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Abstract

We propose and validate a model for pedestrian walking behavior, based
on discrete choice modeling. Two main behaviors are identified: wuncon-
strained and constrained. The constrained patterns are captured by a
leader-follower model and by a colliston avoidance model. The spatial
correlation between the alternatives is taken into account defining a cross
nested logit model. The model is estimated by maximum likelihood esti-
mation on a real data set of pedestrian trajectories, manually tracked from
video sequences. The model is validated using a bi-directional flow data
set, collected in controlled experimental conditions at Delft university.

1 Introduction

Pedestrian behavior modeling is an important topic in different contexts. Ar-
chitects are interested in understanding how individuals move into buildings
to find out optimality criteria for space design. Transport engineers face the
problem of integration of transportation facilities, with particular emphasis on
safety issues for pedestrians. Recent tragic events have increased the interest for
automatic video surveillance systems, able to monitor pedestrian flows in pub-
lic spaces, throwing alarms when abnormal behaviors occur. Special emphasis
has been given to more specific evacuation scenarios, for obvious reasons. In
this spirit, it is important to define mathematical models based on specific (and
context-dependent) behavioral assumptions, tested by means of proper statis-
tical methods. Data collection for pedestrian dynamics is particularly difficult
and few models presented in the literature have been calibrated and validated
on real data sets.

Previous methods for pedestrian behavior modeling can be classified into two
main categories: microscopic and macroscopic models. In the last years much
more attention has been focused on microscopic modeling, where each pedestrian
is modeled as an agent, individually. Examples of microscopic models are the so-
cial forces model in Helbing and Molnar (1995) and Helbing et al. (2002) where
the authors use Newtonian mechanics with a continuous space representation to
model long-range interactions, and the multi-layer utility maximization model
by Hoogendoorn et al. (2002) and Daamen (2004). Blue and Adler (2001) and
Schadschneider (2002) use cellular automata models, characterized by a static
discretization of the space where each cell in the grid is represented by a state
variable. Another microscopic approach is based on space syntax theory where
people move through spaces following criteria of space visibility and accessibility
(see Penn and Turner, 2002) and minimizing angular paths (see Turner, 2001).
Finally, Borgers and Timmermans (1986), Whynes et al. (1996) and Dellaert



et al. (1998) focus on destination and route choice problems on network topolo-
gies. For a general literature review on pedestrian behavior modeling we refer
the interested reader to Bierlaire et al. (2003).

Leader-follower and collision avoidance behaviors have been addressed here
to face with interactions between pedestrians. Existing literature has shown
the occurrence of self-organizing processes in crowded environments. At cer-
tain levels of density, interactions between people give rise to lane formation.
In order to model these effects formally, we took inspiration from previous car
following models in transport engineering (including Newell, 1961, Herman and
Rothery, 1965, Lee, 1966, Ahmed, 1999). The main idea in these models is
that two vehicles are involved in a car following situation when a subject ve-
hicle follows a leader, normally represented by the vehicle in front, reacting to
its actions. In general, a sensitivity-stimulus framework is adopted. Accord-
ing to this framework a driver reacts to stimuli from the environment, where
the stimulus is usually the leader relative speed. Different models differ in the
specification of the sensitivity term. This modeling idea is extended here and
adapted to the more complex case of pedestrian behavior. We want to stress the
fact that in driver behavior modeling a distinction between acceleration behavior
and direction change (lane change) behavior is almost natural (see Toledo, 2003
and Toledo et al., 2003), being imposed by the transport facility itself. The
pedestrian case is more complex, the movements being two-dimensional on the
walking plane, where acceleration and direction changes are not easily separa-
ble. The collision avoidance pattern and the constrained behaviors in general
are also inspired by studies in human sciences and psychology, leading to the
concept of personal space (see Horowitz et al., 1964, Dosey and Meisels, 1969
and Sommer, 1969). Personal space is a protective mechanism founded on the
ability of the individual to perceive signals from one’s physical and social envi-
ronment. Its function is to create the spacing patterns that regulate distances
between individuals and on which individual behaviors are based (Webb and
Weber, 2003). Helbing and Molnar (1995) in their social forces model use the
term “territorial effect”. Several studies in psychology and sociology show how
individual characteristics influence the perception of the space and interpersonal
distance. Brady and Walker (1978) found for example that anxiety states are
positively correlated with interpersonal distance. Similarly, Dosey and Meisels
(1969) found that individuals establish greater distances in high-stress condi-
tions. Hartnett et al. (1974) found that male and female individuals approached
short individuals more closely than tall individuals. Other studies (Phillips, 1979
and Sanders, 1976) indicate that the other person’s body size influences space.



2 Modeling framework

In this work we refer to the general framework for pedestrian behavior described
by Hoogendoorn (2003) and Daamen (2004). Individuals make different deci-
sions, following a hierarchical scheme: strategical, tactical and operational.
Briefly, destinations and activities are chosen at a strategical level; the order of
the activity execution, the activity area choice and route choice are performed
at the tactical level, while instantaneous decisions are taken at the operational
level. In this paper we address the problem of pedestrian walking behavior, nat-
urally identified by the operational level of the hierarchy just described. We are
interested in modeling the short range behavior in normal conditions, as a re-
action to the surrounding environment and to the presence of other individuals.
With the term “normal” we refer to non-evacuation and non-panic situations.

The motivations and the soundness of discrete choice methods have been
addressed in our introductory work (Antonini et al., 2006). The objective of
this paper is twofold. First, we aim to provide an extended disaggregate, fully
estimable behavioral model, calibrated on real pedestrian trajectories manually
tracked from video sequences. Second, we want to test the coherence, inter-
pretability and generalization power of the proposed specification through a
detailed validation on external data. Compared with Antonini et al. (2006),
we present three important contributions: (i) we estimate the model using sig-
nificantly more data representing revealed walking behavior, coming from two
different sources, (ii) the model specification explicitly captures leader-follower
and collision-avoidance patterns and (iii) the model is successfully validated on
experimental data, not involved in the estimation process.

We illustrate in Figure [l the operational framework. The unconstrained de-
cisions are independent from the presence of other pedestrians and are generated
by subjective and/or unobserved factors. The first of these factors is represented
by the individual's destination. It is assumed to be exogenous to the model and
decided at the strategical level. The second factor is represented by the tendency
of people to keep their current direction, minimizing their angular displacement.
Finally, unconstrained accelerations (with accelerations we mean both positive
and negative speed variations) are dictated by the individual desired speed. The
implementation of these ideas is made through the three unconstrained patterns
indicated in Figure [I.

We assume that behavioral constraints are induced by the interactions with
the other individuals in the scene. The collision avoidance pattern is designed
to capture the effects of possible collisions on the current trajectory of the de-
cision maker. The leader-follower pattern is designed to capture the tendency
of people to follow another individual in a crowd, in order to benefit from the
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Figure 1: Conceptual framework for pedestrian walking behavior

space she is creating.

The discrete choice model introduced by Antonini et al. (2006) is extended
here. The basic elements are the same and summarized below. Pedestrian
movements and interactions take place on the horizontal walking plane. The
spatial resolution depends on the current speed vector of the individuals. The
geometrical elements of the space model are illustrated in Figure

Vndn
A

Figure 2: The basic geometrical elements of the space structure

The current position of the decision maker n is p,, her current speed v,, € IR,
her current direction is d,, € R? (normalized, so that ||d,|| = 1) and her visual
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angle is 0,,. The region of interest is situated in front of the pedestrian, ideally
overlapping with her visual field, and is schematically represented by the shaded
area in Figure Pl An adaptive discretization is obtained assuming three speed
regimes, where the individual can accelerate up to two times the speed and
decelerate up to half time the speed or can maintain the current speed. These
hypothesis seem to be coherent with real pedestrian movements. Therefore, for
a given time t, the next position will lie into one of the zones, as depicted in
Figure [ (left). A choice between 11 radial directions is allowed, as illustrated
in Figure B (right).

Accelerated

Decelerated

Figure 3: The spatial discretization is generated assuming three speed regimes
and 11 radial directions. The external numbers in the right-hand figure represent
the angular amplitudes of the radial cones, in degrees. The internal numbers (1)
refer to the enumeration of directions while s in the left-hand figure represents
the indexes used for speed regimes

A choice set of 33 alternatives is generated where each alternative corre-
sponds to a speed regime v and a radial direction d. They are numbered using
na = 11s + r where na is the index of the alternative, s and r are, respectively,
the speed regime and the direction indices, as reported in Figure B Each alter-
native is identified by the physical center of the corresponding cell in the spatial
discretization c,q4, that is

Cvd = Pn + th)

where t is the time step. The choice set varies with direction and speed there-
fore the distance between an alternative’s center and other pedestrians will vary
with the speed of the decision maker. As a consequence, differences in individual
speeds are naturally mapped into differences in their relative interactions.



3 Behavioral patterns

Individuals walk on a 2D plane and we model two kind of behavior: changes in
direction and changes in speed, i.e. accelerations. This specification is important
to perform walking behavior analysis, and hypotheses have to be made about
the unobserved factors in the model and how they are related to the observed
data (see Figure [Ml). Five behavioral patterns are defined. In a discrete choice
context, they have to be considered as competitive terms entering the utility
functions of each alternative, as reported in Equation [[I The utilities describe
the space around the decision maker and under the rational behavior assumption
the individual chooses that location (alternative) with the maximum utility. In
the following, we discuss the different patterns and the associated assumptions
in more details.

3.1 Unconstrained patterns

The unconstrained patterns are identified by those behaviors that are indepen-
dent from the presence of other pedestrians. We assume that three factors
influence the individual behavior.

e Toward destination The first factor is represented by the choice of the
final destination which can be a specific area where the individual wants
to perform an activity in her schedule. To be coherent with the general
framework introduced in Section [I] we assume that the destination choice
is performed at the strategical level in the hierarchical decision process.
Such a higher level choice is naturally reflected on the short term behavior
as the tendency of individuals to choose, for the next step, a spatial loca-
tion that minimize both the angular displacement and the distance to the
destination.

e Keep direction The second factor influencing the unconstrained behav-
ior is represented by the tendency of people to avoid frequent changings
in direction. People choose their next position in order to minimize the
angular displacement from their current movement direction. In addition
to the behavioral motivation of this factor, it also plays a smoothing role
in the model, avoiding drastic changes of direction from one time period
to the next.

e Free flow acceleration In free flow conditions the behavior of the indi-
vidual is driven by her desired speed. The acceleration is then a function of
the difference between current speed and desired speed. However, this fac-
tor is an unobserved individual characteristic and it cannot be introduced



explicitly in the model. As a consequence, we assume that the attrac-
tiveness of an individual for an acceleration is dependent on her current
speed value. Increasing speed values correspond to decreasing attractive-
ness for further accelerations. A similar idea is applied to decelerations
(see Antonini et al., 2006).

3.2 Constrained patterns

Constrained behaviors are induced by the presence of other individuals in the
scene and capture the pedestrian-pedestrian interactions. We identify the fol-

lowing patterns:
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e Leader-follower We assume that the decision maker is influenced by

leaders. In our spatial representation 11 radial cones partition the space
(see Figure[). In each of these directions a possible leader can be identified
among a set of potential leaders. A potential leader is an individual which
is inside a certain region of interest, nmot so far from the decision maker
and with a moving direction close enough to the direction of the radial
cone where she is. Among the set of potential leaders for each radial
direction, one of them is selected as leader for that direction (the closest
to the decision maker). Once identified, the leader induces an attractive
interaction on the decision maker. Similarly to car following models, a
leader acceleration corresponds to a decision maker acceleration.

Collision avoidance This pattern captures the effects of possible colli-
sions on the decision maker trajectory. For each direction in the choice
set, a collider is identified among a set of potential colliders. Another
individual is selected as a potential collider if she is inside a certain region
of interest, not so far from the decision maker and walking against the de-
cision maker herself. The collider for a radial direction is chosen from the
set of potential colliders for that direction as the individual whose walking
direction forms the larger angle with the decision maker walking direc-
tion. This pattern is associated with repulsive interactions in the obvious
sense that pedestrians change their current direction to avoid collisions
with other individuals.

The model

Following the framework proposed in Figure [l we report here the systematic
utility as perceived by individual n for the alternative identified by the speed



regime v and direction d:
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where all the 3 parameters as well as Aucc, Adec, X, p5., Vi, 68, ok, oL,
vi. 8L, &c, pe, Yo, Sc are unknown and have to be estimated. Note that this
specification is the result of an intensive modeling process, where many different
specifications have been tested. We explain in the following the different terms
of the utilities.

e Keep direction This behavior is captured by the term

Bdirdirdn

where the variable diry,, is defined as the angle in degrees between direction
d and direction d,,, corresponding to the central cone, as shown in Figure
@ For the Pg; parameter we expect a negative sign.

e Toward destination This behavior is captured by the term

Baaistddistyan + Paairddirgn

where the variable ddist,q, is defined as the distance (in meters) between
the destination and the center of the alternative C, 4., while ddirg,, is de-
fined as the angle in degrees between the destination and the alternative’s
direction d, as shown in Figure @l We expect a negative sign for both the
Baair and [aqgist parameters.

e Free flow acceleration We define two parameters for the free flow accel-
eration (deceleration) terms, RBacc and Pec:
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Figure 4. The elements capturing the keep direction and toward destination
behaviors

@acc = Iv,acc Bacc (vn/vmax))\acc )
Bdec - Iv,dec Bdec (vn/vmax ) Adec

The attribute I, .. 1s 1 if v = v.., that is, if the alternative corresponds
to an acceleration and O otherwise. I;gec is similarly defined. The two
parameters are non-linear functions of the current speed of the decision-
maker v,. .. is the value of the parameter associated with v,, = vy
and A, is the elasticity of the parameter with respect to speed. vpnax
represents the maximum value of the observed speed module. We expect
negative signs for the .., Paec and Agec parameters, while a positive sign
is expected for A,..

e Leader-follower The leader-follower model captures the attractive inter-
actions among pedestrians and is given by the following terms
L L L
IV,aCCIL_cc OCL_CCDE&CCAVZEL‘CCAGE%CC + IV:deC Ili_ec (x‘dLecDIEidecszdec Aelé_dec :
It is described by a sensitivity/stimulus framework. The leader for each
direction is chosen considering several potential leaders, as shown in Fig-

ure p(a)l An individual k is defined as a potential leader based on the
following indicator function:

1, if d; < dyx < d, (isin the cone),

* — and 0 < Dy < Dy, (not too far),

9 and 0 < |ABy| < A8y, (walking in almost the same direction),
0, otherwise,
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where d, and d, represent the bounding left and right directions of the
choice set (defining the region of interest) while dy is the direction identi-
fying the pedestrian k position. Dy is the distance between pedestrian k
and the decision maker, ABy = 0, — 04 is the difference between the move-
ment direction of pedestrian k (6;) and the angle characterizing direction
d, i.e. the direction identifying the radial cone where individual k lies (04).
The two thresholds Dy, and A0y, are fixed at the values Dy, = 5D nax,
where Do is the radius of the choice set, and A8, = 10 degrees. We
assume an implicit leader choice process, executed by the decision maker
herself and modeled choosing as leader for each direction the potential
leader at the minimum distance D; = minyck(Dy), illustrated in Figure
by the darker circles. Finally, the indicator functions I, q.c and I, gec
discriminate between accelerated and decelerated alternatives, as for the
free flow acceleration model.

Figure 5: Figure illustrates how many potential leaders are considered for
each direction and how only the nearest one is chosen as leader for a specific
direction (darker circles). Figure shows the leader’s movement direction,
01, the direction of the radial cone where the leader lies, 04, and her distance
from the decision maker, D, used in the definitions of both the sensitivity and
the stimulus terms

For a given leader, the sensitivity is described by

sensitivity = f(Dy) = oD’ (2)

where D; represents the distance between the decision maker and the
leader. The parameters océ and pé have to be estimated and g = {acc, dec}
indicates when the leader is accelerating with respect to the decision maker.
Both ol . and ol are expected to be positive while a negative sign is ex-

pected for pL_ and pl_..
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The decision maker reacts to stimuli coming from the chosen leader. We
model the stimulus as a function of the leader’s relative speed Av; and the
leader’s relative direction A9 as follows:

with Av; = |vi —v,|, where v; and v,, are the leader’s speed module and the
decision maker’s speed module, respectively. The variable AB; = 0 — 04,
where 01 represents the leader’s movement direction and 04 is the angle
characterizing direction d, as shown in Figure Positive signs are
expected for both the vy and yL _parameters, while we expect a negative
sign for both the 8L and 65 .. A leader acceleration induces a decision

maker’s acceleration. A substantially different movement direction in the
leader reduces the influence of the latter on the decision maker.

Collision avoidance The collision avoidance model captures the repulsive
interactions among pedestrians and is given by the following term

— oD Yy 13
Id’anC(xCe pc CAVCCAGCC.

The collider for each direction is chosen considering several potential col-
liders, as shown in Figure An individual k is defined as a potential
collider based on the following indicator function:

1, if dy < dyx < d, (is in the cone),

and 0 < Dy < Dy;, (not too far),

and § < |A8| <7 (walking in the other direction),
0, otherwise,

where d;, d, and dy are the same as those defined for the leader-follower
model. Dy is now the distance between individual k and the center of
the alternative, A8y, = 0y — 04, is the difference between the movement
direction of pedestrian k, 0y, and the movement direction of the decision
maker, 04,. The value of the distance threshold is now fixed to Dy, =
10D max- We use a larger value compared to the leader-follower model,
assuming the collision avoidance behavior being a longer range interaction,
happening also at a lower density level. We assume an implicit collider
choice process, which is deterministic and decision-maker specific. Among
the set of K4 potential colliders for direction d, a collider is chosen in each
cone as that individual having A8 = maxyeck, |ABx|. The related indicator
function is Ic. Finally, the collision avoidance term is included in the
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utility functions of all the alternatives, with the exception of the central
ones which are used as references. So, the indicator function I4 4, is equal
to 1 for those alternatives that are not in the current direction (d # d.),
0 otherwise.

Figure 6: Figure shows many potential colliders taken into account for
each direction. Figure shows the collider and decision maker movement
directions, 08¢ and 04, respectively. Dc represents here the distance of the
collider with the center of the alternative

We apply a similar sensitivity/stimulus framework, where the sensitivity
function is defined as

sensitivity = f(D¢) = ace PePe (4)

where the parameters oc and pc, that have to be estimated, are expected
to have both a negative sign and D is the distance between the collider
position and the center of the alternative, as shown in Figure We
choose the exponential to keep the same functional form as that used in
Antonini et al. (2006). The decision maker reacts to stimuli coming from
the collider. We model the stimulus as a function of two variables:

stimulus = f(Avc, ABc) = AV AR (5)

with AO¢c = 0¢c — 04,,, where O¢ is the collider movement direction and
04, 1s the decision maker movement direction, and Av¢ = v + vy, where
vc is the collider’s speed module and v, is the decision maker’s speed
module. The parameters yc and dc have to be estimated and a positive
sign is expected for both of them. Individuals walking against the deci-
sion maker at higher speeds and in more frontal directions (higher A8¢)
generate stronger reactions, weighted by the sensitivity function.
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We use the cross nested logit (CNL) specification used in Antonini et al.
(2006). Such a model allows flexible correlation structures in the choice set,
keeping a closed form solution. The CNL being a Multivariate Extreme Value
model (MEV, see McFadden, 1978), the probability of choosing alternative i
within the choice set C is:

yig_i(yh --->y])
(6)
HG(UM )y])

where ] is the number of alternatives in C, y; = e" with V; the systematic part
of the utility described by ({l) and G is the following generating function:

P(IC) =

u

M m
Glyr,yy) = ) (Zm}ﬁa%) (7)

m=1 jeC

where M is the number of nests, oy, > 0,Vj, m, Zﬁi; ®m > 0,Y), u > 0,
Um > 0,Vm and p < pwy, Vm. This formulation leads to the following expression
for the choice probability formula, using y; = e“:

B
M o yhm/m .”m)“”‘ m /b
PUIC) = Z <Z)€C Xm Y o(i”m Hy{t (8)
M Bn /WL Hn “L" Z O(«Hm/uy Hm
m=13 <ZjeC Xin Y ) jec im %

We assume a correlation structure depending on the speed and direction and
we identify five nests: accelerated, constant speed, decelerated, central and not
central. This correlation structure is illustrated in Figure [l Given the lack of
any a priori information, we fix the degrees of membership to the different nests
(otjm) to the constant value 0.5. The parameter p is normalized to 1, and the
nest parameters p,, are estimated.

ACC

(accelerated)

CONST

(constant speed)

DEC

(decelerated)

NOC

(not central)

NOC

(not central)

Figure 7: left: Nesting based on direction right: Nesting based on speed
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(a) Japanese scenario (b) Swiss scenario

Figure 8: Images from the two scenarios used to collect the data set

5 Data

The data set used to estimate the model consists of pedestrian trajectories man-
ually tracked from video sequences. We have pooled together two different data
sets, collected separately in Switzerland and Japan.

The Swiss data set This part of the data set consists of 36 pedestrian tra-
jectories, manually tracked from a digital video sequence. The scene has been
recorded out of the Flon metro station in Lausanne, in 2002, for a total of 1675
observed positions. Each position refers to a reference system on the walking
plane, after a calibration of the camera. For a detailed description of this first
data set we refer the reader to Antonini et al. (2006).

The Japanese data set This data set has been collected in Sendai, Japan, on
August 2000 (see Teknomo et al., 2000, Teknomo, 2002). The video sequence has
been recorded from the 6th floor of the JTB parking building (around 19 meters
height), situated at a large pedestrian crossing point. Two main pedestrian flows
cross the street, giving rise to a large number of interactions. In this context,
190 pedestrian trajectories have been manually tracked, with a time step of 1
second, for a total number of 10200 position observations. The collected data
contains the pedestrian identifier, the time step and the image coordinates. The
mapping between the image plane and the walking plane is approximated by a
2D-affine transformation, whose parameters are calibrated by linear regression.
The reference system on the walking plane has the origin arbitrarily placed on
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the bottom left corner of the zebra crossing. The x axis represents the width of
the crossing while the y axis is the crossing length.

Two frames from the two video sequences are reported in Figure @ In Figure
we report the frequency of the revealed choices as observed in the two data
sets. The three peaks in the distributions arise on the central alternatives (6,
17, 28), as expected.

Japanese revealed choice histogram Swiss revealed choice histogram
3000 BO0 5
2500 4 500 -

2000

I
=1
a

frequencies
frequencies
w
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o
=]
a

500 - 100 4 I | I I
0 ".I.I.I."" I ‘I‘I‘ o .I." —— ‘-‘l‘lll‘l‘ll —_— 0 pil. ] | =l m

13 & 7 9 11 13 15 17 19 21 23 25 ¥ B/ 3 33 13 6 7 9 11 13 15 17 19 21 23 2 ¥ 2 3H 33

alternatives alternatives

(a) Japanese data set (b) Swiss data set

Figure 9: Revealed choices histograms

We report in Figure [[1l two examples of trajectories and in Figure [12(a)| and
Figure |12(b) the related speed-time graphs. In Figure [0 we report the speed
histogram and in Table [Il the speed statistics.

Data post-processing The original Swiss data set has been post-processed in
order to generate the input data for the estimation process. At each step, the
observed choice made by the current decision maker has been measured 3 steps
ahead in time, i.e. 0.9 seconds. As a consequence, the last four positions of
each trajectory are not used. Moreover, in both the data sets those observations
corresponding to a static pedestrian (v, = 0) and those corresponding to an
observed choice out of the choice set have been discarded.

When the two data sets are pooled together, we obtain a total of 10783
observations. Their repartition across the nests defined in Figure [ is detailed
in Table Bl

6 Estimation results

We report in Table[B the estimation results. The parameters have been estimated
using the Biogeme package (Bierlaire, 2003, biogeme.epfl.ch). It is a freeware
package for the estimation of a wide range of random utility models.
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Mean 0.668
Standard Error 0.00355
Median 0.580
Mode 0
Standard Deviation  0.358
Minimum 0
Maximum 3.940

Table 1: Speed statistics

Speed histogram
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Figure 10: Speed histogram

Trajectories
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Figure 11: Examples of two manually tracked trajectories
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Ped 1 speed Ped 2 speed
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Figure 12: Speed-time graphs for the trajectories in Figure [l

Nest # steps | % of total
acceleration 1609 14.92%
constant speed | 7894 73.21%
deceleration 1280 11.87%
central 4257 39.48%
not central 6526 60.52%

Table 2: Number of chosen steps in each nest for the real data set

We first shortly comment the results for those parameters related to the
unconstrained models (toward destination, keep direction and free flow accel-
eration). This part of the model specification is similar to that presented in
Antonini et al. (2006). The toward destination coefficients Bqq;; and Pgaist have
been estimated significantly different from zero. The assumption that destina-
tion distance and direction capture two different effects is supported by the data,
being related to the 2D nature of the pedestrian movements. Their signs are
negative, as expected, reflecting the tendency of individuals to move directly to-
wards their final destination, through the shortest path. The destination being
exogenous to the model, we interpret this behavior as the short range projection
of higher level decisions, made at the tactical level, such as (intermediate) des-
tination choice and/or activity area choice. The keep direction parameter, (g;,
is significant and has a negative sign, as expected. It captures the tendency of
people to minimize the angular displacement along their trajectories. Finally,
3 out of 4 of the free flow acceleration parameters, namely [.cc, Pgec and Aucc
have been estimated significantly different from zero. The negative signs for 3,
and (4. indicate the tendency of pedestrians to perceive variations in speed as
a disutility, both positive and negative. A positive value for the acceleration
elasticity A,.. indicates that the attractiveness of an acceleration reduces with
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Variable Coefficient ¢ test 0 ¢ test 1
name estimate

Baair -0.075 -11.81

Badist -0.661 -4.06

Bair -0.044 -5.61

Bace -4.06 -14.86

Baec -2.9 -18.30

Aace 0.746 18.00

oL 4.91 3.27

pL -0.890 -3.78

vE, 0.824 9.18

o 3.96 6.53

pk . -0.767 -7.18

YL 0.431 8.25

ke -0.0843 -1.31

xc -0.0059 -3.86

Pc -0.603 2.40

Yc 0.287 5.14

Heonst 1.4 11.39 3.26
Hnot central 1.04 7.05 0.29
Hscate 0.591 - -210.31
Sample size = 10783

Number of estimated parameters = 21

Init log-likelihood = -26270.8

Final log-likelihood = -22652.0

Likelihood ratio test = 30101.6

p? = 0.399

Table 3: CNL estimation results for the pooled data set

increases in speed, as expected. We now comment on the constrained mod-
els’ parameters. For the leader-follower behavior we note that in the case of
an accelerating leader, 3 out of 4 parameters have been estimated significantly
different from zero. The positive value for the

acc

multiplicative coefficient in-
dicates that when a leader is present (or several potential leaders are present,
so that the closest to the decision maker is considered), a leader’s acceleration
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induces a corresponding acceleration on the decision maker. The negative sign
for the distance exponential coefficient, pL _, indicates that the influence of the
leader on the decision maker acceleration behavior reduces when their relative
distance increases, as expected. The positive sign for the speed exponential coef-
ficient, yL _, shows that the utility of an acceleration increases with higher values
of the relative leader speed, as expected. The same interpretation is given for
the parameters corresponding to a decelerating leader. In this case we keep in
the model the exponential coefficient related to the direction, 8, with ¢-test
statistics equal to 1.31. Its negative sign is coherent with the leader-follower be-
havior. It reflects the fact that in those cases where the leader’s relative direction
is higher, the influence of the leader on the decision maker is lower, resulting
in a lower utility value for the decelerated alternatives. The same parameter in
the accelerating case, 8L, is not significant and it has been removed from the
model. For the estimation of the collision avoidance parameters, we fix the
exponential coefficient related to the collider relative direction, 6¢, equal to 1
for numerical convenience. The other three free parameters have been estimated
significantly different from zero. The multiplicative coefficient o is negative,
as expected. It indicates that those directions more likely to lead to a collision
have a lower utility with respect to the central (current) direction. The latter is
taken as the reference one for normalization purposes. The exponential coeffi-
cient related to the distance between the collider and the alternative, pc, has a
negative sign. It shows that a more distant collider has a less negative impact on
the alternative utility. Finally, the exponential coefficient related to the relative
speed, vy, is positive, as expected. It captures the fact that faster colliders have
a more negative impact on the utilities than slower individuals. The correlation
structure is captured by the cross nested specification. Three nest parameters
have been fixed to 1 while two are left free in the model, capturing the corre-
lation between the constant speed and the not central alternatives. The nest
parameter Mnot central 18 DOt significantly different from 1. However, we decided
to keep it in the model to avoid potential misspecification. Finally, the scale
factor (Mscale) for the Swiss data captures the variance ratio of the associated
error term between the two data sets. The scale is less than 1, so that the vari-
ance of the error term for the Japanese data set is (significantly) lower than the
variance of the error term for the Swiss observations.

We conclude this section underlying the fact that it seems natural that indi-
vidual characteristics such as age, sex, weight, height (among others) influence
the spatial perception, interpersonal distance and human-human interactions.
However, given the available data (trajectories) it is not possible to take into
account such characteristics.
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7 Model validation

The validation procedure consists in applying two models on two data sets. In
addition to the model presented in Section M, we consider also a simple model,
where the utility of each alternative is represented only by an alternative specific
constant (ASC). This ASC model perfectly reproduces the observed shares in
the sample, with 31 parameters. Indeed, there are 33 alternatives, minus one
which is never chosen, minus one constant normalized to 0. The two data sets
are the Swiss-Japanese data set described in Section [Bl, and a data set collected
in the Netherlands, which is described below.

7.1 Swiss-Japanese data set

We first apply our model with the parameters described in Table 3 on the Swiss-
Japanese data set, using the Biosim package (Bierlaire, 2003). For each obser-
vation n, we obtain a probability distribution P,,(1) over the choice set.

Figure [[3 represents the histogram of the probability value P, (i}) assigned
by the model to the chosen alternative i} of each observation n, along with
the hazard value 1/33 (where 33 is the number of alternatives). We consider
observations below this threshold as outliers. We observe that there are 12.7%
of them.

1400 - 4

Figure 13: Predicted probabilities of the Swiss-Japanese data

We compare also the estimated model with the ASC model. We observe that
our model improves the loglikelihood from -25018.22 up to -22652.0, with less
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parameters (21 instead of 31). The number of outliers with the ASC model is
13.7%

The top part of Figure M4 reports, for each i, ), P(i), and the bottom part
reports Znym, where y;, is 1 if alternative i is selected for observation m, 0
otherwise. As expected, the two histograms are similar, indicating no major
specification error.

This is confirmed when alternatives are aggregated together, by directions
(see Table @) and by speed regimes (see Table H). For a group I' of alternatives,
the quantities

Mr = ZnZiGFPTl(i’))
Rp = anieryim
and
(Mr —Rr)/Rp

are reported in columns 3, 4 and 5, respectively, of these tables.
The relative errors showed in Table 4] and Table Bl are low, except for groups
of alternatives with few observations.

Model

3500
3000
2500
2000
1500
1000

500

Reality
3500 T =

3000 - b
2500 - b
2000 - b
1500 - b
1000 - b

500 - b

5 10 15 20 25 30

Figure 14: Predicted and observed shares for the Swiss-Japanese data set

We do not discuss the application of the ASC model on this data set as, by
design, it reproduces the shares. Actually, we obtain relative errors in the range
of 0.0%—-0.5%, due to accumulation of rounding errors.

Although the above analysis indicates good specification and performance of
the model, it is not sufficient to fully validate it. Consequently, we perform now
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Cone r Mr Rr | (Mr —Ry)/Rr
Front 6.17.28 4572.95 | 4257 7.42%
Left 3—5,14—16,25—27|3075.46 | 3245 —5.22%
Right 7—9,18—20,29 — 31| 3035.96 | 3197 —5.04%
Extreme left | 1,2,12,13,23,24 70.75 | 49 44.39%
Extreme right | 10,11,21,22,32 33 27.88 35 —20.34%

Table 4: Predicted (Mr) and observed (Rr) shares for alternatives grouped by
directions with the Swiss-Japanese data set.

Area I Mr Rr (Mr— Rr)/Rr
acceleration | 1—11 | 1579.06 | 1609 —1.86%
constant speed | 12 — 22| 7924.63 | 7894 0.39%
deceleration |23 —33|1279.30 | 1280 —0.05%

Table 5: Predicted and observed shares for alternatives grouped by speed regime
with the Swiss-Japanese data set.

the same analysis on a validation data set, not involved in the estimation of the
model.

7.2 Dutch data set

This data set has been collected at Delft University, in the period 2000-2001
(Daamen and Hoogendoorn, 2003, Daamen, 2004). Volunteer pedestrians are
called to perform specific walking tasks in a controlled experimental setup, in
order to create specific pedestrian motion patterns such as one-directional flow,
bi-directional flow, walking through narrow and wide bottlenecks and crossing
flows. A first set of ezperimental variables (free speed, walking direction, den-
sity, bottlenecks) are modified during the experiments while a second group of
contert variables are pedestrian-specific.

For the purpose of our validation procedure we use the subset of the Dutch
data set corresponding to a bi-directional flow. This situation is the experimen-
tal version of the Swiss-Japanese data set, which corresponds to a walkway. The
subset includes 724 subjects for 47471 observed positions, collected by means of
pedestrian tracking techniques on video sequences, at a frequency of 1Hz. The
data format includes a pedestrian identifier, the time step and the z-y coor-
dinates. In Figure we report a typical picture illustrating the experimental
scenario. The repartition of the observations across nests defined in Figure [1 is
detailed in Table [l We note the very low number of decelerations.
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Figure 15: A representative frame from the video sequences used for data col-

lection
Nest # steps | % of total
acceleration 5273 11.12%
constant speed | 42147 88.78%
deceleration 51 0.12%
central 22132 46.62%
not central 25339 53.38%

Table 6: Number of chosen steps in each nest for Dutch data

We apply our model with the parameters described in Table 3 on the Dutch
data set, using the Biosim package. For each observation n, we obtain a proba-
bility distribution P,,(i) over the choice set.

Figure [[6l represents the histogram of the probability value P, (i},) assigned
by the model to the chosen alternative i}, of each observation n, along with the
hazard value 1/33 (where 33 is the number of alternatives) illustrating a purely
random model with equal probability. Again, we consider observations below
this threshold as outliers. We observe that there are 6.56% of them. This is less
than for the data set used for parameters estimation. The shape of the curve, as
well as the low number of outliers are signs of a good performance of the model.

Applying the estimated model to the Dutch data set, we obtain a loglikeli-
hood of -52676.78. When the ASC model is applied, that is the model replicat-
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Figure 16: Predicted probabilities for the Dutch data

ing the shares of the Swiss-Japanese data set, the loglikelihood deteriorates to
-85565.72. This clearly illustrates the superior forecasting power of our model
compared to the simple one.

The top part of Figure [T reports the predicted probabilities, that is, for each
i, >, Pn(i), and the bottom part the observed shares, that is ) yin, where yin
is 1 if alternative 1 is selected for observation n, 0 otherwise. We observe some
discrepancies between the two histograms. In particular, the model predicts
more decelerations (alternatives 22 to 33) and less accelerations (alternatives 1
to 11) compared to reality.

In order to obtain a more robust validation, that is less sensitive to the space
discretization, we aggregate alternatives together. By doing so, we decrease the
impact of small errors, where predicting neighboring cells is more valid than
predicting other cells.

Cone I Mr Rr (Mr — Rr)/Rr
Front 6,17,28 22032.21 | 22132 —0.45%
Left 3—514—-16,25—-27|12566.31 | 12939 —2.88%
Right 7—9,18—20,29 — 31| 12659.29 | 12379 2.26%
Extreme left | 1,2,12,13,23,24 93.99| 14 571.35%
Extreme right | 10,11,21,22 32,33 119.20 7 1602.88%

Table 7: Predicted (Mr) and observed (Rr) shares for alternatives grouped by
directions with the Dutch data set.
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Figure 17: Choice histogram predicted by the model against the revealed choices
in the Dutch data set

Area I Mr Rr (Mr — Rr)/Rr
acceleration | 1—11 | 2668.69 | 5273 —49.39%
constant speed | 12 — 22 | 39292.86 | 42147 —6.77%
deceleration |23 —33| 5509.46 51 10702.87%

Table 8: Predicted (Mr) and observed (Rr) shares for alternatives grouped by
speed regime with the Dutch data set.

Tables [ and B show that the model predicts well the direction and the
constant speed. We confirm the previous observation, that decelerations are
over predicted, and accelerations under predicted.

There are two explanations for this phenomenon. First, the Dutch data set
was collected in controlled experimental conditions, which may have introduced
a bias in pedestrian behavior, depending on the exact instructions they have re-
ceived. This assumption is supported by the absence of decelerations in the data
set. Second, the Dutch pedestrians walk faster than the Japanese, as reported
in Table @ and in Figure [[8 In this case, the model can predict a deceleration
because of the higher speed value. A similar reasoning holds for accelerations.

The speed distribution is quite different for the Swiss-Japanese data set and
the Dutch data set as shown in Figure I8 Indeed, the Dutch distribution seems
to be Gaussian with high mean speed, which characterize the experimental con-
ditions; while the Swiss-Japanese distribution is left-centered, relevant for a real
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situation where are more interactions (higher density of population). In this
case, high speeds are rare events.

Data Set ‘ Mean speed [m/s]
Dutch (experimental) 1.27
Japanese (real) 0.69
Swiss (real) 1.46

Table 9: Average pedestrian speed in the data sets
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Figure 18: Distribution of speed in the two data sets

We have applied the simple ASC model in the Dutch data set. As expected,
it is less powerful for prediction than the developed model (see Tables and
[1T).

For the sake of completeness, an ASC model has been calibrated on the
Dutch data set, in the same way than for the Swiss-Japanese. Our model es-
timated on the Swiss-Japanese data is better than the ASC model estimated
on the Dutch data, when applied on the Dutch data set, both for log-likelihood
(-52676.78 against -77871.06) and prediction (6.76 %, percentage of bad obser-
vations against 11.45 % ). We have summarized the various loglikelihood values
in Table T2 where each column corresponds to a model, and each row to a data
set.

In summary, we observe that our model, estimated on the Swiss-Japanese
data, performs very well in reproducing the Dutch data set in terms of directions
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Cone I Mr Rr (Mr — Rr)/Rr
Front 6,17,28 18639.80 | 22132 —15.78%
Left 3—-514—-16,25—27|14335.35 | 12939 10.79%
Right 7—9,18—20,29 —31|14101.00 | 12379 13.91%
Extreme left | 1,2,12,13,23,24 230.38| 14 1545.55%
Extreme right | 10,11,21,22 32,33 164.48 7 2249.65%

Table 10: Predicted (Mr) using the ASC model and observed (Rr) shares for
alternatives grouped by directions with the Dutch data set.

Area I Mr Rr (Mr — Rr)/Rr
acceleration | 1—11 | 7275.62| 5273 37.98%
constant speed | 12 — 22 | 34378.45 | 42147 —18.43%
deceleration |23 —33| 5816.93 51 11305.75%

Table 11: Predicted (Mr) using the ASC model and observed (Rr) shares for
alternatives grouped by speed regime with the Dutch data set.

and constant speed. The model does not perform well in forecasting accelerations
and decelerations.

8 Conclusions

In this paper we propose a discrete choice model for pedestrian walking behavior.
The short range walking behavior of individuals is modeled, identifying two
main patterns: constrained and unconstrained. The constraints are generated
by the interactions with other individuals. We describe interactions in terms
of a leader-follower and a collision avoidance models. These models capture
self-organizing effects which are characteristic of crowd behavior, such as lane
formation. Inspiration for the mathematical form of these patterns is taken from
driver behaviors in transportation science, and ideas such as the car following
model and lane changing models have been reviewed and re-adapted to the more

ASC model based on ASC model based on

Data set Our model Swiss-Japanese data Dutch data
Swiss-Japanese  -22652.00 -25018.22 —
Dutch -b2676.78 -85565.72 -77871.06

Table 12: Loglikelihood of each model applied on the two data sets
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complex pedestrian case. The difficulties to collect pedestrian data as well as the
limited information conveyed by pure dynamic data sets limit the possibilities
in the model specification step. Important individual effects cannot be captured
without the support of socio-economic characteristics. Recent development of
pedestrian laboratories, where the set up of controlled experimental conditions
is possible, represents an important step in this direction. We use experimental
data in a two step validation procedure. First, the model is validated on the
same data set used for estimation in order to check for possible specification
errors. Second, the model is run on a new data set collected at Delft University
under controlled experimental conditions. The proposed validation procedure
underline a good stability of the model and a good generalization performance.
Few observations are badly predicted, mostly concentrated at the extreme of the
choice set. The estimated coefficients are significant and their sign is consistent
with our behavioral assumptions. Differently from other previous models, we
can quantify the influence of the relative kinematic characteristics of leaders and
colliders on the decision maker behavior. Moreover, such quantitative analysis
has been performed using real world pedestrian data.

Future developments will focus in analyzing more and improving the accel-
eration and deceleration patterns. In particular, we plan to investigate the use
of an adaptive resolution of the choice set, as well as incorporating in the model
some physical characteristics of the pedestrians or of their ethnic group, such as
average height and average speed.
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