning mechanism as Train
(2009), i.e. we let ρα = 0.01 and set ρβ to an initial value of 0.1. After each iteration, ρβ is decreased by
0.001, if the average acceptance rate across all decision-makers is less than 0.3; ρβ is increased by 0.001,
if the average acceptance rate across all decision-makers is more than 0.3.

5We also explored the use of Stan as part of the current research study but found that estimation times
were prohibitive for the sample sizes considered in the simulation evaluation presented in Section 5. Our
experiences with Stan are generally consistent with the literature. Ben-Akiva et al. (2019) contrast NUTS
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for 1 to max-iteration do
Update ζ by sampling ζ ∼ N

(
1
N

∑N
n=1βn,

Ω
N

)
;

UpdateΩ by sampling
Ω ∼ IW

(
ν+N+ K− 1, 2νdiag(a) +

∑N
n=1(βn − ζ)(βn − ζ)

>
)

;
Update ak for all k ∈ {1, . . . , K} by sampling
ak ∼ Gamma

(
ν+K
2
, 1
A2k

+ ν
(
Ω−1

)
kk

)
;

Update βn for all n ∈ {1, . . . ,N}:

• Propose β̃n = βn +
√
ρβchol(Ω)η, where η ∼ N(0, IK) ;

• Compute r = P(yn|Xn,α,β̃n)φ(β̃n|ζ,Ω)
P(yn|Xn,α,βn)φ(βn|ζ,Ω)

;

• Draw u ∼ Uniform(0, 1). If r ≤ u, accept the proposal, else reject it.

Update α:

• Propose α̃ = α+
√
ραchol(Ξ0)η, where η ∼ N(0, IL);

• Compute r =
∏N
n=1 P(yn|Xn,α̃,βn)φ(α̃|λ0,Ξ0)∏N
n=1 P(yn|Xn,α,βn)φ(α|λ0,Ξ0)

;

• Draw u ∼ Uniform(0, 1). If r ≤ u, accept the proposal, else reject it.

end
Algorithm 1: Pseudo-code representation of the blocked Gibbs sampler for posterior
inference in MMNL models with fixed and random utility parameters

4 Variational Bayes

4.1 Background
Variational Bayes (VB; e.g. Blei et al., 2017, Jordan et al., 1999, Ormerod and Wand,
2010) differs from MCMC in that approximate Bayesian inference is viewed as opti-
mization problem rather than a sampling problem. Figure 1 illustrates the conceptual
differences between MCMC and VB. In MCMC, the posterior distribution of interest
P(θ|y) is approximated through samples from a Markov chain whose stationary distribu-
tion is the posterior distribution of interest. In VB, the posterior distribution of interest
is approximated through a parametric variational distribution q(θ|ν) whose parameters
ν are fit such that the P(θ|y) and the approximating variational distribution are close in
probability distance.
Casting approximate Bayesian inference as an optimization problem comes with several
benefits which enable scaling Bayesian estimation to large datasets. First, the memory
issues of MCMC are overcome, as only the variational parameters rather than the pos-

with the Allenby-Train procedure and find that both methods perform equally well at recovering the true
parameter values. However, whereas the reported estimation time for the Allenby-Train procedure is 12
minutes, NUTS had to be run “overnight”. Vij and Krueger (2017) attempted to use Stan to estimate a
MMNL model on a large dataset containing 30,166 observations from 17,700 individuals but were unable
to do so due to memory constraints. A possible avenue for future research is to custom-code a NUTS
procedure with analytical gradients to enable fast and scalable posterior inference for MMNL.
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terior draws need to be stored. Second, convergence can be straightforwardly assessed
by evaluating the change in the variational lower bound (an alternative measure for the
distance between the posterior distribution of interest and the approximating variational
distribution) or the change in the estimates of the variational parameters from one iteration
to another. Third, serial correlation is no longer a concern, as no samples are taken.

Figure 1: Schematic representations of Markov chain Monte Carlo (MCMC) and Varia-
tional Bayes (VB) methods for posterior inference

To build further intuition about the fundamental principles of VB, we consider a genera-
tive model P(y,θ) consisting of observed data y and unknown parameters θ. Our goal
is to find an approximation of the posterior distribution P(θ|y). VB aims at finding a
variational distribution q(θ) over the unknown parameters that is close to the actual pos-
terior distribution P(θ|y). A computationally-convenient way to measure the distance
between two probability distributions is the Kullback-Leibler (KL) divergence (Kullback
and Leibler, 1951). The KL divergence between q(θ) and P(θ|y) is given by

KL (q(θ)||P(θ|y)) =

∫
ln
(
q(θ)

P(θ|y)

)
q(θ)dq(θ)

= Eq {lnq(θ)}− Eq {lnP(θ|y)} .
(12)

The goal of VB is to minimize this divergence, i.e.

q∗(θ) = arg min
q

{KL (q(θ)||P(θ|y))} . (13)

However, the expectation Eq {lnP(θ|y)} = Eq {lnP(y,θ)} − lnP(y) in expression 12 is
not analytically tractable, because there is not closed-form expression for lnP(y). There-
fore, we consider the following alternative objective function:

KL (q(θ)||P(y,θ)) = KL (q(θ)||P(θ|y)) − lnP(y)
= Eq {lnq(θ)}− Eq {lnP(y,θ)}

(14)

The term Eq {lnP(y,θ)}−Eq {lnq(θ)} is referred to as the evidence lower bound (ELBO).
Maximizing the ELBO is equivalent to minimizing the KL divergence between the ap-
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proximate variational distribution and the intractable exact posterior distribution. Conse-
quently, the goal of VB can be re-formulated as

q∗(θ) = arg max
q

{ELBO(q)}

= arg max
q

{Eq {lnP(y,θ)}− Eq {lnq(θ)}} .
(15)

The functional form of the variational distribution q(θ) remains to be chosen. In princi-
ple, the complexity of the variational distribution determines the quality of the approxi-
mation of the posterior and the difficulty of the optimisation problem (Blei et al., 2017).
Here, we appeal to the mean-field family of distributions (e.g. Jordan et al., 1999), under
which the variational distribution factorises as

q(θ) =

J∏
j=1

q(θj), (16)

where j ∈ {1, . . . , J} indexes the model parameters collected in θ. The mean-field as-
sumption breaks the dependence between the model parameters by imposing mutual in-
dependence of the variational factors. It can be shown that the optimal density of each
variational factor is given by

q∗(θj) ∝ expE−θj {lnP(y,θ)} , (17)

i.e. the optimal density of each variational factor is proportional to the exponentiated
expectation of the logarithm of the joint distribution of y and θ, where the expectation
is taken with respect to all parameters other than θj (Ormerod and Wand, 2010, Blei
et al., 2017). Provided that the model of interest is conditionally conjugate, the optimal
densities of all variational factors belong to recognizable families of distributions (Blei
et al., 2017). Due to the implicit nature of the expectation operator E−θj , the ELBO can
then be maximized via a simple iterative coordinate ascent algorithm (Bishop, 2006), in
which the variational factors are updated one at a time conditional on the current estimates
of the other variational factors. With this algorithm, iterative updates with respect to each
variational factor are performed by equating each of the variational factors to its respective
optimal density, i.e. we set q(θj) = q∗(θj) for j = 1, . . . , J. Because the ELBO is convex
with respect to each of the variational factors, the ELBO is guaranteed to converge to a
local optimum (Boyd and Vandenberghe, 2004). Moreover, an important result from the
frequentist perspective is the variational Bernstein-von Mises theorem, which states that
under benign conditions, the mean-field variational Bayes estimate θ̌ =

∫
θq∗(θ)dθ is

consistent (Wang and Blei, 2018).
Finally, we observe that VB can be viewed as a tractable approximation of the expectation-
maximization (EM) algorithm (Dempster et al., 1977). To make this analogy clear, we
partition the model parameters into global parameters θG = {α, ζ,Ω,a} and local pa-
rameters (latent variables) θL = β1:N. Since the EM algorithm is a frequentist estimation
procedure, point estimates (instead of the posterior distribution) of the global parameters
θG are of interest and are obtained by maximizing the log-likelihood via a two-step itera-
tive procedure. In the expectation step (E-step), the distribution of local parameters condi-
tional on the current estimates of the global parameters is calculated. In the maximization
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step (M-step), the conditional expectation (i.e. the lower bound on the log-likelihood)
is maximized over the unknown global parameters. In Bayesian estimation, the global
parameters are also treated as random variables and the posterior distribution of both the
local and the global parameters is estimated. VB becomes useful when the conditional
expectation relative to these parameters is intractable. Whereas the EM algorithm works
with the exact conditional distribution on the local parameters, VB approximates the in-
tractable conditional distributions of the parameters of interest with the help of a simpler,
parametric variational distribution. In a similar way as the EM algorithm, VB updates
the parameters of the variational distribution by iteratively maximizing the ELBO (which
is analogous to the lower bound of the log-likelihood in EM); each VB iteration tight-
ens the gap between the variational distribution and the actual posterior distribution. For
more details on the connection between VB and the EM algorithm, we refer to Beal et al.
(2003).

4.2 Variational Bayes for posterior inference in mixed multinomial
logit models

4.2.1 General strategy

In the present application, we are interested in approximating the posterior distribution
of the MMNL model parameters {α, ζ,Ω, a1:K,β1:N} (see expression 11) through a fitted
variational distribution. We posit a variational distribution from the mean-field family, i.e.
the variational distribution factorizes as follows:

q(θ) = q(α, ζ,Ω, a1:K,β1:N) = q(α)q(ζ)q(Ω)

K∏
k=1

q(ak)

N∏
n=1

q(βn). (18)

Recall that the optimal densities of the variational factors are given by q∗(θi) ∝ expE−θi {lnP(y,θ)}.
We find that q∗(ζ|µζ,Σζ), q∗(Ω|w,Θ) and q∗(ak|c, dk) are common probability distri-
butions (see Appendix A). However, q∗(α) and q∗(βn) are not members of recognizable
families of distributions, because the MNL kernel does not have a general conjugate prior.
For simplicity and computational convenience, we assume that q(α) = Normal(µα,Σα)
and q(βn) = Normal(µβn ,Σβn) for all n ∈ {1, . . . ,N}. For notational convenience, we
can combine the variational factors such that q(α)q(βn) = q(Γn) = Normal(Γn0,VΓn0)

with Γn0 =
[
µ>α µ>βn

]>
and VΓn0 =

[
Σα 0

0 Σβn

]
for n = 1, . . . ,N. The negative en-

tropy of the variational distribution is given by

E {lnq(θ)} = −
1

2
ln |Σα|−

1

2
ln |Σζ|−

K+ 1

2
ln |Θ|+

K∑
k=1

lndk −
1

2

N∑
n=1

ln |Σβn |. (19)
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Moreover, the logarithm of the joint distribution of the data and the unknown model pa-
rameters is given by

lnP(y1:N,θ)

=

N∑
n=1

lnP(yn|Xn, Γn) + lnP(α|λ0,Ξ0) + lnP(ζ|µ0,Σ0)

+ lnP(Ω|ω,B) +

K∑
k=1

lnP(ak|s, rk) +
N∑
n=1

lnP(βn|ζ,Ω)

=

N∑
n=1

lnP(yn|Xn, {α,βn}) −
1

2
(α− λ0)

>Ξ−1
0 (α− λ0) −

1

2
(ζ− µ0)

>Σ−1
0 (ζ− µ0)

+
ω

2
ln |B|−

ω+ K+ 1

2
ln |Ω|−

1

2
tr
(
BΩ−1

)
+

K∑
k=1

[(s− 1) lnak − rkak]

−
N

2
ln |Ω|−

1

2

N∑
n=1

(βn − ζ)
>Ω−1(βn − ζ).

(20)

Taking expectations, we obtain

E {lnP(y1:N,θ}

=

N∑
n=1

Tn∑
t=1

{ ∑
k∈Cnt

[
yntk(Xntk,Fµα + Xntk,Rµβn)

]
− Eq

(
ln

[ ∑
k∈Cnt

exp(XntkΓn)

])}

−
1

2
(µα − λ0)

>Ξ−1
0 (µα − λ0) −

1

2
tr
(
Ξ−1
0 Σα

)
−
1

2
(µζ − µ0)

>Σ−1
0 (µζ − µ0) −

1

2
tr
(
Σ−1
0 Σζ

)
−
ω

2

K∑
k=1

lndk −
ω+ K+ 1

2
ln |Θ|− νw

K∑
k=1

c

dk

(
Θ−1

)
kk

+

K∑
k=1

[
(1− s) lndk − rk

c

dk

]

−
N

2
ln |Θ|−

w

2

N∑
n=1

[
(µβn − µζ)

>Θ−1(µβn − µζ) + tr
(
Θ−1Σβn

)
+ tr

(
Θ−1Σζ

)]
.

(21)

Hence, the ELBO of MMNL is:

ELBO = E {lnP(y1:N,θ)}− E {lnq(θ)} . (22)

The ELBO is maximized using an iterative coordinate ascent algorithm. Iterative updates
of q(ζ), q(Ω), and q(ak) are performed by equating each variational factor to its re-
spective optimal distribution q∗(ζ), q∗(Ω) and q∗(ak), respectively. However, updates
of q(α) and q(βn) require special treatment, because there is no closed-form expression
for the expectation of the log-sum of exponentials (LSE) in equation 21. To be precise,
the LSE term is given by

gnt(Γn) ≡ ln
∑
k∈Cnt

exp(XntkΓn) = ln
∑
j∈Cnt

exp(Xntj,Fα+ Xntj,Rβn), (23)
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and Eq {gnt(Γn)} (henceforth, E-LSE) is not tractable.

4.2.2 Approximations, bounds and updating strategies

The literature proposes different methods for enabling VB for posterior inference in
MMNL models with only individual-specific utility parameters (i.e. Γn = βn) (Braun
and McAuliffe, 2010, Depraetere and Vandebroek, 2017, Tan, 2017). In essence, these
methods proceed as follows: The E-LSE term is approximated either analytically or by
simulation, or an alternative variational lower bound is defined. Then, updates for the non-
conjugate variational factors are performed with the help of either quasi-Newton (QN)
methods (e.g. Nocedal and Wright, 2006) or nonconjugate variational message passing
(NCVMP; Knowles and Minka, 2011).
Table 1 provides an overview of relevant instances of VB methods for posterior inference
in MMNL models and classifies these approaches according to their E-LSE approxima-
tion method or lower bound and their updating strategy. Table 1 also shows which meth-
ods are extended in the current paper to allow for posterior inference in MMNL models
with both fixed and random utility parameters. In this study, we consider one analytical
approximation method, namely the Delta (∆) method (e.g. Bickel and Doksum, 2015),
one simulation-based approximation method, namely quasi-Monte Carlo (QMC) integra-
tion (e.g. Dick and Pillichshammer, 2010), as well as an alternative variational lower
bound of E-LSE defined with the help of the modified Jensen’s inequality (MJI; Knowles
and Minka, 2011) in combination with QN- and NCVMP-based updates.6,7

We select the analytical and simulation-based E-LSE approximation methods and the al-
ternative variational lower bound as well as the updating strategies for the nonconjugate
variational factors based on the findings of earlier studies: Tan (2017) also adopts the
stochastic linear regression (SLR) approach (Salimans and Knowles, 2013) for posterior
inference in MMNL models with only individual-specific utility parameters. SLR is a VB
variant, which involves stochastic simulations to update the variational distributions in
non-conjugate models. In this paper, we do not extend VB-SLR for posterior inference in
MMNL model with a more general utility specification involving a combination of fixed
and random utility parameters, because it is computationally expensive to condition the
iterative and simulation-based updates of one set of parameters on the approximate poste-
rior distribution of the other set of parameters. Tan (2017) further uses Laplace’s method
to approximate E-LSE and then employs QN methods to update q(βn) (henceforth, VB-
QN-L). However, VB-QN-L is found to provide inferior predictive accuracy in compari-
son with MCMC, VB-NCVMP-∆ and VB-SLR. Moreover, Braun and McAuliffe (2010)
also consider the original version of Jensen’s inequality to define an alternative variational
lower bound and then use QN methods to update q(βn). However, the modified Jensen’s

6QMC methods are widely used in statistics and related areas to approximate intractable integrals by
simulation. For a general treatment of QMC methods, we refer to Dick and Pillichshammer (2010). For
in-depth treatments of QMC methods in the context of simulation-assisted estimation of discrete choice
models, the reader is directed to Bhat (2001), Sivakumar et al. (2005) and Train (2009).

7 In this study, we do not consider NCVMP in combination with QMC integration (henceforth, VB-
NCVMP-QMC), as the calculations of the gradients of the expectations of the logarithm of the joint distri-
bution involve inversions of large matrices. As a consequence, VB-NCVMP-QMC becomes numerically
unstable and positive-definiteness of the updates of the covariance matrices Σα and Σβn

cannot be guar-
anteed. The updates of the nonconjugate variational factors in VB-NCVMP-QMC can be made available
upon request.

11



inequality proposed by Knowles and Minka (2011) provides a tighter lower bound. De-
praetere and Vandebroek (2017) study a variety of other quadratic lower bounds but find
that these bounds are outperformed by the modified Jensen’s inequality. From Table 1,
it can further be seen that the relative performance the QN- and NCVMP-based updating
strategies are not known, as these updating strategies have been studied in isolation from
each other.
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In what follows, we describe the considered methods to approximate E-LSE and the al-
ternative variational lower bound:

1. The Delta (∆) method involves a second-order Taylor series expansion of gnt(Γn)
around Γn0:

gnt(Γn) ≈ gnt(Γn0)+(Γn − Γn0)
> (∇gnt(Γn0))+

1

2
(Γn − Γn0)

> (∇2gnt(Γn0)) (Γn − Γn0) .
(24)

Then,

Eq{gnt(Γn)} ≈gnt(Γn0) +
1

2
tr
(
∇2gnt(Γn0)VΓn0

)
≈gnt(Γn0) +

1

2
tr
(
∂2gnt(Γn0)

∂β2n
Σβn

)
+
1

2
tr
(
∂2gnt(Γn0)

∂α2
Σα

)
≈ ln

∑
k∈Cnt

exp(Xntk,Fµα + Xntk,Rµβn)

+
1

2
tr
((
X>nt,R

(
diag(pnt0) − pnt0p

>
nt0

)
Xnt,R

)
Σβn

)
+
1

2
tr
((
X>nt,F

(
diag(pnt0) − pnt0p

>
nt0

)
Xnt,F

)
Σα
)
,

(25)

where pntj,0 =
exp(Xntj,Fµα+Xntj,Rµβn )∑

k∈Cnt
exp(Xntk,Rµα+Xntk,Rµβn )

and pnt0 =
[
pnt1,0 · · · pntJ,0

]
is a

row-vector of all pntj,0 in Cnt.

2. Furthermore, QMC methods can be leveraged to approximate the E-LSE term by
simulation:

Eq{gnt(Γn)} ≈
1

D

D∑
d=1

ln
∑
k∈Cnt

exp(Xntk,Fαd + Xntk,Rβnd), (26)

where αd = µα + chol(Σα)ξd,F and βnd = µβn + chol(Σβn)ξnd,R. ξd,F and ξnd,R
are points from a quasi-random sequence.

3. Finally, the modified Jensen’s inequality can be used to define an alternative varia-
tional lower bound:

Eq{gnt(Γn)} ≤
∑
k∈Cnt

antkXntkΓn0

+ ln

( ∑
k∈Cnt

exp

{(
Xntk −

∑
m∈Cnt

antmXntm

)
Γn0

+
1

2

(
Xntk −

∑
m∈Cnt

antmXntm

)
VΓn0

(
Xntk −

∑
m∈Cnt

antmXntm

)>})
,

(27)
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where

antj =

exp
(
XntjΓn0 +

1
2

(
Xntj − 2

∑
m∈Cnt

antmXntm

)
VΓn0X

>
ntj

)
∑
k∈Cnt

exp
(
XntkΓn0 +

1
2

(
Xntk − 2

∑
m∈Cnt

antmXntm

)
VΓn0X

>
ntk

) ∀ntj

(28)
is an auxiliary variational parameter.

Next, we outline the updating strategies for the nonconjugate variational factors:

1. With quasi-Newton (QN) methods (e.g. Nocedal and Wright, 2006), updates for
nonconjugate variational factors are obtained by maximizing the ELBO over the
parameters of the variational factor in question. In that vein, updates for q(α) are
given by

arg max
µα,Σα

{
N∑
n=1

Tn∑
t=1

(∑
k∈Cnt

[
yntk(Xntk,Fµα + Xntk,Rµβn)

]
− Eq{gnt(Γn)}

)

−
1

2
tr
(
Ξ−1
0

(
Σα + µ

>
αµα

))
+ µ>αΞ

−1
0 λ0 +

1

2
ln |Σα|

}
,

(29)

and updates for q(βn) are given by

arg max
µβn ,Σβn

{
Tn∑
t=1

(∑
k∈Cnt

[
yntk(Xntk,Fµα + Xntk,Rµβn)

]
− Eq{gnt(Γn)}

)

−
w

2
tr
(
Θ−1Σβn

)
−
w

2
µ>βnΘ

−1µβn +wµ
>
βn
Θ−1µζ +

1

2
ln |Σβn |

}
.

(30)

whereby the intractable E-LSE terms Eq{gnt(Γn)} need to be replaced by an ap-
proximation or an alternative bound.

2. Nonconjugate variational message passing (NCVMP) admits the following fixed
point updates for the parameters of q(α) and q(βn) (Wand, 2014):

Σα = −
[
2 vec−1

(
∇vec(Σα) {Eq {lnP(y1:N,θ)}}

)]−1
(31)

µα = µα + Σα
[
∇µα {Eq {lnP(y1:N,θ)}}

]
, (32)

Σβn = −
[
2 vec−1

(
∇vec(Σβn

) {Eq {lnP(y1:N,θ)}}
)]−1

, (33)

µβn = µβn + Σβn

[
∇µβn {Eq {lnP(y1:N,θ)}}

]
. (34)

Here, ifB is a matrix of dimensionK×K, then b = vec(B) is a column-stacked vec-
tor of length K2; vec−1(b) = B reverses the operation. The term Eq {lnP(y1:N,θ)}
is defined in expression 21 and involves intractable E-LSE terms, which need to
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be replaced by an approximation or bound. We derive the required gradient ex-
pressions (available upon request). We highlight that in contrast to QN meth-
ods, NCVMP does not guarantee that the ELBO increases after each iteration, be-
cause NCVMP involves only fixed point updates (Knowles and Minka, 2011, Wand,
2014). However, NCVMP updates are substantially less costly than QN updates, as
each NCVMP update involves only one function evaluation.

Algorithm 2 succinctly summarizes the considered VB methods for posterior inference in
MMNL models with a linear-in-parameters utility specification including both fixed and
random utility parameters

Initialization:
Set hyper-parameters: ν, A1:K, µ0, Σ0, λ0, Ξ0;
Provide starting values: µζ, Σζ, µβ1:N , Σβ1:N , d1:K;
if VB-QN-MJI or VB-NCVMP-MJI then

Set antj = 1
|Cnt|
∀ntj;

end
Coordinate ascent:
if VB-QN-QMC then

Generate standard normal quasi-random sequences: ξ1:D, δ1:N,1:D;
end
c = ν+K

2
; w = ν+N+ K− 1;

Θ = 2νdiag
(
c
d

)
+NΣζ +

∑N
n=1

(
Σβn + (µβn − µζ)(µβn − µζ)

>);
while not converged do

if VB-QN-∆ or VB-QN-QMC or VB-QN-MJI then
Update µα, Σα using equation 29;
Update µβn , Σβn for ∀n using equation 30;

end
if VB-NCVMP-∆ or VB-NCVMP-MJI then

Update µα, Σα using equations 32 and 31;
Update µβn , Σβn for ∀n using equations 34 and 33;

end
Σζ =

(
Σ−1
0 +NwΘ−1

)−1
;

µζ = Σζ

(
Σ−1
0 µ0 +wΘ

−1∑N
n=1 µβn

)
;

Θ = 2νdiag
(
c
d

)
+NΣζ +

∑N
n=1

(
Σβn + (µβn − µζ)(µβn − µζ)

>);
dk =

1
A2k

+ νw
(
Θ−1

)
kk
∀k;

if VB-QN-MJI or VB-NCVMP-MJI then
Update antj for ∀ntj using equation 28;

end
end
Algorithm 2: Pseudo-code representations of variational Bayes methods for posterior
inference in MMNL models with a linear-in-parameters utility specification including
both fixed and random utility parameters
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5 Simulation evaluation

5.1 Data and experimental setup
For the simulation study, we devise a semi-synthetic data generating process (DGP), under
which the choice sets and population parameters are based on real data from a stated
choice study on consumer preferences for alternative fuel vehicles in Germany (Achtnicht,
2012). The real data comprise 3,588 observations from 598 individuals. In the original
study, respondents were presented with six choice sets, each of which consisted of seven
alternatives, which in turn were characterized by six attributes, namely fuel type and
propulsion technology (gasoline, diesel, hybrid, LPG/CNG, biofuel, hydrogen, electric),
purchase price, operating costs, engine power, CO2 emissions and fuel availability.
We generate the semi-synthetic choice data as follows: Decision-makers are assumed to
be utility maximizers and to evaluate alternatives based on the utility specificationUntj =
Xntj,Fα+Xntj,Rβn + εntj. Here, n ∈ {1, . . . ,N} indexes decision-makers, t ∈ {1, . . . , T }

indexes choice occasions, and j ∈ {1, . . . , 7} indexes alternatives. Xntj,F is a row-vector
of attributes for which tastes α are invariant across decision-makers (gasoline, hybrid,
LPG/CNG, biofuel, hydrogen, electric, purchase price);Xntj,R is a row-vector of attributes
for which tastesβn are individual-specific (operating costs, engine power, CO2 emissions,
fuel availability). The choice sets Xnt,1:7 with Xntj =

[
Xntj,F Xntj,R

]
are drawn from the

real data with equal probability and with replacement. εntj is a stochastic disturbance
sampled from Gumbel(0, 1). The individual-specific taste parameters are drawn from
a multivariate normal distribution, i.e. βn ∼ N(ζ,Ω) for n = 1, . . . ,N with Ω =
diag(σ)Ψdiag(σ), where σ is a standard deviation vector, and Ψ is a correlation matrix.
The values of α, ζ, and σ are based on maximum simulated likelihood point estimates of
the parameters of a mixed multinomial logit model fit to the real data. The scale of the
population-level parameters is set such that the error rate is approximately 50%, i.e. in
50% of the cases decision-makers deviate from the deterministically-best alternative due
to the stochastic utility component.
We consider four experimental scenarios: In scenarios 1 and 2, the fixed taste parameters
and their corresponding attributes are omitted from the utility specification in the DGP,
and only the individual-specific parameters are estimated. In scenarios 3 and 4, the full
utility specification is used in the DGP, and both sets of taste parameters are estimated.
Furthermore, the degree of correlation among individual-specific taste parameters is rel-
atively low in scenarios 1 and 3, whereas it is relatively high in scenarios 2 and 4. In
Appendix B, we enumerate the values of α, ζ, σ, and Ψ for each experimental scenario.
In each scenario, N takes a value in {500, 2000}, and T takes a value in {5, 10}. For each
experimental scenario and combination ofN and T , we consider 20 replications, whereby
the data for each replication are generated based on a different random seed.

5.2 Accuracy assessment
We employ two performance metrics to assess the accuracy of the estimation approaches:

1. To evaluate how the estimation approaches perform at recovering parameters, we
calculate the root mean square error (RMSE) for selected parameters, namely for
the invariant parameter vector α, the mean vector ζ, the unique elements of the
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covariance matrix ΩU and the matrix of individual-specific taste parameters β1:N.
Given collections of parameters θ and their estimates θ̂, RMSE is defined as

RMSE(θ) =

√
1

M
(θ̂− θ)>(θ̂− θ), (35)

where M denotes the total number of scalar parameters collected in θ. For MSLE,
point estimates of α, ζ and ΩU are directly obtained. Point estimates of β1:N are
given by the following conditional expectation (Revelt and Train, 1999):

β̂n = E{βn|yn,Xn, α̂, ζ̂, Ω̂} =

∫
βnP(yn|Xn, α̂,βn)f(βn|ζ̂, Ω̂)dβn∫
P(yn|Xn, α̂,βn)f(βn|ζ̂, Ω̂)dβn

, n = 1, . . . ,N.

(36)
The integrals in expression 36 are intractable and are thus simulated using 10,000
pseudo-random draws. For MCMC, estimates of the parameters of interest are given
by the means of the respective posterior draws. For VB, we have α̂ = µα, ζ̂ =
µζ, Ω̂ = 1

w−K−1
Θ and β̂n = µβn for n = 1, . . . ,N. As we are interested in

evaluating how well the estimation methods perform at recovering the distributions
of the realized tastes, we use the sample mean ζ0 = 1

N

∑N
n=1βn and the sample

covariance Ω0 = 1
N

∑N
n=1(βn − ζ0)(βn − ζ0)

> of the draws of the individual-
specific parameters β1:N as true values for ζ andΩ, respectively.

2. To evaluate the out-of-sample predictive accuracy of the estimation approaches, we
compute the total variation distance (TVD; Braun and McAuliffe, 2010) between
the true and the estimated predictive choice distributions for a validation sample,
which we generate along with each training sample. Each validation sample is
based on the same DGP as its respective training sample, whereby the number of
decision-makers is set to 25 and the number of observations per decision-maker is
set to one. The true predictive choice distribution for a choice setCnt with attributes
X∗nt from the validation sample is given by

Ptrue(y
∗
nt|X

∗
nt) =

∫
P(y∗nt = j|X

∗
nt,α,β)f(β|ζ,Ω)dβ. (37)

This integration is not tractable and is therefore simulated using 1,000,000 pseudo-
random draws from the true heterogeneity distribution N(ζ,Ω). The corresponding
estimated predictive choice distribution is

P̂(y∗nt|X
∗
nt,y) =

∫ ∫ ∫ (∫
P(y∗nt|X

∗
nt,α,β)f(β|ζ,Ω)dβ

)
p(α, ζ,Ω|y)dαdζdΩ.

(38)
The estimated posterior predictive distribution can be computed via Monte Carlo
integration. For MCMC, p(α, ζ,Ω|y) is given by the empirical distribution of
the posterior draws. For VB, p(α, ζ,Ω|y) is replaced by the estimated variational
distribution q(α)q(ζ)q(Ω). We note that the posterior predictive choice distribu-
tion is a quintessentially Bayesian quantity, which accounts for the uncertainty in
the parameter estimates by marginalizing the predictive distribution over the pos-
terior distribution of the parameters. By contrast, frequentist predictions are based
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on point estimates. In the current application, we mimic the posterior predictive
distribution for MSLE by marginalizing the predictive distribution over the asymp-
totic distribution N(ϕ̂, var{ϕ̂}) of the parameter estimates. Here ϕ̂ denotes the
point estimate of {α, ζ, chol(Ω)}, and var{ϕ̂} denotes the corresponding asymptotic
variance-covariance of ϕ̂. var{ϕ̂} is the Cramér-Rao bound, which we approximate
by evaluating the inverse of the negative Hessian matrix of the log-likelihood func-
tion at the point estimates.8 For VB and MSLE, we take 500 pseudo-random draws
for {α, ζ,Ω} from q(α)q(ζ)q(Ω) and N(ϕ̂, var{ϕ̂}); for MCMC, we use 20,000
draws from p(α, ζ,Ω|y). For MCMC, a larger number of draws is necessary, as
the posterior draws are not independent. For all methods, we use 10,000 i.i.d draws
for β. TVD is then given by

TVD =
1

2

∑
j∈Cnt

∣∣Ptrue(y
∗
nt = j|X

∗
nt) − P̂(y

∗
nt = j|X

∗
nt,y)

∣∣ . (39)

For succinctness, we calculate averages across decision-makers and choice sets.

5.3 Implementation details
We implement all estimation approaches described above by writing our own Python
code9 and make an effort that the implementations of the different estimators are as sim-
ilar as possible to allow for fair comparisons of estimation times. The computation of
the simulated log-likelihood for MSLE and all sampling steps of the MCMC algorithm
can be fully vectorized. However, VB estimation necessarily involves loops to update
the variational factors pertaining to the individual-specific taste parameters. For MSLE,
choice probabilities are simulated using 1,000 simulation draws generated via the Mod-
ified Latin Hypercube Sampling method (Hess et al., 2006). For VB-QN-QMC, we use
64 simulation draws generated via the same method; we also explored larger numbers of
simulation draws (128, 256) for VB-QN-QMC but found that increases in the number of
simulation draws resulted in prohibitive estimation times. For MSLE and VB-QN, we
employ the Broyden-Fletcher-Goldfarb-Shanno algorithm (Nocedal and Wright, 2006)
included in Python’s SciPy library (Jones et al., 2001) to carry out the numerical optimiza-
tions; the default settings of the algorithm are used and analytical or simulated gradients
are supplied. To assure positive-definiteness of the covariance matrices, all numerical
optimizations are in fact performed with respect to the Cholesky factors of the covari-
ance matrices. For MCMC, the sampler is executed with two parallel Markov chains and
100,000 iterations for each chain, whereby the initial 50,000 iterations of each chain are
discarded for burn-in. After burn-in, every fifth draw is retained to reduce the amount of
autocorrelation in the chains. For the VB methods, we apply the same stopping criterion
as Tan (2017): We define ϑ =

[
α> ζ> diag(Ψ)> d>

]>
and let ϑ(τ)i denote the ith

element of ϑ at iteration τ. We terminate the iterative coordinate ascent algorithm, when

δ(τ) = arg maxi
|ϑ

(τ+1)
i −ϑ

(τ)
i |

|ϑ
(τ)
i |

< 0.005. As δ(τ) can fluctuate, ϑ(τ) is substituted by its aver-

age over the last five iterations. The simulation experiments are conducted on the Katana
high performance computing cluster at the Faculty of Science, UNSW Australia.

8To be precise, we consider the Hessian approximation returned by the Broyden-Fletcher-Goldfarb-
Shanno algorithm (Nocedal and Wright, 2006).

9The Python code is publicly available at https://github.com/RicoKrueger/bayes_mxl.
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5.4 Results
Tables 2 to 5 enumerate the results for scenarios 1 to 4, respectively. Each table gives the
means and the standard errors of the considered performance metrics for 20 replications
under different combinations of sample sizes N ∈ {500, 2000} and choice occasions per
decision-maker T ∈ {5, 10}. In principle, a statistical testing procedure such as ANOVA
could be used to compare the performance metrics of the different methods. Here, we will
simply compare mean estimates, as the standard errors are generally small.
First, we examine the impact of the sample size N and the number of choice occasions
per decision-maker T on the performance of the estimation methods. For all methods, the
mean RMSE of α, ζ, ΩU and β1:N as well as the mean TVD decrease with the sample
size N and the number of occasions T . These findings numerically validate the consis-
tency of VB methods (see Wang and Blei, 2018). In our subsequent discussion, we only
make explicit mention of numerical results for {N = 2000, T = 10}, as the comparative
performance of the estimation methods is generally consistent across all combinations of
N and T .
All methods recover the mean vector ζ and the individual-specific parametersβ1:N equally
well in the considered scenarios. For example, the mean RMSE values of ζ fall into tight
intervals of [0.0181, 0.0281], [0.0191, 0.0252], [0.0246, 0.0286], and [0.0246, 0.0291].
Likewise, the corresponding ranges forβ1:N are [0.7198, 0.7257], [0.6929, 0.6959], [0.7217, 0.7254],
and [0.6955, 0.6982]. Furthermore, the results of scenarios 3 and 4 show that the fixed
parameters α are also recovered equally well by the considered methods. Narrow ranges
of the corresponding mean RMSE values across all methods in both scenarios support this
observation: [0.0269, 0.0277], [0.0298, 0.0307].
With the exception of the VB methods relying on the MJI-based alternative variational
lower bound, all methods perform equally well at recovering the covariance matrix Ω.
Excluding VB-QN-MJI and VB-NCVMP-MJI, the mean RMSE values ofΩU lie in nar-
row ranges of [0.0568, 0.0800], [0.0570, 0.0665], [0.0711, 0.0736] and [0.0572, 0.0692],
whereas the mean RMSE values of ΩU for VB-QN-MJI and VB-NCVMP-MJI are sub-
stantially larger. Upon close inspection of the simulation results, it can be seen that that
the magnitudes of the relative differences in the mean RMSE value of ΩU between the
MJI-based VB methods and the other methods increase, as N rises. For all methods, the
recovery of ΩU ameliorates, as the number of choice occasions per decision-maker in-
creases. Furthermore, we observe that the degree of correlation does not affect the quality
of the estimation of all methods.
Next, we compare the predictive accuracy of the estimation methods. With the exception
of VB-QN-MJI and VB-NCVMP-MJI, the estimation approaches perform equally well
at prediction. The lower predictive accuracy of MJI-based methods can be attributed to
a less accurate recovery of the covariance matrix Ω. In the majority of the considered
experimental conditions, the MJI-based VB methods perform noticeably worse than the
competing methods, which implies that the alternative variational lower bound defined
with the help of the modified Jensen’s inequality affords less accurate inferences than the
analytical and simulation-based E-LSE approximations. This finding is consistent with
Depraetere and Vandebroek (2017). We also observe that the TVD proxy for MSLE is
comparable to the actual TVD calculated for the Bayesian methods.
Finally, we contrast the computational efficiency of the estimation methods. For VB,
we observe that NCVMP updates are substantially faster than QN updates at virtually no
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compromises in parameter recovery and predictive accuracy. In contrast to earlier studies
(Braun and McAuliffe, 2010, Depraetere and Vandebroek, 2017), we do not find that the
QN-based VB methods are faster than MCMC, even though we use similar numbers of
draws for the posterior simulations. A possible explanation for this discrepancy is that
earlier studies rely on the bayesm (Rossi et al., 2012) package for R to carry out the
MCMC estimations, whereas we develop our own efficient Python implementation. Of
the considered VB methods, VB-NCVMP-∆ performs best at balancing fast estimation
times, acceptable parameter recovery and good predictive accuracy. Across the consid-
ered experimental conditions, VB-NCVMP-∆ is on average between 1.7 to 16.2 times
faster than MCMC and MSLE, while performing nearly as well at prediction and parame-
ter recovery. Whereas earlier studies reported occasional convergence issues for the delta-
method-based E-LSE approximation (Depraetere and Vandebroek, 2017, Tan, 2017), we
encountered no such issues in the current simulation study.
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6 Conclusions
This study extends several variational Bayes (VB) methods to allow for posterior in-
ference in mixed multinomial logit (MMNL) models with a linear-in-parameters utility
specification involving both taste parameters that vary normally across decision-makers
as well as taste parameters that are invariant across decision-makers. In addition, exten-
sive simulation-based evaluations provide new evidence into the finite-sample properties
and the predictive accuracy of VB methods for MMNL in comparison with Markov chain
Monte Carlo (MCMC) methods and maximum simulated likelihood estimation (MSLE).
Our findings suggest that VB with nonconjugate variational message passing and a delta-
method-based approximation of the expectation of log-sum of exponential (E-LSE) term
(VB-NCVMP-∆) is an attractive alternative to MCMC and MSLE for fast and scalable
estimation of MMNL models. The substantial gains in computational efficiency come at
practically no compromises in parameter recovery and predictive accuracy.
There are several directions in which future research can build on the work presented
in the current paper. First, VB methods for posterior inference in MMNL models are
currently limited to MMNL models with normal mixing distributions and utility specifi-
cations in preference space. Extending VB methods to accommodate more flexible para-
metric, nonparametric, and semiparametric mixing distributions as well as utility specifi-
cations in willingness-to-pay space is an immediate step to support the use of VB meth-
ods in empirical applications. Second, VB methods can be devised for extended discrete
choice models (Walker, 2001) such as the integrated choice and latent variable model. As
excessive estimation times continue to represent a bottleneck in empirical applications of
such advanced discrete choice models, VB methods could facilitate the use of these and
other behaviourally-rich models in novel contexts and applications. Third, we have shown
that VB methods perform reasonably well at recovering individual-level parameters and
lend themselves well to applications in which fast predictions are paramount. Thus, our
analysis may inform the development of online estimation procedures that could enable
near real time learning and prediction of individual preferences. Fourth, to further ac-
celerate VB estimation for large datasets, stochastic variational inference methods can be
leveraged (see Hoffman et al., 2013, Tan, 2017).
Adaptations of VB to other discrete choice models, new contexts and applications may
benefit from fundamental advancements in the underlying VB procedure. First, in this
paper, we have considered extensions to a standard VB approach, which relies on the KL
divergence and the mean-field assumption. While computationally-convenient, the KL
divergence is known to be a relatively loose bound, which may in turn lead to an under-
estimation of posterior variances (see Zhang et al., 2018, and the literature cited therein).
Thus, other probability divergences such as α- and f-divergences (also see Zhang et al.,
2018, for an overview) may be explored in future work. The mean-field assumption is
computationally convenient, but it restricts the flexibility of the variational distribution to
an extent that the exact posterior can never be assumed by its variational approximation
(Zhang et al., 2018). The quality of the variational distribution may be improved by in-
jecting structure into the formulation of the variational distribution. This may be achieved
by explicitly recognizing that some parameters are hierarchically dependent (e.g. Ran-
ganath et al., 2016). Second, Markov chain variational inference (MCVI; Salimans et al.,
2015, Wolf et al., 2016) seeks to combine the conceptual benefits of MCMC and VB, i.e.
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i.e. accurate inferences and fast estimation, respectively. Developing an MCVI method
for MMNL is another potential direction for future research. Third, enhancements in the
analytical and simulation-based approximation of E-LSE could lead to further improve-
ments in the computational efficiency and quality of the VB methods. Improvements in
computational efficiency may also be realized by leveraging advancements in technical
computing soft- and hardware.
Finally, another avenue for future research is to contrast the VB methods considered in
the current study with other emerging analytical approximation methods proposed in
the frequentist context such as the Maximum Approximate Composite Marginal Like-
lihood (MACML) approach (Bhat and Dubey, 2014, Bhat and Lavieri, 2018, Bhat and
Sidharthan, 2011, Patil et al., 2017).
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A Optimal densities of conjugate variational factors

A.1 q∗(ak)

q∗(ak) ∝ expE−ak {lnP(ak|s, rk) + lnP(Ω|ω,B)}

∝ expE−ak

{
(s− 1) lnak − rkak +

ω

2
lnBkk −

1

2
Bkk

(
Ω−1

)
kk

}
∝ exp

{(
ν+ K

2
− 1

)
lnak −

(
rk + νE−ak

{(
Ω−1

)
kk

})
ak

}
∝ Gamma(c, dk),

(40)

where c = ν+K
2

and dk = 1
A2k

+ νE−ak

{(
Ω−1

)
kk

}
. Furthermore, we note that Eak = c

dk

and d =
(
d1 . . . dK

)>.

A.2 q∗(ζ)

q∗(ζ) ∝ expE−ζ

{
lnP(ζ|µ0,Σ0) +

N∑
n=1

lnP(βn|ζ,Ω)

}

∝ expE−ζ

{
−
1

2
ζ>Σ−1

0 ζ+ ζ
>Σ−1

0 µ0 −
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2
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N∑
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∝ exp
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∝ Normal(µζ,Σζ),

(41)

whereΣζ =
(
Σ−1
0 +NE−ζ

{
Ω−1
})−1

andµζ = Σζ
(
Σ−1
0 µ0 + E−ζ

{
Ω−1
}∑N

n=1 E−ζβn

)
.

Furthermore, we note that Eζ = µζ and Eβn = µβn .

A.3 q∗(Ω)

q∗(Ω) ∝ expE−Ω

{
lnP(Ω|ω,B) +

N∑
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lnP(βn|ζ,Ω)
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(42)

wherew = ν+N+K−1 andΘ = 2νdiag
(
c
d
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+NΣζ+

∑N
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Σβn + (µβn − µζ)(µβn − µζ)
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>
ζ + Σζ. Furthermore, we note
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that E{Ω−1} = wΘ−1 and E{ln |Ω|} = ln |Θ|+ C, where C is a constant.

B True population parameters for the simulation study

α =



−0.3280
−0.3390
−0.3900
−0.9460
−0.5840
−1.2790
−0.4520


for scenarios 3 and 4 (43)

ζ =
[
−1.0430 1.5700 0.7720 −0.5260

]> (44)

σ =
[
1.1305 1.0328 1.1673 1.2225

]> (45)

Ψ =




1.0000 −0.2398 −0.1834 0.2229

−0.2398 1.0000 0.2550 −0.2703

−0.1834 0.2550 1.0000 −0.3119

0.2229 −0.2703 −0.3119 1.0000

 for scenarios 1 and 3


1.0000 −0.5000 −0.5000 0.4000

−0.5000 1.0000 0.4000 −0.4000

−0.5000 0.4000 1.0000 −0.4000

0.4000 −0.4000 −0.4000 1.0000

 for scenarios 2 and 4

(46)
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