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Abstra
tWe propose and validate a model for pedestrian walking behavior, basedon dis
rete 
hoi
e modeling. Two main behaviors are identi�ed: un
on-strained and 
onstrained. The 
onstrained patterns are 
aptured by aleader-follower model and by a 
ollision avoidan
e model. The spatial
orrelation between the alternatives is taken into a

ount de�ning a 
rossnested logit model. The model is estimated by maximum likelihood esti-mation on a real data set of pedestrian traje
tories, manually tra
ked fromvideo sequen
es. The model is validated using a bi-dire
tional �ow dataset, 
olle
ted in 
ontrolled experimental 
onditions at Delft university.1 Introdu
tionPedestrian behavior modeling is an important topi
 in di�erent 
ontexts. Ar-
hite
ts are interested in understanding how individuals move into buildingsto �nd out optimality 
riteria for spa
e design. Transport engineers fa
e theproblem of integration of transportation fa
ilities, with parti
ular emphasis onsafety issues for pedestrians. Re
ent tragi
 events have in
reased the interest forautomati
 video surveillan
e systems, able to monitor pedestrian �ows in pub-li
 spa
es, throwing alarms when abnormal behaviors o

ur. Spe
ial emphasishas been given to more spe
i�
 eva
uation s
enarios, for obvious reasons. Inthis spirit, it is important to de�ne mathemati
al models based on spe
i�
 (and
ontext-dependent) behavioral assumptions, tested by means of proper statis-ti
al methods. Data 
olle
tion for pedestrian dynami
s is parti
ularly di�
ultand few models presented in the literature have been 
alibrated and validatedon real data sets.Previous methods for pedestrian behavior modeling 
an be 
lassi�ed into twomain 
ategories: mi
ros
opi
 and ma
ros
opi
 models. In the last years mu
hmore attention has been fo
used on mi
ros
opi
 modeling, where ea
h pedestrianis modeled as an agent, individually. Examples of mi
ros
opi
 models are the so-
ial for
es model in Helbing and Molnar (1995) and Helbing et al. (2002) wherethe authors use Newtonian me
hani
s with a 
ontinuous spa
e representation tomodel long-range intera
tions, and the multi-layer utility maximization modelby Hoogendoorn et al. (2002) and Daamen (2004). Blue and Adler (2001) andS
hads
hneider (2002) use 
ellular automata models, 
hara
terized by a stati
dis
retization of the spa
e where ea
h 
ell in the grid is represented by a statevariable. Another mi
ros
opi
 approa
h is based on spa
e syntax theory wherepeople move through spa
es following 
riteria of spa
e visibility and a

essibility(see Penn and Turner, 2002) and minimizing angular paths (see Turner, 2001).Finally, Borgers and Timmermans (1986), Whynes et al. (1996) and Dellaert2



et al. (1998) fo
us on destination and route 
hoi
e problems on network topolo-gies. For a general literature review on pedestrian behavior modeling we referthe interested reader to Bierlaire et al. (2003).Leader-follower and 
ollision avoidan
e behaviors have been addressed hereto fa
e with intera
tions between pedestrians. Existing literature has shownthe o

urren
e of self-organizing pro
esses in 
rowded environments. At 
er-tain levels of density, intera
tions between people give rise to lane formation.In order to model these e�e
ts formally, we took inspiration from previous 
arfollowing models in transport engineering (in
luding Newell, 1961, Herman andRothery, 1965, Lee, 1966, Ahmed, 1999). The main idea in these models isthat two vehi
les are involved in a 
ar following situation when a subje
t ve-hi
le follows a leader, normally represented by the vehi
le in front, rea
ting toits a
tions. In general, a sensitivity-stimulus framework is adopted. A

ord-ing to this framework a driver rea
ts to stimuli from the environment, wherethe stimulus is usually the leader relative speed. Di�erent models di�er in thespe
i�
ation of the sensitivity term. This modeling idea is extended here andadapted to the more 
omplex 
ase of pedestrian behavior. We want to stress thefa
t that in driver behavior modeling a distin
tion between a

eleration behaviorand dire
tion 
hange (lane 
hange) behavior is almost natural (see Toledo, 2003and Toledo et al., 2003), being imposed by the transport fa
ility itself. Thepedestrian 
ase is more 
omplex, the movements being two-dimensional on thewalking plane, where a

eleration and dire
tion 
hanges are not easily separa-ble. The 
ollision avoidan
e pattern and the 
onstrained behaviors in generalare also inspired by studies in human s
ien
es and psy
hology, leading to the
on
ept of personal spa
e (see Horowitz et al., 1964, Dosey and Meisels, 1969and Sommer, 1969). Personal spa
e is a prote
tive me
hanism founded on theability of the individual to per
eive signals from one's physi
al and so
ial envi-ronment. Its fun
tion is to 
reate the spa
ing patterns that regulate distan
esbetween individuals and on whi
h individual behaviors are based (Webb andWeber, 2003). Helbing and Molnar (1995) in their so
ial for
es model use theterm �territorial e�e
t�. Several studies in psy
hology and so
iology show howindividual 
hara
teristi
s in�uen
e the per
eption of the spa
e and interpersonaldistan
e. Brady and Walker (1978) found for example that anxiety states arepositively 
orrelated with interpersonal distan
e. Similarly, Dosey and Meisels(1969) found that individuals establish greater distan
es in high-stress 
ondi-tions. Hartnett et al. (1974) found that male and female individuals approa
hedshort individuals more 
losely than tall individuals. Other studies (Phillips, 1979and Sanders, 1976) indi
ate that the other person's body size in�uen
es spa
e.
3



2 Modeling frameworkIn this work we refer to the general framework for pedestrian behavior des
ribedby Hoogendoorn (2003) and Daamen (2004). Individuals make di�erent de
i-sions, following a hierar
hi
al s
heme: strategi
al, ta
ti
al and operational.Brie�y, destinations and a
tivities are 
hosen at a strategi
al level; the order ofthe a
tivity exe
ution, the a
tivity area 
hoi
e and route 
hoi
e are performedat the ta
ti
al level, while instantaneous de
isions are taken at the operationallevel. In this paper we address the problem of pedestrian walking behavior, nat-urally identi�ed by the operational level of the hierar
hy just des
ribed. We areinterested in modeling the short range behavior in normal 
onditions, as a re-a
tion to the surrounding environment and to the presen
e of other individuals.With the term �normal� we refer to non-eva
uation and non-pani
 situations.The motivations and the soundness of dis
rete 
hoi
e methods have beenaddressed in our introdu
tory work (Antonini et al., 2006). The obje
tive ofthis paper is twofold. First, we aim to provide an extended disaggregate, fullyestimable behavioral model, 
alibrated on real pedestrian traje
tories manuallytra
ked from video sequen
es. Se
ond, we want to test the 
oheren
e, inter-pretability and generalization power of the proposed spe
i�
ation through adetailed validation on external data. Compared with Antonini et al. (2006),we present three important 
ontributions: (i) we estimate the model using sig-ni�
antly more data representing revealed walking behavior, 
oming from twodi�erent sour
es, (ii) the model spe
i�
ation expli
itly 
aptures leader-followerand 
ollision-avoidan
e patterns and (iii) the model is su

essfully validated onexperimental data, not involved in the estimation pro
ess.We illustrate in Figure 1 the operational framework. The un
onstrained de-
isions are independent from the presen
e of other pedestrians and are generatedby subje
tive and/or unobserved fa
tors. The �rst of these fa
tors is representedby the individual's destination. It is assumed to be exogenous to the model andde
ided at the strategi
al level. The se
ond fa
tor is represented by the tenden
yof people to keep their 
urrent dire
tion, minimizing their angular displa
ement.Finally, un
onstrained a

elerations (with a

elerations we mean both positiveand negative speed variations) are di
tated by the individual desired speed. Theimplementation of these ideas is made through the three un
onstrained patternsindi
ated in Figure 1.We assume that behavioral 
onstraints are indu
ed by the intera
tions withthe other individuals in the s
ene. The 
ollision avoidan
e pattern is designedto 
apture the e�e
ts of possible 
ollisions on the 
urrent traje
tory of the de-
ision maker. The leader-follower pattern is designed to 
apture the tenden
yof people to follow another individual in a 
rowd, in order to bene�t from the4



Pedestrian walking behavior
Un
onstrained Constrained

Keep Toward Free �owdire
tion destination a

/de
 Collision Leaderavoidan
e followerFigure 1: Con
eptual framework for pedestrian walking behaviorspa
e she is 
reating.The dis
rete 
hoi
e model introdu
ed by Antonini et al. (2006) is extendedhere. The basi
 elements are the same and summarized below. Pedestrianmovements and intera
tions take pla
e on the horizontal walking plane. Thespatial resolution depends on the 
urrent speed ve
tor of the individuals. Thegeometri
al elements of the spa
e model are illustrated in Figure 2.

Figure 2: The basi
 geometri
al elements of the spa
e stru
tureThe 
urrent position of the de
ision maker n is pn, her 
urrent speed vn ∈ IR,her 
urrent dire
tion is dn ∈ IR2 (normalized, so that ‖dn‖ = 1) and her visual5



angle is θn. The region of interest is situated in front of the pedestrian, ideallyoverlapping with her visual �eld, and is s
hemati
ally represented by the shadedarea in Figure 2. An adaptive dis
retization is obtained assuming three speedregimes, where the individual 
an a

elerate up to two times the speed andde
elerate up to half time the speed or 
an maintain the 
urrent speed. Thesehypothesis seem to be 
oherent with real pedestrian movements. Therefore, fora given time t, the next position will lie into one of the zones, as depi
ted inFigure 3 (left). A 
hoi
e between 11 radial dire
tions is allowed, as illustratedin Figure 3 (right).

Figure 3: The spatial dis
retization is generated assuming three speed regimesand 11 radial dire
tions. The external numbers in the right-hand �gure representthe angular amplitudes of the radial 
ones, in degrees. The internal numbers (r)refer to the enumeration of dire
tions while s in the left-hand �gure representsthe indexes used for speed regimesA 
hoi
e set of 33 alternatives is generated where ea
h alternative 
orre-sponds to a speed regime v and a radial dire
tion d. They are numbered using
na = 11s + r where na is the index of the alternative, s and r are, respe
tively,the speed regime and the dire
tion indi
es, as reported in Figure 3. Ea
h alter-native is identi�ed by the physi
al 
enter of the 
orresponding 
ell in the spatialdis
retization cvd, that is

cvd = pn + vtd,where t is the time step. The 
hoi
e set varies with dire
tion and speed there-fore the distan
e between an alternative's 
enter and other pedestrians will varywith the speed of the de
ision maker. As a 
onsequen
e, di�eren
es in individualspeeds are naturally mapped into di�eren
es in their relative intera
tions.
6



3 Behavioral patternsIndividuals walk on a 2D plane and we model two kind of behavior: 
hanges indire
tion and 
hanges in speed, i.e. a

elerations. This spe
i�
ation is importantto perform walking behavior analysis, and hypotheses have to be made aboutthe unobserved fa
tors in the model and how they are related to the observeddata (see Figure 1). Five behavioral patterns are de�ned. In a dis
rete 
hoi
e
ontext, they have to be 
onsidered as 
ompetitive terms entering the utilityfun
tions of ea
h alternative, as reported in Equation 1. The utilities des
ribethe spa
e around the de
ision maker and under the rational behavior assumptionthe individual 
hooses that lo
ation (alternative) with the maximum utility. Inthe following, we dis
uss the di�erent patterns and the asso
iated assumptionsin more details.3.1 Un
onstrained patternsThe un
onstrained patterns are identi�ed by those behaviors that are indepen-dent from the presen
e of other pedestrians. We assume that three fa
torsin�uen
e the individual behavior.� Toward destination The �rst fa
tor is represented by the 
hoi
e of the�nal destination whi
h 
an be a spe
i�
 area where the individual wantsto perform an a
tivity in her s
hedule. To be 
oherent with the generalframework introdu
ed in Se
tion 1, we assume that the destination 
hoi
eis performed at the strategi
al level in the hierar
hi
al de
ision pro
ess.Su
h a higher level 
hoi
e is naturally re�e
ted on the short term behavioras the tenden
y of individuals to 
hoose, for the next step, a spatial lo
a-tion that minimize both the angular displa
ement and the distan
e to thedestination.� Keep dire
tion The se
ond fa
tor in�uen
ing the un
onstrained behav-ior is represented by the tenden
y of people to avoid frequent 
hangingsin dire
tion. People 
hoose their next position in order to minimize theangular displa
ement from their 
urrent movement dire
tion. In additionto the behavioral motivation of this fa
tor, it also plays a smoothing rolein the model, avoiding drasti
 
hanges of dire
tion from one time periodto the next.� Free �ow a

eleration In free �ow 
onditions the behavior of the indi-vidual is driven by her desired speed. The a

eleration is then a fun
tion ofthe di�eren
e between 
urrent speed and desired speed. However, this fa
-tor is an unobserved individual 
hara
teristi
 and it 
annot be introdu
ed7



expli
itly in the model. As a 
onsequen
e, we assume that the attra
-tiveness of an individual for an a

eleration is dependent on her 
urrentspeed value. In
reasing speed values 
orrespond to de
reasing attra
tive-ness for further a

elerations. A similar idea is applied to de
elerations(see Antonini et al., 2006).3.2 Constrained patternsConstrained behaviors are indu
ed by the presen
e of other individuals in thes
ene and 
apture the pedestrian-pedestrian intera
tions. We identify the fol-lowing patterns:� Leader-follower We assume that the de
ision maker is in�uen
ed byleaders. In our spatial representation 11 radial 
ones partition the spa
e(see Figure 3). In ea
h of these dire
tions a possible leader 
an be identi�edamong a set of potential leaders. A potential leader is an individual whi
his inside a 
ertain region of interest, not so far from the de
ision makerand with a moving dire
tion 
lose enough to the dire
tion of the radial
one where she is. Among the set of potential leaders for ea
h radialdire
tion, one of them is sele
ted as leader for that dire
tion (the 
losestto the de
ision maker). On
e identi�ed, the leader indu
es an attra
tiveintera
tion on the de
ision maker. Similarly to 
ar following models, aleader a

eleration 
orresponds to a de
ision maker a

eleration.� Collision avoidan
e This pattern 
aptures the e�e
ts of possible 
olli-sions on the de
ision maker traje
tory. For ea
h dire
tion in the 
hoi
eset, a 
ollider is identi�ed among a set of potential 
olliders. Anotherindividual is sele
ted as a potential 
ollider if she is inside a 
ertain regionof interest, not so far from the de
ision maker and walking against the de-
ision maker herself. The 
ollider for a radial dire
tion is 
hosen from theset of potential 
olliders for that dire
tion as the individual whose walkingdire
tion forms the larger angle with the de
ision maker walking dire
-tion. This pattern is asso
iated with repulsive intera
tions in the obvioussense that pedestrians 
hange their 
urrent dire
tion to avoid 
ollisionswith other individuals.4 The modelFollowing the framework proposed in Figure 1 we report here the systemati
utility as per
eived by individual n for the alternative identi�ed by the speed8



regime v and dire
tion d:
Vvdn = βdirdirdn +

} keep dire
tion
βddistddistvdn +

βddirddirdn +

} toward destination
βa

Iv,a

(vn/vmax)λa

 +

βde
Iv,de
(vn/vmax)λde
 +

} free �ow a

eleration
Iv,a

ILa

αLa

DρLa



L ∆v
γLa


L ∆θ

δLa


L +

Iv,de
ILde
αLde
DρLde

L ∆v

γLde

L ∆θ

δLde

L +







leader-follower
Id,dnICαCe−ρCDC∆v

γC

C ∆θ
δC

C

} 
ollision avoidan
e
(1)

where all the β parameters as well as λa

, λde
, αLa

, ρLa

, γLa

, δLa

, αLde
, ρLde
,
γLde
, δLde
, αC, ρC, γC, δC are unknown and have to be estimated. Note that thisspe
i�
ation is the result of an intensive modeling pro
ess, where many di�erentspe
i�
ations have been tested. We explain in the following the di�erent termsof the utilities.� Keep dire
tion This behavior is 
aptured by the term

βdirdirdnwhere the variable dirdn is de�ned as the angle in degrees between dire
tion
d and dire
tion dn, 
orresponding to the 
entral 
one, as shown in Figure4. For the βdir parameter we expe
t a negative sign.� Toward destination This behavior is 
aptured by the term

βddistddistvdn + βddirddirdnwhere the variable ddistvdn is de�ned as the distan
e (in meters) betweenthe destination and the 
enter of the alternative Cvdn, while ddirdn is de-�ned as the angle in degrees between the destination and the alternative'sdire
tion d, as shown in Figure 4. We expe
t a negative sign for both the
βddir and βddist parameters.� Free �ow a

eleration We de�ne two parameters for the free �ow a

el-eration (de
eleration) terms, �βa

 and �βde
:9



Figure 4: The elements 
apturing the keep dire
tion and toward destinationbehaviors �βa

 = Iv,a

βa

(vn/vmax)λa

 ,�βde
 = Iv,de
βde
(vn/vmax)λde
The attribute Iv,a

 is 1 if v = va

, that is, if the alternative 
orrespondsto an a

eleration and 0 otherwise. Iv,de
 is similarly de�ned. The twoparameters are non-linear fun
tions of the 
urrent speed of the de
ision-maker vn. βa

 is the value of the parameter asso
iated with vn = vmaxand λa

 is the elasti
ity of the parameter with respe
t to speed. vmaxrepresents the maximum value of the observed speed module. We expe
tnegative signs for the βa

, βde
 and λde
 parameters, while a positive signis expe
ted for λa

.� Leader-follower The leader-follower model 
aptures the attra
tive inter-a
tions among pedestrians and is given by the following terms
Iv,a

ILa

αLa

DρLa



L ∆v
γLa


L ∆θ

δLa


L + Iv,de
ILde
αLde
DρLde


L ∆v
γLde

L ∆θ

δLde

L .It is des
ribed by a sensitivity/stimulus framework. The leader for ea
hdire
tion is 
hosen 
onsidering several potential leaders, as shown in Fig-ure 5(a). An individual k is de�ned as a potential leader based on thefollowing indi
ator fun
tion:

Ik
g =



















1, if dl ≤ dk ≤ dr (is in the 
one),and 0 < Dk ≤ Dth (not too far),and 0 < |∆θk| ≤ ∆θth (walking in almost the same dire
tion),
0, otherwise, 10



where dl and dr represent the bounding left and right dire
tions of the
hoi
e set (de�ning the region of interest) while dk is the dire
tion identi-fying the pedestrian k position. Dk is the distan
e between pedestrian kand the de
ision maker, ∆θk = θk −θd is the di�eren
e between the move-ment dire
tion of pedestrian k (θk) and the angle 
hara
terizing dire
tion
d, i.e. the dire
tion identifying the radial 
one where individual k lies (θd).The two thresholds Dth and ∆θth are �xed at the values Dth = 5Dmax,where Dmax is the radius of the 
hoi
e set, and ∆θth = 10 degrees. Weassume an impli
it leader 
hoi
e pro
ess, exe
uted by the de
ision makerherself and modeled 
hoosing as leader for ea
h dire
tion the potentialleader at the minimum distan
e DL = mink∈K(Dk), illustrated in Figure5(a) by the darker 
ir
les. Finally, the indi
ator fun
tions Iv,acc and Iv,decdis
riminate between a

elerated and de
elerated alternatives, as for thefree �ow a

eleration model.

(a) (b)Figure 5: Figure 5(a) illustrates how many potential leaders are 
onsidered forea
h dire
tion and how only the nearest one is 
hosen as leader for a spe
i�
dire
tion (darker 
ir
les). Figure 5(b) shows the leader's movement dire
tion,
θL, the dire
tion of the radial 
one where the leader lies, θd, and her distan
efrom the de
ision maker, DL, used in the de�nitions of both the sensitivity andthe stimulus termsFor a given leader, the sensitivity is des
ribed bysensitivity = f(DL) = αL

gD
ρL

g

L (2)where DL represents the distan
e between the de
ision maker and theleader. The parameters αL
g and ρL

g have to be estimated and g = {acc, dec}indi
ates when the leader is a

elerating with respe
t to the de
ision maker.Both αLa

 and αLde
 are expe
ted to be positive while a negative sign is ex-pe
ted for ρLa

 and ρLde
. 11



The de
ision maker rea
ts to stimuli 
oming from the 
hosen leader. Wemodel the stimulus as a fun
tion of the leader's relative speed ∆vL and theleader's relative dire
tion ∆θL as follows:stimulus = g(∆vL, ∆θL) = ∆v
γL

g

L ∆θ
δL

g

L (3)with ∆vL = |vL−vn|, where vL and vn are the leader's speed module and thede
ision maker's speed module, respe
tively. The variable ∆θL = θL − θd,where θL represents the leader's movement dire
tion and θd is the angle
hara
terizing dire
tion d, as shown in Figure 5(b). Positive signs areexpe
ted for both the γLa

 and γLde
 parameters, while we expe
t a negativesign for both the δLa

 and δLde
. A leader a

eleration indu
es a de
isionmaker's a

eleration. A substantially di�erent movement dire
tion in theleader redu
es the in�uen
e of the latter on the de
ision maker.� Collision avoidan
e The 
ollision avoidan
e model 
aptures the repulsiveintera
tions among pedestrians and is given by the following term
Id,dnICαCe−ρCDC∆v

γC

C ∆θδC

C .The 
ollider for ea
h dire
tion is 
hosen 
onsidering several potential 
ol-liders, as shown in Figure 6(a). An individual k is de�ned as a potential
ollider based on the following indi
ator fun
tion:
Ik
C =



















1, if dl ≤ dk ≤ dr (is in the 
one),and 0 < Dk ≤ D ′

th (not too far),and π
2
≤ |∆θk| ≤ π (walking in the other dire
tion),

0, otherwise,where dl, dr and dk are the same as those de�ned for the leader-followermodel. Dk is now the distan
e between individual k and the 
enter ofthe alternative, ∆θk = θk − θdn is the di�eren
e between the movementdire
tion of pedestrian k, θk, and the movement dire
tion of the de
isionmaker, θdn . The value of the distan
e threshold is now �xed to D ′

th =

10Dmax. We use a larger value 
ompared to the leader-follower model,assuming the 
ollision avoidan
e behavior being a longer range intera
tion,happening also at a lower density level. We assume an impli
it 
ollider
hoi
e pro
ess, whi
h is deterministi
 and de
ision-maker spe
i�
. Amongthe set of Kd potential 
olliders for dire
tion d, a 
ollider is 
hosen in ea
h
one as that individual having ∆θC = maxk∈Kd
|∆θk|. The related indi
atorfun
tion is IC. Finally, the 
ollision avoidan
e term is in
luded in the12



utility fun
tions of all the alternatives, with the ex
eption of the 
entralones whi
h are used as referen
es. So, the indi
ator fun
tion Id,dn is equalto 1 for those alternatives that are not in the 
urrent dire
tion (d 6= dn),0 otherwise.

(a) (b)Figure 6: Figure 6(a) shows many potential 
olliders taken into a

ount forea
h dire
tion. Figure 6(b) shows the 
ollider and de
ision maker movementdire
tions, θC and θdn respe
tively. DC represents here the distan
e of the
ollider with the 
enter of the alternativeWe apply a similar sensitivity/stimulus framework, where the sensitivityfun
tion is de�ned assensitivity = f(DC) = αCe−ρCDC (4)where the parameters αC and ρC, that have to be estimated, are expe
tedto have both a negative sign and DC is the distan
e between the 
olliderposition and the 
enter of the alternative, as shown in Figure 6(b). We
hoose the exponential to keep the same fun
tional form as that used inAntonini et al. (2006). The de
ision maker rea
ts to stimuli 
oming fromthe 
ollider. We model the stimulus as a fun
tion of two variables:stimulus = f(∆vC, ∆θC) = ∆vγC

C ∆θδC

C (5)with ∆θC = θC − θdn , where θC is the 
ollider movement dire
tion and
θdn is the de
ision maker movement dire
tion, and ∆vC = vC + vn, where
vC is the 
ollider's speed module and vn is the de
ision maker's speedmodule. The parameters γC and δC have to be estimated and a positivesign is expe
ted for both of them. Individuals walking against the de
i-sion maker at higher speeds and in more frontal dire
tions (higher ∆θC)generate stronger rea
tions, weighted by the sensitivity fun
tion.13



We use the 
ross nested logit (CNL) spe
i�
ation used in Antonini et al.(2006). Su
h a model allows �exible 
orrelation stru
tures in the 
hoi
e set,keeping a 
losed form solution. The CNL being a Multivariate Extreme Valuemodel (MEV, see M
Fadden, 1978), the probability of 
hoosing alternative iwithin the 
hoi
e set C is:
P(i|C) =

yi
∂G
∂yi

(y1, ..., yJ)

µG(y1, ..., yJ)
(6)where J is the number of alternatives in C, yj = eVj with Vj the systemati
 partof the utility des
ribed by (1) and G is the following generating fun
tion:

G(y1, ..., yJ) =

M
∑

m=1

(

∑

j∈C

(α
1/µ

jm yj)
µm

)
µ

µm (7)where M is the number of nests, αjm ≥ 0, ∀j, m, ∑M
m=1 αjm > 0, ∀j, µ > 0,

µm > 0, ∀m and µ ≤ µm, ∀m. This formulation leads to the following expressionfor the 
hoi
e probability formula, using yi = eVi :
P(i|C) =

M
∑

m=1

(

∑

j∈C α
µm/µ

jm y
µm

j

)
µ

µm

∑M
n=1

(

∑

j∈C α
µn/µ

jn y
µn

j

)
µ

µn

α
µm/µ

im y
µm

i
∑

j∈C α
µm/µ

jm yµm

j

(8)We assume a 
orrelation stru
ture depending on the speed and dire
tion andwe identify �ve nests: a

elerated, 
onstant speed, de
elerated, 
entral and not
entral. This 
orrelation stru
ture is illustrated in Figure 7. Given the la
k ofany a priori information, we �x the degrees of membership to the di�erent nests(αjm) to the 
onstant value 0.5. The parameter µ is normalized to 1, and thenest parameters µm are estimated.

Figure 7: left: Nesting based on dire
tion right: Nesting based on speed
14



(a) Japanese s
enario (b) Swiss s
enarioFigure 8: Images from the two s
enarios used to 
olle
t the data set5 DataThe data set used to estimate the model 
onsists of pedestrian traje
tories man-ually tra
ked from video sequen
es. We have pooled together two di�erent datasets, 
olle
ted separately in Switzerland and Japan.The Swiss data set This part of the data set 
onsists of 36 pedestrian tra-je
tories, manually tra
ked from a digital video sequen
e. The s
ene has beenre
orded out of the Flon metro station in Lausanne, in 2002, for a total of 1675observed positions. Ea
h position refers to a referen
e system on the walkingplane, after a 
alibration of the 
amera. For a detailed des
ription of this �rstdata set we refer the reader to Antonini et al. (2006).The Japanese data set This data set has been 
olle
ted in Sendai, Japan, onAugust 2000 (see Teknomo et al., 2000, Teknomo, 2002). The video sequen
e hasbeen re
orded from the 6th �oor of the JTB parking building (around 19 metersheight), situated at a large pedestrian 
rossing point. Two main pedestrian �ows
ross the street, giving rise to a large number of intera
tions. In this 
ontext,190 pedestrian traje
tories have been manually tra
ked, with a time step of 1se
ond, for a total number of 10200 position observations. The 
olle
ted data
ontains the pedestrian identi�er, the time step and the image 
oordinates. Themapping between the image plane and the walking plane is approximated by a2D-a�ne transformation, whose parameters are 
alibrated by linear regression.The referen
e system on the walking plane has the origin arbitrarily pla
ed on15



the bottom left 
orner of the zebra 
rossing. The x axis represents the width ofthe 
rossing while the y axis is the 
rossing length.Two frames from the two video sequen
es are reported in Figure 8. In Figure9 we report the frequen
y of the revealed 
hoi
es as observed in the two datasets. The three peaks in the distributions arise on the 
entral alternatives (6,17, 28), as expe
ted.

(a) Japanese data set (b) Swiss data setFigure 9: Revealed 
hoi
es histogramsWe report in Figure 11 two examples of traje
tories and in Figure 12(a) andFigure 12(b) the related speed-time graphs. In Figure 10 we report the speedhistogram and in Table 1 the speed statisti
s.Data post-pro
essing The original Swiss data set has been post-pro
essed inorder to generate the input data for the estimation pro
ess. At ea
h step, theobserved 
hoi
e made by the 
urrent de
ision maker has been measured 3 stepsahead in time, i.e. 0.9 se
onds. As a 
onsequen
e, the last four positions ofea
h traje
tory are not used. Moreover, in both the data sets those observations
orresponding to a stati
 pedestrian (vn = 0) and those 
orresponding to anobserved 
hoi
e out of the 
hoi
e set have been dis
arded.When the two data sets are pooled together, we obtain a total of 10783observations. Their repartition a
ross the nests de�ned in Figure 7 is detailedin Table 2.6 Estimation resultsWe report in Table 3 the estimation results. The parameters have been estimatedusing the Biogeme pa
kage (Bierlaire, 2003, biogeme.ep�.
h). It is a freewarepa
kage for the estimation of a wide range of random utility models.16



Mean 0.668Standard Error 0.00355Median 0.580Mode 0Standard Deviation 0.358Minimum 0Maximum 3.940Table 1: Speed statisti
s

Figure 10: Speed histogram

Figure 11: Examples of two manually tra
ked traje
tories17



(a) (b)Figure 12: Speed-time graphs for the traje
tories in Figure 11Nest # steps % of totala

eleration 1609 14.92%
onstant speed 7894 73.21%de
eleration 1280 11.87%
entral 4257 39.48%not 
entral 6526 60.52%Table 2: Number of 
hosen steps in ea
h nest for the real data setWe �rst shortly 
omment the results for those parameters related to theun
onstrained models (toward destination, keep dire
tion and free �ow a

el-eration). This part of the model spe
i�
ation is similar to that presented inAntonini et al. (2006). The toward destination 
oe�
ients βddir and βddist havebeen estimated signi�
antly di�erent from zero. The assumption that destina-tion distan
e and dire
tion 
apture two di�erent e�e
ts is supported by the data,being related to the 2D nature of the pedestrian movements. Their signs arenegative, as expe
ted, re�e
ting the tenden
y of individuals to move dire
tly to-wards their �nal destination, through the shortest path. The destination beingexogenous to the model, we interpret this behavior as the short range proje
tionof higher level de
isions, made at the ta
ti
al level, su
h as (intermediate) des-tination 
hoi
e and/or a
tivity area 
hoi
e. The keep dire
tion parameter, βdir,is signi�
ant and has a negative sign, as expe
ted. It 
aptures the tenden
y ofpeople to minimize the angular displa
ement along their traje
tories. Finally,3 out of 4 of the free �ow a

eleration parameters, namely βa

, βde
 and λa

have been estimated signi�
antly di�erent from zero. The negative signs for βa

and βde
 indi
ate the tenden
y of pedestrians to per
eive variations in speed asa disutility, both positive and negative. A positive value for the a

elerationelasti
ity λa

 indi
ates that the attra
tiveness of an a

eleration redu
es with18



Variable Coe�
ient t test 0 t test 1name estimate
βddir -0.075 -11.81
βddist -0.661 -4.06
βdir -0.044 -5.61
βa

 -4.06 -14.86
βde
 -2.9 -18.30
λa

 0.746 18.00
αLa

 4.91 3.27
ρLa

 -0.890 -3.78
γLa

 0.824 9.18
αLde
 3.96 6.53
ρLde
 -0.767 -7.18
γLde
 0.431 8.25
δLde
 -0.0843 -1.31
αC -0.0059 -3.86
ρC -0.603 2.40
γC 0.287 5.14
µconst 1.4 11.39 3.26
µnot_central 1.04 7.05 0.29
µscale 0.591 - -210.31Sample size = 10783Number of estimated parameters = 21Init log-likelihood = -26270.8Final log-likelihood = -22652.0Likelihood ratio test = 30101.6	ρ2 = 0.399Table 3: CNL estimation results for the pooled data setin
reases in speed, as expe
ted. We now 
omment on the 
onstrained mod-els' parameters. For the leader-follower behavior we note that in the 
ase ofan a

elerating leader, 3 out of 4 parameters have been estimated signi�
antlydi�erent from zero. The positive value for the αLa

 multipli
ative 
oe�
ient in-di
ates that when a leader is present (or several potential leaders are present,so that the 
losest to the de
ision maker is 
onsidered), a leader's a

eleration19



indu
es a 
orresponding a

eleration on the de
ision maker. The negative signfor the distan
e exponential 
oe�
ient, ρLa

, indi
ates that the in�uen
e of theleader on the de
ision maker a

eleration behavior redu
es when their relativedistan
e in
reases, as expe
ted. The positive sign for the speed exponential 
oef-�
ient, γLa

, shows that the utility of an a

eleration in
reases with higher valuesof the relative leader speed, as expe
ted. The same interpretation is given forthe parameters 
orresponding to a de
elerating leader. In this 
ase we keep inthe model the exponential 
oe�
ient related to the dire
tion, δLde
, with t -teststatisti
s equal to 1.31. Its negative sign is 
oherent with the leader-follower be-havior. It re�e
ts the fa
t that in those 
ases where the leader's relative dire
tionis higher, the in�uen
e of the leader on the de
ision maker is lower, resultingin a lower utility value for the de
elerated alternatives. The same parameter inthe a

elerating 
ase, δLa

, is not signi�
ant and it has been removed from themodel. For the estimation of the 
ollision avoidan
e parameters, we �x theexponential 
oe�
ient related to the 
ollider relative dire
tion, δC, equal to 1for numeri
al 
onvenien
e. The other three free parameters have been estimatedsigni�
antly di�erent from zero. The multipli
ative 
oe�
ient αC is negative,as expe
ted. It indi
ates that those dire
tions more likely to lead to a 
ollisionhave a lower utility with respe
t to the 
entral (
urrent) dire
tion. The latter istaken as the referen
e one for normalization purposes. The exponential 
oe�-
ient related to the distan
e between the 
ollider and the alternative, ρC, has anegative sign. It shows that a more distant 
ollider has a less negative impa
t onthe alternative utility. Finally, the exponential 
oe�
ient related to the relativespeed, γC, is positive, as expe
ted. It 
aptures the fa
t that faster 
olliders havea more negative impa
t on the utilities than slower individuals. The 
orrelationstru
ture is 
aptured by the 
ross nested spe
i�
ation. Three nest parametershave been �xed to 1 while two are left free in the model, 
apturing the 
orre-lation between the 
onstant speed and the not 
entral alternatives. The nestparameter µnot_
entral is not signi�
antly di�erent from 1. However, we de
idedto keep it in the model to avoid potential misspe
i�
ation. Finally, the s
alefa
tor (µscale) for the Swiss data 
aptures the varian
e ratio of the asso
iatederror term between the two data sets. The s
ale is less than 1, so that the vari-an
e of the error term for the Japanese data set is (signi�
antly) lower than thevarian
e of the error term for the Swiss observations.We 
on
lude this se
tion underlying the fa
t that it seems natural that indi-vidual 
hara
teristi
s su
h as age, sex, weight, height (among others) in�uen
ethe spatial per
eption, interpersonal distan
e and human-human intera
tions.However, given the available data (traje
tories) it is not possible to take intoa

ount su
h 
hara
teristi
s. 20



7 Model validationThe validation pro
edure 
onsists in applying two models on two data sets. Inaddition to the model presented in Se
tion 4, we 
onsider also a simple model,where the utility of ea
h alternative is represented only by an alternative spe
i�

onstant (ASC). This ASC model perfe
tly reprodu
es the observed shares inthe sample, with 31 parameters. Indeed, there are 33 alternatives, minus onewhi
h is never 
hosen, minus one 
onstant normalized to 0. The two data setsare the Swiss-Japanese data set des
ribed in Se
tion 5, and a data set 
olle
tedin the Netherlands, whi
h is des
ribed below.7.1 Swiss-Japanese data setWe �rst apply our model with the parameters des
ribed in Table 3 on the Swiss-Japanese data set, using the Biosim pa
kage (Bierlaire, 2003). For ea
h obser-vation n, we obtain a probability distribution Pn(i) over the 
hoi
e set.Figure 13 represents the histogram of the probability value Pn(i∗n) assignedby the model to the 
hosen alternative i∗n of ea
h observation n, along withthe hazard value 1/33 (where 33 is the number of alternatives). We 
onsiderobservations below this threshold as outliers. We observe that there are 12.7%of them.

Figure 13: Predi
ted probabilities of the Swiss-Japanese dataWe 
ompare also the estimated model with the ASC model. We observe thatour model improves the loglikelihood from -25018.22 up to -22652.0, with less21



parameters (21 instead of 31). The number of outliers with the ASC model is13.7%The top part of Figure 14 reports, for ea
h i, ∑

n Pn(i), and the bottom partreports ∑

n yin, where yin is 1 if alternative i is sele
ted for observation n, 0otherwise. As expe
ted, the two histograms are similar, indi
ating no majorspe
i�
ation error.This is 
on�rmed when alternatives are aggregated together, by dire
tions(see Table 4) and by speed regimes (see Table 5). For a group Γ of alternatives,the quantities
MΓ =

∑

n

∑

i∈Γ Pn(i),

RΓ =
∑

n

∑

i∈Γ yin,and
(MΓ − RΓ)/RΓare reported in 
olumns 3, 4 and 5, respe
tively, of these tables.The relative errors showed in Table 4 and Table 5 are low, ex
ept for groupsof alternatives with few observations.
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Figure 14: Predi
ted and observed shares for the Swiss-Japanese data setWe do not dis
uss the appli
ation of the ASC model on this data set as, bydesign, it reprodu
es the shares. A
tually, we obtain relative errors in the rangeof 0.0%�0.5%, due to a

umulation of rounding errors.Although the above analysis indi
ates good spe
i�
ation and performan
e ofthe model, it is not su�
ient to fully validate it. Consequently, we perform now22



Cone Γ MΓ RΓ (MΓ − RΓ)/RΓFront 6, 17, 28 4572.95 4257 7.42%Left 3 − 5, 14 − 16, 25 − 27 3075.46 3245 −5.22%Right 7 − 9, 18 − 20, 29 − 31 3035.96 3197 −5.04%Extreme left 1, 2, 12, 13, 23, 24 70.75 49 44.39%Extreme right 10, 11, 21, 22, 32, 33 27.88 35 −20.34%Table 4: Predi
ted (MΓ) and observed (RΓ) shares for alternatives grouped bydire
tions with the Swiss-Japanese data set.Area Γ MΓ RΓ (MΓ − RΓ)/RΓa

eleration 1 − 11 1579.06 1609 −1.86%
onstant speed 12 − 22 7924.63 7894 0.39%de
eleration 23 − 33 1279.30 1280 −0.05%Table 5: Predi
ted and observed shares for alternatives grouped by speed regimewith the Swiss-Japanese data set.the same analysis on a validation data set, not involved in the estimation of themodel.7.2 Dut
h data setThis data set has been 
olle
ted at Delft University, in the period 2000-2001(Daamen and Hoogendoorn, 2003, Daamen, 2004). Volunteer pedestrians are
alled to perform spe
i�
 walking tasks in a 
ontrolled experimental setup, inorder to 
reate spe
i�
 pedestrian motion patterns su
h as one-dire
tional �ow,bi-dire
tional �ow, walking through narrow and wide bottlene
ks and 
rossing�ows. A �rst set of experimental variables (free speed, walking dire
tion, den-sity, bottlene
ks) are modi�ed during the experiments while a se
ond group of
ontext variables are pedestrian-spe
i�
.For the purpose of our validation pro
edure we use the subset of the Dut
hdata set 
orresponding to a bi-dire
tional �ow. This situation is the experimen-tal version of the Swiss-Japanese data set, whi
h 
orresponds to a walkway. Thesubset in
ludes 724 subje
ts for 47471 observed positions, 
olle
ted by means ofpedestrian tra
king te
hniques on video sequen
es, at a frequen
y of 1Hz. Thedata format in
ludes a pedestrian identi�er, the time step and the x-y 
oor-dinates. In Figure 15 we report a typi
al pi
ture illustrating the experimentals
enario. The repartition of the observations a
ross nests de�ned in Figure 7 isdetailed in Table 6. We note the very low number of de
elerations.23



Figure 15: A representative frame from the video sequen
es used for data 
ol-le
tion Nest # steps % of totala

eleration 5273 11.12%
onstant speed 42147 88.78%de
eleration 51 0.12%
entral 22132 46.62%not 
entral 25339 53.38%Table 6: Number of 
hosen steps in ea
h nest for Dut
h dataWe apply our model with the parameters des
ribed in Table 3 on the Dut
hdata set, using the Biosim pa
kage. For ea
h observation n, we obtain a proba-bility distribution Pn(i) over the 
hoi
e set.Figure 16 represents the histogram of the probability value Pn(i∗n) assignedby the model to the 
hosen alternative i∗n of ea
h observation n, along with thehazard value 1/33 (where 33 is the number of alternatives) illustrating a purelyrandom model with equal probability. Again, we 
onsider observations belowthis threshold as outliers. We observe that there are 6.56% of them. This is lessthan for the data set used for parameters estimation. The shape of the 
urve, aswell as the low number of outliers are signs of a good performan
e of the model.Applying the estimated model to the Dut
h data set, we obtain a loglikeli-hood of -52676.78. When the ASC model is applied, that is the model repli
at-24



Figure 16: Predi
ted probabilities for the Dut
h dataing the shares of the Swiss-Japanese data set, the loglikelihood deteriorates to-85565.72. This 
learly illustrates the superior fore
asting power of our model
ompared to the simple one.The top part of Figure 17 reports the predi
ted probabilities, that is, for ea
h
i, ∑

n Pn(i), and the bottom part the observed shares, that is ∑

n yin, where yinis 1 if alternative i is sele
ted for observation n, 0 otherwise. We observe somedis
repan
ies between the two histograms. In parti
ular, the model predi
tsmore de
elerations (alternatives 22 to 33) and less a

elerations (alternatives 1to 11) 
ompared to reality.In order to obtain a more robust validation, that is less sensitive to the spa
edis
retization, we aggregate alternatives together. By doing so, we de
rease theimpa
t of small errors, where predi
ting neighboring 
ells is more valid thanpredi
ting other 
ells.Cone Γ MΓ RΓ (MΓ − RΓ)/RΓFront 6, 17, 28 22032.21 22132 −0.45%Left 3 − 5, 14 − 16, 25 − 27 12566.31 12939 −2.88%Right 7 − 9, 18 − 20, 29 − 31 12659.29 12379 2.26%Extreme left 1, 2, 12, 13, 23, 24 93.99 14 571.35%Extreme right 10, 11, 21, 22, 32, 33 119.20 7 1602.88%Table 7: Predi
ted (MΓ) and observed (RΓ) shares for alternatives grouped bydire
tions with the Dut
h data set. 25
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Figure 17: Choi
e histogram predi
ted by the model against the revealed 
hoi
esin the Dut
h data setArea Γ MΓ RΓ (MΓ − RΓ)/RΓa

eleration 1 − 11 2668.69 5273 −49.39%
onstant speed 12 − 22 39292.86 42147 −6.77%de
eleration 23 − 33 5509.46 51 10702.87%Table 8: Predi
ted (MΓ) and observed (RΓ) shares for alternatives grouped byspeed regime with the Dut
h data set.Tables 7 and 8 show that the model predi
ts well the dire
tion and the
onstant speed. We 
on�rm the previous observation, that de
elerations areover predi
ted, and a

elerations under predi
ted.There are two explanations for this phenomenon. First, the Dut
h data setwas 
olle
ted in 
ontrolled experimental 
onditions, whi
h may have introdu
eda bias in pedestrian behavior, depending on the exa
t instru
tions they have re-
eived. This assumption is supported by the absen
e of de
elerations in the dataset. Se
ond, the Dut
h pedestrians walk faster than the Japanese, as reportedin Table 9 and in Figure 18. In this 
ase, the model 
an predi
t a de
elerationbe
ause of the higher speed value. A similar reasoning holds for a

elerations.The speed distribution is quite di�erent for the Swiss-Japanese data set andthe Dut
h data set as shown in Figure 18. Indeed, the Dut
h distribution seemsto be Gaussian with high mean speed, whi
h 
hara
terize the experimental 
on-ditions; while the Swiss-Japanese distribution is left-
entered, relevant for a real26



situation where are more intera
tions (higher density of population). In this
ase, high speeds are rare events.Data Set Mean speed [m/s℄Dut
h (experimental) 1.27Japanese (real) 0.69Swiss (real) 1.46Table 9: Average pedestrian speed in the data sets
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Figure 18: Distribution of speed in the two data setsWe have applied the simple ASC model in the Dut
h data set. As expe
ted,it is less powerful for predi
tion than the developed model (see Tables 10 and11).For the sake of 
ompleteness, an ASC model has been 
alibrated on theDut
h data set, in the same way than for the Swiss-Japanese. Our model es-timated on the Swiss-Japanese data is better than the ASC model estimatedon the Dut
h data, when applied on the Dut
h data set, both for log-likelihood(-52676.78 against -77871.06) and predi
tion (6.76 %, per
entage of bad obser-vations against 11.45 % ). We have summarized the various loglikelihood valuesin Table 12, where ea
h 
olumn 
orresponds to a model, and ea
h row to a dataset.In summary, we observe that our model, estimated on the Swiss-Japanesedata, performs very well in reprodu
ing the Dut
h data set in terms of dire
tions27



Cone Γ MΓ RΓ (MΓ − RΓ)/RΓFront 6, 17, 28 18639.80 22132 −15.78%Left 3 − 5, 14 − 16, 25 − 27 14335.35 12939 10.79%Right 7 − 9, 18 − 20, 29 − 31 14101.00 12379 13.91%Extreme left 1, 2, 12, 13, 23, 24 230.38 14 1545.55%Extreme right 10, 11, 21, 22, 32, 33 164.48 7 2249.65%Table 10: Predi
ted (MΓ) using the ASC model and observed (RΓ) shares foralternatives grouped by dire
tions with the Dut
h data set.Area Γ MΓ RΓ (MΓ − RΓ)/RΓa

eleration 1 − 11 7275.62 5273 37.98%
onstant speed 12 − 22 34378.45 42147 −18.43%de
eleration 23 − 33 5816.93 51 11305.75%Table 11: Predi
ted (MΓ) using the ASC model and observed (RΓ) shares foralternatives grouped by speed regime with the Dut
h data set.and 
onstant speed. The model does not perform well in fore
asting a

elerationsand de
elerations.8 Con
lusionsIn this paper we propose a dis
rete 
hoi
e model for pedestrian walking behavior.The short range walking behavior of individuals is modeled, identifying twomain patterns: 
onstrained and un
onstrained. The 
onstraints are generatedby the intera
tions with other individuals. We des
ribe intera
tions in termsof a leader-follower and a 
ollision avoidan
e models. These models 
aptureself-organizing e�e
ts whi
h are 
hara
teristi
 of 
rowd behavior, su
h as laneformation. Inspiration for the mathemati
al form of these patterns is taken fromdriver behaviors in transportation s
ien
e, and ideas su
h as the 
ar followingmodel and lane 
hanging models have been reviewed and re-adapted to the moreASC model based on ASC model based onData set Our model Swiss-Japanese data Dut
h dataSwiss-Japanese -22652.00 -25018.22 �Dut
h -52676.78 -85565.72 -77871.06Table 12: Loglikelihood of ea
h model applied on the two data sets28




omplex pedestrian 
ase. The di�
ulties to 
olle
t pedestrian data as well as thelimited information 
onveyed by pure dynami
 data sets limit the possibilitiesin the model spe
i�
ation step. Important individual e�e
ts 
annot be 
apturedwithout the support of so
io-e
onomi
 
hara
teristi
s. Re
ent development ofpedestrian laboratories, where the set up of 
ontrolled experimental 
onditionsis possible, represents an important step in this dire
tion. We use experimentaldata in a two step validation pro
edure. First, the model is validated on thesame data set used for estimation in order to 
he
k for possible spe
i�
ationerrors. Se
ond, the model is run on a new data set 
olle
ted at Delft Universityunder 
ontrolled experimental 
onditions. The proposed validation pro
edureunderline a good stability of the model and a good generalization performan
e.Few observations are badly predi
ted, mostly 
on
entrated at the extreme of the
hoi
e set. The estimated 
oe�
ients are signi�
ant and their sign is 
onsistentwith our behavioral assumptions. Di�erently from other previous models, we
an quantify the in�uen
e of the relative kinemati
 
hara
teristi
s of leaders and
olliders on the de
ision maker behavior. Moreover, su
h quantitative analysishas been performed using real world pedestrian data.Future developments will fo
us in analyzing more and improving the a

el-eration and de
eleration patterns. In parti
ular, we plan to investigate the useof an adaptive resolution of the 
hoi
e set, as well as in
orporating in the modelsome physi
al 
hara
teristi
s of the pedestrians or of their ethni
 group, su
h asaverage height and average speed.A
knowledgmentsWe are very grateful to Kardi Teknomo, Serge Hoogendoorn and Winnie Daa-men, who provided us with the data sets.Referen
esAhmed, K. I. (1999). Modeling drivers' a

eleration and lane 
hanging be-haviors., PhD thesis, Massa
husetts Institute of Te
hnology, Cambridge,MA.Antonini, G., Bierlaire, M. and Weber, M. (2006). Dis
rete 
hoi
e models ofpedestrian walking behavior, Transportation Resear
h Part B: Method-ologi
al 40(8): 667�687.Bierlaire, M. (2003). BIOGEME: a free pa
kage for the estimation of dis
rete
hoi
e models, Pro
eedings of the 3rd Swiss Transportation Resear
hConferen
e, As
ona, Switzerland. www.str
.
h.29



Bierlaire, M., Antonini, G. and Weber, M. (2003). Behavioral dynami
s forpedestrians, in K. Axhausen (ed.), Moving through nets: the physi
aland so
ial dimensions of travel, Elsevier.Blue, V. J. and Adler, J. L. (2001). Cellular automata mi
rosimulation for mod-eling bi-dire
tional pedestrian walkways, Transportation Resear
h PartB 35(3): 293�312.Borgers, A. and Timmermans, H. (1986). A model of pedestrian route 
hoi
e anddemand for retail fa
ilities within inner-
ity shopping areas, Geographi
alanalysis 18(2): 115�128.Brady, A. T. and Walker, M. B. (1978). Interpersonal distan
e as a fun
tionof situationally indu
ed anxiety, British Journal of So
ial and Clini
alPsy
hology 17: 127�133.Daamen, W. (2004). Modelling Passenger Flows in Publi
 Transport Fa
ili-ties, PhD thesis, Delft University of Te
hnology, The Netherlands.Daamen, W. and Hoogendoorn, S. P. (2003). Experimental resear
h of pedestrianwalking behavior, Transportation Resear
h Re
ord 1828: 20�30.Dellaert, B. G., Arentze, T. A., Bierlaire, M., Borgers, A. W. and Timmer-mans, H. J. (1998). Investigating 
onsumers' tenden
y to 
ombine multi-ple shopping purposes and destinations, Journal of Marketing Resear
h35(2): 177�188.Dosey, M. A. and Meisels, M. (1969). Personal spa
e and self-prote
tion, Journalof Personality and So
ial Psy
hology 11(2): 93�97.Hartnett, J. J., Bailey, K. G. and Hartley, C. S. (1974). Body height, position,and sex as determinants of personal spa
e, Journal of Psy
hology 87: 129�136.Helbing, D., Farkas, I., Molnar, P. and Vi
sek, T. (2002). Simulation of pedes-trian 
rowds in normal and eva
uation simulations, in M. S
hre
kenbergand S. Sharma (eds), Pedestrian and Eva
uation Dynami
s, Springer,pp. 21�58.Helbing, D. and Molnar, P. (1995). So
ial for
e model for pedestrian dynami
s,Physi
al review E 51(5): 4282�4286.Herman, R. and Rothery, R. W. (1965). Car following and steady-state �ow,Pro
eedings on 2nd international symposium on the theory of tra�
�ow, pp. 1�11. 30



Hoogendoorn, S. (2003). Pedestrian travel behavior modeling, in K. Axhausen(ed.),Moving through nets: the physi
al and so
ial dimensions of travel,Elsevier.Hoogendoorn, S., Bovy, P. and W.Daamen (2002). Mi
ros
opi
 pedestrianway�nding and dynami
s modelling, in M. S
hre
kenberg and S. Sharma(eds), Pedestrian and Eva
uation Dynami
s, Springer, pp. 123�155.Horowitz, J. J., Du�, D. F. and Stratton, L. O. (1964). Body bu�er zone:Exploration of personal spa
e, Ar
hives of General Psy
hiatry 11(6): 651�656.Lee, G. (1966). A generalization of linear 
ar following theory, OperationsResear
h 14: 595�606.M
Fadden, D. (1978). Modelling the 
hoi
e of residential lo
ation, in A. Kar-lquist et al. (ed.), Spatial intera
tion theory and residential lo
ation,North-Holland, Amsterdam, pp. 75�96.Newell, G. (1961). Nonlinear e�e
ts in the dynami
s of 
ar following,OperationsResear
h 9: 209�229.Penn, A. and Turner, A. (2002). Spa
e syntax based agent simulation, inM. S
hre
kenberg and S. Sharma (eds), Pedestrian and Eva
uation Dy-nami
s, Springer, pp. 99�114.Phillips, J. R. (1979). An exploration of per
eption of body boundary, per-sonal spa
e, and body size in elderly persons, Per
eptual and Motor Skills48: 299�308.Sanders, J. L. (1976). Relationship of personal spa
e to body image boundaryde�niteness, Journal of Resear
h in Personality 10: 478�481.S
hads
hneider, A. (2002). Cellular automaton approa
h to pedestrian dynami
s� Theory, in M. S
hre
kenberg and S. Sharma (eds), Pedestrian andEva
uation Dynami
s, Springer, pp. 75�86.Sommer, R. (1969). Personal Spa
e: The behavioral bases of design, Prenti
eHall, Englewood Cli�s, NJ.Teknomo, K. (2002). Mi
ros
opi
 Pedestrian Flow Chara
teristi
s: Develop-ment of an Image Pro
essing Data Colle
tion and Simulation Model,PhD thesis, Tohoku University, Japan, Sendai.31



Teknomo, K., Takeyama, Y. and Inamura, H. (2000). Review on mi
ros
opi
pedestrian simulation model, Pro
eedings Japan So
iety of Civil Engi-neering Conferen
e, Morioka, Japan.Toledo, T. (2003). Integrated Driving Behavior Modeling., PhD thesis, Mas-sa
husetts Institute of Te
hnology, Cambridge, MA.Toledo, T., Koutsopoulos, H. N. and Ben-Akiva, M. E. (2003). Modeling inte-grated lane-
hanging behavior, Transportation Resear
h Re
ord 1857: 30�38.Turner, A. (2001). Angular analysis, In Pro
eedings 3rd International Sym-posium on Spa
e Syntax, pp. 30.1�30.11.Webb, J. D. andWeber, M. J. (2003). In�uen
e of sensor abilities on the interper-sonal distan
e of the elderly, Environment and behavior 35(5): 695�711.Whynes, D., Reedand, G. and Newbold, P. (1996). General pra
titioners' 
hoi
eof referral destination: A probit analysis, Managerial and De
ision E
o-nomi
s 17(6): 587.

32


	Introduction
	Modeling framework
	Behavioral patterns
	Unconstrained patterns
	Constrained patterns

	The model
	Data
	Estimation results
	Model validation
	Swiss-Japanese data set
	Dutch data set

	Conclusions

