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Abstract

Most multi-camera systems assume a well structured enviroment
to detect and match objects across cameras. Cameras need te lxed
and calibrated. In this work, a novel system is presented to eétect
and match any objects in a network of uncalibrated xed and mabile
cameras. A master-slave system is presented. Objects are tdeted
with the mobile cameras (the slaves) given only their obserations
from the xed cameras (the masters). No training stage and dda are
used. Detected objects are correctly matched across camerdeading
to a better understanding of the scene.

A cascade of dense region descriptors is proposed to desaibny
object of interest. Various region descriptors are studiedsuch as color
histogram, histogram of oriented gradients, Haar-waveletresponses,
and covariance matrices of various features. The proposedparoach
outperforms existing work such as scale invariant feature tansform
(SIFT), or the speeded up robust features (SURF). Moreover,a sparse
scan of the image plane is proposed to reduce the search spamfethe
detection and matching process, approaching nearly realitne perfor-
mance. The approach is robust to changes in illuminations, iew-
points, color distributions and image quality. Partial occlusions are
also handled.

1 Introduction

Visual cameras are now installed in major citidsand integrated into many
devices such as phones or vehicles. Such deployment of casén xed and
moving platforms has promoted the need to develop a novel frework to
automatically detect and match objects in such a mixed netwk of cameras.
In a surveillance application, the use of data provided by kkcameras
capturing a given scene, leads to a better understanding dfi¢ objects of
interest. Object identi cation (e.g. face recognition) or behavior analysis
(e.qg. facial expression) need high resolution features. Mobilaroeras (e.g. a
camera held by a pedestrian or placed in a car) bene t from tlreproximity
to the objects of interest to capture such high resolution &ures. In a safety
context, car manufacturers and institutions are interest in detecting po-
tential collision of cars with pedestrians in urban areas [2For that purpose

1In 2002, approximately four millions just for the UK [1]



Figure 1: Left column: objects of interest highlighted in a xed camera.
Right column: Corresponding objects detected and matchedh ia mobile
camera by our proposed approach

they have mounted cameras on cars. Those cameras could dudlate with
the xed cameras installed in the cities to better detect peédstrians. Finally,
the proposed system can also be used to help the navigation afmobile
robot.

Most multi-camera systems assume a well structured envirorent. Cam-
eras need to be xed and calibrated [3, 4, 5]. Moving objectseadetected by
modeling the background of the scene [6]. The foreground pts extracted
by each camera are projected in a common reference given a bgnaphy or
a fundamental matrix estimated at calibration step [3]. The, objects are
detected and matched in a common reference plane. Howevdrese systems
fail for uncalibrated and moving cameras.

Object detection with mobile cameras addresses the problefrom the
view point of pattern classi cation [7, 8, 9]. A set of featues is extracted
from a large number of training samples to train a classi er.Thousand of
observations of the objects of interest are required. Howay only objects



present in the training data can be detected.

In this work, a novel multi-camera system is proposed based a master-
slave approach. Objects are detected with a mobile cameraqgin now on
called slave) given observations from a xed camera (alsollea master in the
rest of the paper). Detected objects are correctly matchedcess cameras.
The proposed framework can be applied to any pair of uncalidted cameras.
It only supposes that objects are correctly detected in at st one view, the
master view. Either a simple processing can be achieved inathview ( .e.
foreground extraction with a xed camera) [6], or an user camanually select
an object (object query).

The proposed approach consists of two steps. First, objeat$ interest
observed by a master are assumed to be present in the slave.ehthe best
candidates are validated by our second step, the validatiostage [10]. The
presence of an object is detected in the eld of view of the mid camera
without any training process or data. No calibration betwee the cameras is
used. The detection and matching process is only based on thgpearance
of the objects across cameras.

In the next section, a brief review of existing region desgtors is given.
After formulating the problem, sections 4 and 5 describe thproposed ap-
proach to robustly detect and match objects across camerasiAn object
descriptor is presented considering deformations occurg in the presented
applications (e.g. safety, surveillance, or robot navigation), such as photo-
metric deformation, or viewpoint changes {.e. rotation around the vertical
or horizontal axes). It is made of a cascade of region des¢ars. In section
6, various region descriptors are evaluated such as the cosace matrices
[11] of various features, the histogram of colors [12], théstogram of oriented
gradients [13], the scale invariant feature transform (SIF) [14], the speeded
up robust features (SURF) descriptors [15], and the color tarest points
[16]. Sparse and dense descriptions of the objects are es&dd. Moreover, a
sparse scan of the image plane is presented to reduce the cleapace of the
detection and matching process, approaching nearly reatrte performance.
Experiments show that objects are successfully detectedesvif the cam-
eras have signi cant changes in image quality, illuminatio, and viewpoint
as illustrated in Figure 1. Partial occlusions are also hated.



2 Existing Region Descriptors

A wide assortment of region descriptors has been proposedtie literature
to address speci ¢ goals. From monocular or multi-view tragng problems,
to image retrieval, simple and complex descriptors have beesed.

The most basic high dimensional descriptor is the vector ofixel intensi-
ties [17]. Cross-correlation can be used to compute the disce between the
descriptors. Its high dimensionality leads to high computsonal complexity
without being robust to geometric deformation. A natural alernative is to
describe the distribution of the pixel intensities by histgrams. It copes with
translations and rotations. Striker and Orengo [12] quantes the HSV color
space instead of the RGB. They use 16 bins for Hue and 4 for that&ration
and Value to match images. The Bhattacharyya distance [18} the L, norm
can be used to compare the histograms. Color histogram can be cient
for monocular tracking [18] but leads to poor performance ia multi-view
system. It is vulnerable to bad camera calibration and illunmation changes.
The inter-camera illumination change can be modeled to reda such an e ect
[19]. Nevertheless, in many applications, color histograrare not discrimi-
native enough to match regions.

The covariance descriptor is presented by Tuzel al. [11] to outperform
histogram descriptors. For each pixel, a set of features isteacted. Alahi et
al. in [20, 21] compare various set of features. The grayscal¢emsity, the
RGB values, the norm of the rst and second order derivativeghe gradient
magnitude and its angle are considered. The pixel coordirest are integrated
in the feature vector to consider the spatial information othe features. With
covariance matrices, several features can be fused in a Iowanensionality
without any weighting or normalization. They describe how datures vary
together. Similarity between two regions is given by the diance proposed
by Forstner and Moonen [22] summing the generalized eigehwas of the
covariances. Although, a fast method based on integral imag exists to
compute the covariance matrices [11], similarity measuremt takes time.
Therefore, it is interesting to evaluate other low complety descriptors and
compare them with the covariance descriptor.

Histograms of Oriented Gradients (HOG) are e cient to compue de-
scriptors based on the rst order derivatives of the image tensity. From
these derivatives, a gradient eld is computed assigning teach pixel a mag-
nitude and an angle. A histogram is formed where each bin isghsum of
all magnitudes with the same orientation in a given region. 8G has been
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extensively used to detect pedestrians in static images [¥3, 23]. It is also
the key component of the descriptor proposed by Lowe in [14].

Lowe presents a method to extract feature points invariantd scale, rota-
tion, substantial range of a ne distortion, 3D viewpoint, illumination, and
addition of noise: scale-invariant feature transform (SIF) [14]. Scale-space
extrema is detected by di erence-of-Gaussian function. Kiograms of gra-
dient direction are assigned to keypoints and used to creatikee descriptors.
Bay et al. propose an interest point detector and descriptor outperfming
SIFT in terms of speed and accuracy: speeded up robust featar(SURF)
[15]. Their descriptor is based on the distribution of the Har-wavelet re-
sponses within the interest point neighborhood. Their det#or and descrip-
tor don't use color information. Gabrielet al. in [16] consider color interest
points. The R,G,B values and rst-order derivatives of the R,G,B) channels
are considered to describe each interest point. Similarityetween two regions
is computed by summing the distance between IPs with shortemahalanobis
distance. However, interest point based matching performoprly with noisy
low resolution images (see section 6).

Other descriptors exist such as steerable lters [24], gasian derivatives
[25], complex lters [26], phase-based local features [2&hd moment invari-
ants [28]. However, according to Mikolajczyk and Schmid [RQheir proposed
descriptor, called gradient location-orientation histogam (GLOH), as well as
SIFT descriptor, outperforms these descriptors. GLOH is aaviant of SIFT
computing the HOGs in a log-polar location grid and reducinghe nal de-
scriptor size with principal component analysis (PCA). Neertheless, it is
computationally more demanding than SIFT.

In section 6, the performance of the best presented descops are com-
pared. It can be seen that each of the presented descriptorsrforms poorly
if our proposed scheme is not used.

3 A Master-Slave Object Detection and Match-
ing Approach

3.1 Problem Formulation

Given an observationx of an objectO in a master camera, we wish to detect
its presence in the view of a slave camera, and if present, dbe it in its
image plane. No calibration and training data should used.
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Let y; be a potential region in the slavex andy; are rectangular subsets
of an image. A "Region Matching" operator is de ned, , which maps a
regionx to the N most similar regions in a given imageé:

(X IEN) = fysysisywg=Y (1)

The precise notion of similarity will be described in sectio4. The opera-

tor is used to match an observation x from the master to the most similar
regions in the slave:

( X 1siNs) = fy1;ya; i yn.9 = Yy (2)

The same operator can be used to map any; to a set ofx} referred in
this paper as the dual problem:

( ¥iilmiNm) = R 0580, 0= X, 3)

wherel, is the image plane of the master.

In order to validate if a detected region in the slave really miches the
same object in the master, the dual problem is evaluated. If segion X}
coincides withx, then the correspondingy; should be the region bounding
object O in the slave (see Figure 2). If none of the&;”coincides with x,
object O is probably not present in the view of the slave. Hence, an a¢or
# validates if a regiony; matchesx:

#Yilx; (YiilmiNm)) = #(yijx; Re; 25 %)) 2 [0; 1] (4)

Moreover, the dynamic of the system can be considered to ierase the
performance. If results from previous frames are availabldey can help the
decision at the current frame. Two types of prior are usefulFirst, an object
moving in a scene can have di erent appearances across timese from a
xed viewpoint. A set of relevant observations,fx!;x! ';::;x! 1g, can be
kept to detect the same object with a slave camera. The regianatching
operator becomes:

(fxhxt honxt IgilsiNg) = Yy (5)

Second, the results of a detected object in the slave at preus frames,
fyt Lyt 2yt kg, can be used to detect the same object at the current
frame, corresponding to a tracking approach:

(fy' 5yt Zunyt KgilsNe) = Yy o (6)
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(@ ( x1s3)="fy1;y2;y¥39 = Yx

Slave

g !

(b)For i =1:3: ( yi;lm;3) = fR1;R2; %39 = X

Figure 2: lllustration of the operator. (a) An object x, highlighted in the
master camera, is mapped to the best 3 regions in the slave @ (b)
Then, each regiony; is mapped back to 3 regions in the master camera. If
those regions coincide witlx, there is a match.

As a result, the problem can be formulated as follows: nd theegion
yt in the mobile camera that maximizes#(y!jx'; ( y%;1m;Nm)) for all y! 2
FY Yy 10
yo=arg max  #(yijx'; (¥iilm;Nm)) (7)
yi2f vy ;Yytt 19
If such ay! does not exist (all# = 0), it means that the object is not present
in the image plane of the slave camera.

3.2 Detect, Track, and Validate

In order to solve the formulated problem, the approach can lmimmarized as
follows. First, an object observed by a master is searchedtime image plane
of the slave with the operator. The dual problem is evaluatel to validate

the candidates. Then, at the next frames, prior from the slavis rst used

to search the new frames. If the tracked region validates thdual problem,

then the corresponding object is not searched given obsetiga from the

master. However, If none of the candidates match the initiabbject, the

process is repeated without considering the prior from thdase. Algorithm

1 summarizes the approach and gure 3 illustrates an examplgf a single
object detected and tracked in the slave camera.
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Algorithm 1 : Overview of the approach "detect, track, and validate"

Input : A set of objectsf x;; X»; :::; X,g observed in the master camera

Output : Location fy,,;:::; yx,g of the corresponding objects in the
image plane of the slave camera

foreach objectx in the master do

1. At t =1, detect and validate:

yy=arg _ max  #(Yijx"; ( ¥i;lm;Nm)) (8)
yi2f ( x1;lsiNs)g

2. Att=2,
If y! exists, track and validate:

2 _ i 2. . .
K= g WX (¥ ImiNen)) ©

If y2 or yi do not exist, detect given prior from the master and
validate:

y; = arg max #(Yiix% ( Yislmi Nm)) (10)
yi2f ( x1;x2;1s;Ns)g

3. Repeat step 2 till object x is present in the master
end




Master ' m Master m Master
! gy gt gt
f 1 : :

v H H i

Slave Slave Slave
|§| *yuyl) |§| (v 21.1) |§|

Figure 3: lllustration of the detect, track, and validate piocess. Only one
object is validated and tracked across frames

4 Region Matching

4.1 Preliminary remarks

The region matching operator matches a region bounding an j@lot of interest
to the most similar regions in a di erent image plane. In thisvork, an object
descriptor (OD) made of several region descriptors is cret from the region
bounding the object of interest. Then, a set of candidate r@ns in the given
image are compared with the computed OD. Two strategies argatuated to
select the candidate regions in the image: a dense or sparppraach.

4.2 Dense selection

All possible regions in the given image are compared with th@D using a
brute force search. A window of size proportional to the obg¢ bounding
box scans the image plane at di erent scalés

A greedy pruning technique is applied to discard regions wvhtvery low
similarity. The di erence between the proportion of edgesn two regions can
give a quick indication about their similarity. If the proportion of edges is
not similar, the region is discarded. As a result, fewer ragns remain to be
analyzed and it increases the likelihood to detect the righgbject by reducing
the search space.

2Six scales are used with a 25% scaling factor between two carmitive scales and a
jumping step equivalent to 15% of the window size.
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'."h..qr:-'z Master Came_ri

Figure 4: lllustration of an object described by 3 IP. The mdssimilar IPs
in the slave camera leads to 3*6 candidate regions

4.3 Sparse selection

A dense selection of candidate regions leads to thousand efjions to evalu-
ate. In order to reduce the cardinality of such a set, a sparselection given
by the interest point (IP) extracted from the object of interest is proposed.
All the interest points found on the object are matched to themost simi-
lar IPs in the image. Any existing detector and descriptor aabe used. In
this work, SURF [15] is used to detect and describe the IPs due its low
computational cost.

Each IP extracted from the object is represented by its coontates with
respect to the center of the bounding box. Therefore, a matetd IP corre-
sponds to a bounding box with the same spatial coordinates tirespect to
the center of the candidate region (up to a scalg Figure 4 illustrates the
approach.

In section 6, both strategiesj.e. dense and sparse selection of the candi-
date regions are compared.

4.4 A Collection of Grids of Descriptors

An object descriptor (OD) is proposed taking into account loal and global
information. It is a collection of grids of region descripts. Each grid seg-
ments the object into a dierent number of sub-rectangles otqual sizes

3Six di erent scales are also used.
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(referred to as blobs in the rest of the paper). Grids of ner lob size de-
scribe local information whereas grids of coarse blob sizesdribe a more
global behavior.

Similarity between two objects, (X;yi), is computed by summing dis-
tance between corresponding blobs segmenting the grids.n&, many ob-
jects do not have a rectangular shape and some can be partfaticcluded,
only the most similar blobs are kept, the best percent. In this way, blobs
belonging to the background can also be discarded (see gusg

4 &8
111 #
d & &
ttee

Figure 5: A collection of grids of descriptors. Top row is thebject of
interest. Bottom row is a region to compute similarity. Coloed blobs are
kept to compute the global distance ( = 0:5)

4.5 Cascade of Coarse to Fine Descriptors

Some regions can be easily discarded without knowing the &anformation.
Therefore, an approach similar to a cascade of classi er isgposed. \Easy
regions" are discarded with coarse grids.é. grids with small number of
blobs). More challenging regions require the use of ner gis (.e. larger
number of blobs).

The detection process is divided into several stages. At éestage, a ner
grid is used. After each stage, only the best candidates remai.e. regions
with highest similarity, top % of the evaluated regions.

The parameter can be xed (typically 30%)or chosen such that after
each stage the same percentage is kept and one region remaifter N stages:

N, N=1 (11)

=N, ™ (12)



whereN;, is the total number of regions in the image plane to compare thi
the object descriptor, andN is the total number of stages to use.

v

| I

i

Figure 6: A three stages cascade of coarse to ne descriptors

Figure 7 illustrates the remaining regions with their simarity after each
stage.

4.6 Several Observations

The master can consider several observations from the olje€ interest. In
fact, only moving objects are treated since their appearaacan change across
time. Therefore, the operator can use several observations of an object in
the matching process. Each observation leads to an OD. To cpuate the
similarity of a region in the given image, the minimum distane, , between
each blob of the grids is selected among all ODs leading to ast@dince map
(see gure 8).

In order to cover the most di erent appearances of an objecthe most
dissimilar observations are kept. As a result, if an objectaks not have
a similar appearance with the current observation, it mighthave a better
similarity with an older observation.
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Observation: [#%Y 1Ststage 2Ndstage 3rdstage athstage Einal

of Cascade of Cascade of Cascade of Cascade Output

- o

Searched image :

Figure 7: lllustration of the most similar regions after edt stage of the
algorithm (in Jet format, white regions are the least similaand black ones
the most)

Let D be the set of observations of an object, anth the number of
observations to keep:

D = fODj; ODy;::;; ODno: (13)
We de ne the \set dissimilarity" operator as the sum of all dstances between
the ODs of a set:

X
set(D) = (ODk;ODI) (14)

8k;12D
Initially, the set D corresponds to them rst observations of the object.
Then, given a new observatio®®D,,, m+ 1 choices of the seD are possible,
referred to asD,:
ff OD,;ODy;:::;;ODn g,
fOD1;0Dy;:::;;ODma,
Dp=1fDy;:5iDm+10= (15)
fOD1;0D3y;:::;;ODgg,
fODq;0D5>;::;;ODmag

The set with the most dissimilarity (highest ) is kept:
Dy =arg max s(Di) (16)

p

whereD,, is the new updated set of observations.
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Figure 8: Generation of the distance map between a set of obsdions of
an object from a master camera and a region in the slave camera

5 Region Validation

The validation operator, #, evaluates the likelihood that objectx matches
regiony; in the slave camera. It considers the dual problem by analym the
set obtained by (Vi;lm;Nm) = fR1;%5; 5%, 0. In the next section, the
choice ofN,, will be studied.

A similarity measure & between the original x and eaclx;"is estimated
based on the spatial arrangement of their bounding boxes:

1 O 1 C D¢
+ We + —W, 17
1 ¢ o] 1 o c Cs d) ( )

&x;R)=1 (

where

C is a percentage which represents how much of the original baling
box of x is covered by the bounding box ok Likewise, O is the
percentage which represents how muoh fs covered byx. (see gure
9)
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D. measures the similarity of the center of two bounding boxesThe
smallest the euclidian distance between the center, the higstD..

Figure 9: lllustration of the bounding boxes« (in red) and ®; whereC  0:75,
O 04

Note that by choosing&x; %) > 0 if and only if C and O > 30% and
D. < 0:75 max(widthy; heighty) leads to good enough results.

A weight w. is associated with each factor to emphasize priority. In thi
work, focus is rst on a high cover ofx , then a similar center of mass, nally
R should not be too big with respect tox (decent O)*.

A linear & may be too sensitive to dierences. The logistic operator is
used to reduce sensitivity to two regions overlapping with alight di erence:

&x; Rj) = 1 Wo + 1 we + 1 w,
YT T4 e 20 % T+cge ©2C° 1+ cre ©2De

d (18)

c; and ¢, are the parameters of the logistic function.
Figure 10 presents an example of the value obtained wihand &.

Figure 10: The linear& gave 063% and the proposed& gives 086%

Finally, #(yijx; ( y;)) is computed as follows:

#yix; (yi))= max &x; %)  w(yi) (19)

Ri2 (yi)

‘We=0:5wyg=1=3,andw, =1=6
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wherew(y;) weights regiony; with respect to othery; based on the similarity
measurement computed by () (in section 4.4):

N (X i)
W) maxy 2 (xy (X;Yj) (20)

where (X;y;) is the similarity measurement de ned in section 4.4.

6 Performance Evaluation

6.1 Data Sets

Indoor and outdoor data sets have been used. Each data set @nposed of
video sequences captured concurrently by a xed and a mobibamera from
the same scerte Fixed cameras are located at a height equivalent to the rst
oor of a building. Mobile cameras are held by pedestrians Wang in the
scene. The images are recorded at 25 fps with a resolution @3 240.

The data sets have meaningful changes in viewpoint, illumation, and
color distribution between xed and mobile cameras. Sengidevices are also
di erent. Indeed, mobile cameras have a cheap capturing diee and hence
provide noisy images. A rough temporal synchronization oheé cameras is
used (few frames delay) similar to the delay that can occur ireal-world
applications.

6.2 Experiments

Thousands of objects are selected within the xed cameraise. the masters,
to nd correspondence in the mobile cameras, the slaves. Rstrians and
random rigid objects in the scene are selected to prove thengeality of the
approach.

The performance of the system is quantitatively evaluatedybcomputing
the precision {.e. number of true positives divided by the sum of true posi-
tives and false positives) and recalli¢e. number of true positives divided by
the sum of true positives and false negatives) measures. Aidr positive is
an object correctly detected in a slave camera and correctigatched to the
corresponding object in the master camera.

5The videos sequences with their ground truth data (in xml format) can be found at
http://Its2www.ep .ch/~alahi/data.htm
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Figure 11: Recall for various region descriptors

To evaluate the performance of the region matching operatoonly objects
that are present in the view of the mobile camera are searchetience, the
number of false positives is equal to the number of false ndéigas, leading to a
similar recall and precision measures. However, to computee performance
of the full approach (detect, track, and validate), all the djects of interest
in the master camera are selected,e. all moving objects and some static
objects such as signs and cars. All the objects are searchedthe slave
camera even if they are not present in the eld of view of the caera. The
proposed approach should detect only objects present in tlstave camera
and locate them.

6.3 Region Matching

After studying the literature and considering their relevat results, the de-
scriptors presented in table 1 are studied for the region metiing operator.
First, the color histogram is evaluated as a benchmark of theimplest low
cost descriptor. Then, HOG descriptor is considered sinceildlajczyk and
Schmid conclude that gradient based descriptors.€. GLOH, SIFT) outper-

form other descriptors such as steerable Iters [24], gauas derivatives [25],
complex features [26], phase-based local features [27]d anoment invari-
ants [28]. Haar-wavelet responses are also analyzed sineg 8t al. obtained
better results with such descriptor than HOG based. Experiental results
showed that Haar-wavelet responses are very sensitive teetbhoice of the I-
ter size and the sampling grid. First, the same choices as Bayal. is tested.
Then, by changing the parameter to a ner grid size and a biggelter size,

we reached better performance (referred to as Haar SURF tufje Finally,
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Region Descriptors
64 bins for RGB, HSV, or Lab
Histogram of | 32 bins for RGB
Color 32 bins for H, 8 bins for S, V

16 bins for H, 4 bins for S, V
8 bins
HOG 12 bins
16 bins
Haar-wavelet| SURF distribution [15]

responses | SURF distribution tuned
(x;y; b ly)
(X Y: s lyy)
(x;y;mg; )
Xy LT ly)
Covariance | (X;y; 131y lys Locs yy)
(X y; 11 ly;mg; )
(XYl lyysmg; )
X y: L by bos Ly ma; )
(XY R; G B Ly lys s lyy)
(XY H; S; Vi L Ly L Lyy)

Table 1: Summary of the region descriptors evaluated for thregion matching
operator. x and y are the pixel coordinates] the grayscale value), and I,
the 19 order derivatives,l,, and lyy the 2" order derivatives,mg and the
gradient magnitude and angle.
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the covariance descriptor are exhaustively evaluated foarious feature sets
since Tuzelet al. [11] introduced such descriptor to outperform histogram
descriptors. All these descriptors are intensively studiefor various schemes.

For the sake of clarity, only the best performing descripta from table 1
are presented in the remaining study. Nevertheless, the pemmance of all
descriptors is presented in gure 11 for the simplest scheman object is de-
scribed by a single descriptor with a brute force searche. a dense selection
of the candidate regions. Color features perform poorly withistogram and
covariance descriptor. Since sensing devices are di eretite color distribu-
tion is also changed. Hence, color is not the right feature tese. Increasing
the number of features increases the performance of the cosace descrip-
tor. The HOGs perform almost as good as the best covariancddowever, it
is clear that describing an object with a single descriptorekds to very poor
performance. Local information is lost in the global behast. In this work,
a cascade of grids of descriptors is proposed to tackle thiooplem. In order
to validate such an approach, the proposed cascade approashcompared
with other schemes (gures 12(a) to 12(c)) when a dense selans used.

First, an object is described by a single grid (gure 12(a)). Various
numbers of sub-regions per grid are considered. Increasitgg number of
sub-regions increases the performance with histogram oflap HOG, and
covariance descriptors. The color histogram still performpoorly compared
to others. Interestingly, the performance of the descriptobased on Haar-
wavelet responses increases for a few set of coarse grids @acleases for
much ner grids. The lter size and sampling grid are proportonal to the
sub-rectangle size. As mentioned previously, changing theer size and sam-
pling grid a ects the performance. Hence such a decrease @rformance can
happen with ne grids (i.e. high number of small sub-rectangles).

Second, an object is described by a collection of grids ( gerl2(b)). The
nal similarity measurement is the sum of the distances oveall the grids.
Considering global and local information increases the germance of all the
descriptors reaching a limit.

Finally, gure 12(c) shows that the proposed cascade of gsdeads to a
very similar performance as the collection of grids but witra much lower
computation cost. The number of descriptors to compute is noh less than
the previous two schemes. Figure 13 presents the performaraf the cascade
of descriptors for various (refer to section 4.5) with respect to the number
of region descriptors needed.

Similarity between two regions is computed by summing the most simi-
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Figure 12: Recall for various region descriptors with 3 dieent schemes to
describe an object based on a dense search.
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Figure 13: Recall with respect to the number of region desptors needed

lar blobs (see section 4.4) within the grids of descriptorgzigure 14 illustrates
the impact of on the performance of the cascade of HOG and covariance
descriptors. The mean performance between the two desciops is plotted.
The impact of depends on the percentage of occlusion and photometric
changes usually present in the data set. In our applicatiorkeeping 75% of
the blobs to compute the overall similarity leads to the besperformance.
All 3 strategies describe an object in a dense manner. Howgvan object
can be described in a sparse representation obtained by thetelcted inter-
est points. The state-of-the art interest points detector ad descriptor, i.e.
SIFT ([14]) and SURF([15]), are evaluated for comparison pposes. Fig-
ure 16 presents the matched interest points found across caras with both
approaches. The matched interest points do not correspon@ the same
objects where as our proposed cascade of covariances ctyreécatched the
objects across cameras. Some objects, made of smooth regidrave very
few interest points leading to an unfeasible matching pross. In addition,
the poor image quality a ects the detection process. Gabiieet al. in [16]
compared IP within the region of interest whereas SIFT and S®RF matches
the IPs over the whole image. By comparing IPs of two regiond€], the
performance increases slightly. Various parameters areaéyated for SIFT,
SURF, and the color interest points proposed by [16]. Theyldkad to poor
results. The best con guration leads to a recall less than ¥. Therefore,
the proposed dense representation of an object outperforithe sparse repre-
sentation made by interest points. Nevertheless, the mateld interest points
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Figure 14: Mean recall of the cascade of HOG and covariancesdeptors for
various value

can be used to reduce the search space in the image plane. leem@csparse
selection of the candidate regions is also evaluated in gairl5.

The proposed sparse selection of the candidate regions camsbl with the
dense descriptor outperforms the approach based on a dens&edtion (see
gure 15). The regions proposed by the interest points are gal candidates.
The reduced search space increases the likelihood to cotlsedetect and
match the objects. The number of regions to keep after eachage of the
cascade approach,, can be increased with the sparse selection since few
candidates are examined. With both selection, dense and spe, 30 % of the
regions are kept after each stage. Yet, increasingcan lead to better recall
measures for a still low computational cost.

The computational cost of the di erent approaches to detecand match
objects is also a crucial point. Table 2 summarizes the perfoance of the
presented approaches. Note that the full cost of the apprdaes is measured,
i.e. the cost of allocating memories, computing descriptors, mgparing them,
and creating and sorting lists of distances. The implementian is written in
C/C++, without any optimization, and running on a Intel core 2 duo (2.8
GHZ with 4 GB RAM). Therefore, the absolute cost of an approdcis not in-
formative since it can be reduced, but the relative costs arateresting. The
proposed sparse selection combined with the cascade of @edsscriptors out-
performs other approaches in terms of recall rate and comgition cost. The
cascade of covariances has the best recall rate closelyois##td by the cascade
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describe an object based on a sparse search.



| Region Descriptors | Recall | Cost |

SIFT detector and descriptor [14] | < 0:15 250 ms
SURF detector and descriptor [15] < 0:15 31 ms
Covariance descriptor [11] 0.20 4350 ms
Dense selection combined with
Collection of HOGs 0.65 5588 ms
Cascade of HOGs 0.64 520 ms
Collection of Covariances 0.68 | 30 703 ms
Cascade of Covariances 0.69 2324 ms
Sparse selection combined with
Collection of HOGs 0.72 558 ms
Cascade of HOGs 0.66 75 ms
Collection of Covariances 0.74 1042 ms
Cascade of Covariances 0.74 291 ms

Table 2: Recall rate and computation cost of various approbhes

of HOG. However, HOG has a lower computational complexity. #hough,

integral images are not used to compute the HOG descriptors @apposed to
the covariances, they still run faster. Hence, if computadhal complexity is
an issue, the proposed cascade of HOG might be a viable altatine.

Qualitative results are given in gures 18 and 19. Objects h severe
change of viewpoint or partial occlusion are correctly detéed and match.
Furthermore, a set of images has been randomly selected frandata set to
illustrate the strength of the region matching operator onlgallenging images
(see gure 20). It can be seen that very low resolution imag@sade of smooth
areas can also be detected and matched. Also, faces are atlyematched
across images encouraging the use of the descriptor for otlaplications
such as face identi cation.

Figure 17 presents the performance of the approach if severagions in
the mobile camera are kept as matching the object of interesConsidering
two or three regions is enough to increase the performance. hd region
validation scheme classi es those candidate regions as rdang or not the
object of interest by evaluating the dual problem.
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(a) Matched SIFT interest points

(b) Matched SURF interest points

(c) Proposed approach (cascade of covari-
ances)

Figure 16: Left-hand side are the objects observed in the gecamera. Right-
hand side are the image plane of tiigsmobile cameras to be seact
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6.4 Region Validation

The performance of the validation operator depends on two pameters: the
number of regions to keep in the searched image plamg;,, and the number of
regions to keep in the dual problemN,, (see section 3.1). Figure 21 presents
the recall/precision graph for variousN.. They are compared with the greedy
approach considering the best match proposed by the regioratohing oper-
ator as the matched object (labeled as \best match™) withoutny validation
process. With the proposed validation operator, settingN,, = Ng = 2, the
number of false positives is decreased by 70 % while the truestive rate
decreases by only 2%. In other words, it means that almost all the objects
present in the view of the mobile camera are correctly classil as present
while the others are correctly discarded with a success raté 70 %. For
Nm = Ng = 3, the number of false positives is reduced by half while the
precision is reduced by less than 1%. Higher values fdr, and Ng do not
necessarily lead to higher performance. Consideriddy =2 and N, = 1 is
the best tradeo for our application in terms of cost and preision rate.

In addition, a possible approach to reduce the false posiés rate is to
threshold the similarity measurements . However, if the validation scheme
is not used, it is not interesting to threshold (x;y;), obtained between the
object descriptor from the master and the regions in the slawcamera. Figure
22 illustrates the histogram of the values obtained when theegions are
correctly matched (T P) and the ones for the false positivesHP). There is
not a clear decision boundary. Typically, setting the thresold to 4:4 reduces
the FP rate by 9% and reduce the TP rate by 11%. However, it is ggible to
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Figure 18: Examples of correctly detected and matched objscin indoor
scene. 1st column: objects of interest seen in a xed camerand column:
corresponding detected objects in @gnobile camera (outpuf the proposed
approach)



Figure 19: Examples of correctly detected and matched objedn outdoor
scene. 1st column: objects of interest seen in a xed camerand column:
corresponding detected objects in @gnobile camera (outpuf the proposed
approach)



Figure 20: Examples of images randomly selected from a datat.s Left
column are manually selected regions, and right column arled corresponding
regions detected and matched by ogp proposed approach
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Figure 21: Recall/precision graph for varioudNs and N,.

threshold the similarity measurement (y;; X)), or the sum (x;yi)+ (yi; %)
obtained in the validation process. Figure 23 shows the hagrams for the
two cases. Now, an interesting decision boundary exists:we keepy; such
that (yi;®) < 4lor (xy)+ (Vi;X) < 82, the remainingF P is reduced
by 50% while reducing theT P rate by 5% only. Therefore, the proposed
approach can globally reduce the number of false positiveg B5% 85% for
a decrease of 5-7% of the precision rate. This is feasibleyobkecause of the
validation approach considering the dual problem. Withoutthe validation
scheme proposed in this work, a reduction of the false posdirate by 80%
(with thresholding), would require a reduction of the preaion rate by 50%.
Figure 24 summarizes the overall performance with the di ent thresholding
strategies.

When priors are available, the performance of the system ie@ases. The
gain in performance depends on the behavior of the objects.y Beeping
three observations from the master, the global performanaecreases by 7%.
Moving objects are much better detected. Considering the jor from the
slave increases the recall rate by 12% and the decreases thecision rate by
6%.
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Figure 22: Histogram of the similarity measurements(x;y;) for a set of TP
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Qualitative results are given in gures 25 and 26. It can be s& that
objects are successfully detected even if the cameras hagaiscant change in
image quality, illumination, and viewpoint. In addition, highlighted objects
in the xed camera which are not present in the view of the moke camera
are not generating false positives. Figure 27 presents somessed detections
and few false positives.

7 Conclusions

A novel framework is presented to detect and match any objecticross mul-
tiple uncalibrated cameras. It only supposes that objectsra correctly de-
tected in at least one camera, the master. Objects are sucsksly detected
and matched with slave cameras even if the cameras have sigant changes
in image quality, illumination, and viewpoint. Partial ocdusions are also
handled. The proposed cascade of descriptors outperformsrent state-of-
the art approaches both qualitatively and quantitatively. It is generic to any
region descriptors. Its strength has been proven for covarnce and HOG
descriptors. Furthermore, no training is necessary to detethe presence of
any class of objects in the view of a mobile camera. The progasvalida-
tion process overcomes the use of a training data. Future viocan evaluate
the proposed cascade of descriptors for monocular trackin@bjects can be
matched across frames based on the similarity measure olokd with the
cascade of grids of descriptors. Moreover, the descriptarcalso be used as
a cascade of features for classi cation purposes.
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Figure 25: Correct detections and no false positives. Firgblumn: objects
detected by a xed camera. Secondsgolumn: corresponding ebis detected
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Figure 27: Some false positives and missed true positives.irsk column:
objects detected by a xed camera. Second column: corresplimg objects
detected and matched with a mobile camera
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