Incorporating advanced behavioral models in integer optimization

Michel Bierlaire Shadi Sharif Azadeh

Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering Ecole Polytechnique Fédérale de Lausanne

August 26, 2015

Outline

Demand and supply

Measuring satisfaction

Linear representation of demand

• A simple example

• A linear formulation

Example: one theater
Example: two theaters
Dealing with capacities
Example: two theaters
Conclusion

- 4 回 ト - 4 回 ト

Demand models

- Supply = infrastructure
- Demand = behavior, choices

(日) (同) (三) (三)

• Congestion = mismatch

Demand models

- Usually in OR:
- optimization of the supply
- for a given (fixed) demand

Aggregate demand

- Homogeneous population
- Identical behavior
- Price (P) and quantity (Q)
- Demand functions: P = f(Q)
- Inverse demand: $Q = f^{-1}(P)$

E 5 4 E 5

Disaggregate demand

- Heterogeneous population
- Different behaviors
- Many variables:
 - Attributes: price, travel time, reliability, frequency, etc.
 - Characteristics: age, income, education, etc.
- Complex demand/inverse demand functions.

∃ > < ∃</p>

ÉCOLE POLYTECHNIQUI

Demand-supply interactions

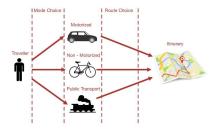
Operations Research

- Given the demand...
- configure the system

Johnson City	Enterprise.
Published Every Saturday,	
\$1. per year-Advance Payment.	
SATURDAY, AP	BIL 7, 1883.
TIME TABLE	
E. T., V. &	G. R. R.
PAS-ENGER,	ARRIVES.
No. 1, West,	6:37, a. m.
No. 2, East,	9:45, p. m.
No. 3, West,	11:51, p.m.
No. 4, East,	3:56, a. m.
LOCAL FREIGHT,	ARRIVES
No. 5,	7:20, a. m
No. 8, JNO. W. EA	6:20, p. m
E. T. & W. N	. C. R. R.
Passenger, leaves,	7, a. m.
" arrives,	6, p. m.

Behavioral models

- Given the configuration of the system...
- predict the demand



< A 1

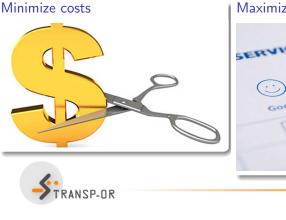
Bierlaire & Sharif Azadeh (EPFL)

August 26, 2015 7 / 66

→ 3 → 4 3

Demand-supply interactions

Multi-objective optimization



Maximize satisfaction

COLE POLYTICHNIQUE FEDFALL DE LAUSANNE

Bierlaire & Sharif Azadeh (EPFL)

August 26, 2015 8 / 66

Outline

Demand and supply

Measuring satisfaction

Linear representation of demand

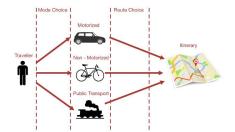
- A simple example
- A linear formulation

Example: one theater
Example: two theaters
Dealing with capacities
Example: two theaters
Conclusion

(2) (3)

< 67 ▶

Measuring satisfaction



Behavioral models

- Demand = sequence of choices
- Choosing means trade-offs
- In practice: derive trade-offs from choice models

Choice models

Theoretical foundations

- Random utility theory
- Choice set: C_n
- $y_{in} = 1$ if $i \in C_n$, 0 if not

 $P(i|\mathcal{C}_n) = \frac{y_{in}e^{v_{in}}}{\sum_{i\in\mathcal{C}}y_{jn}e^{V_{jn}}}$

• Logit model:

イロト イポト イヨト イヨト

August 26, 2015 11 / 66

Decision rules

Neoclassical economic theory

Preference-indifference operator \gtrsim

reflexivity

$$a\gtrsim a \;\; orall a\in {\mathcal C}_n$$

Itransitivity

$$a\gtrsim b \text{ and } b\gtrsim c \Rightarrow a\gtrsim c \ \ \, orall a,b,c\in \mathcal{C}_n$$

comparability

$$a\gtrsim b ext{ or } b\gtrsim a \hspace{0.2cm} orall a, b\in \mathcal{C}_n$$

Decision rules

Utility

$$\exists U_n : \mathcal{C}_n \longrightarrow \mathbb{R} : a \rightsquigarrow U_n(a) \text{ such that}$$
$$a \gtrsim b \Leftrightarrow U_n(a) \ge U_n(b) \quad \forall a, b \in \mathcal{C}_n$$

Remarks

- Utility is a latent concept
- It cannot be directly observed

Example

Two transportation modes

$$U_1 = -\beta t_1 - \gamma c_1$$

$$U_2 = -\beta t_2 - \gamma c_2$$

with β , $\gamma > 0$

$$U_1 \geq U_2$$
 iff $-\beta t_1 - \gamma c_1 \geq -\beta t_2 - \gamma c_2$

that is

$$-rac{eta}{\gamma}t_1-c_1\geq -rac{eta}{\gamma}t_2-c_2$$

or

$$c_1-c_2\leq -rac{eta}{\gamma}(t_1-t_2)$$

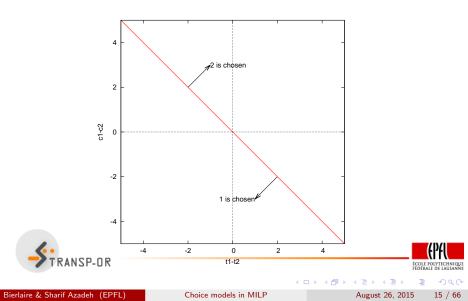
INANSE-UK

Bierlaire & Sharif Azadeh (EPFL)

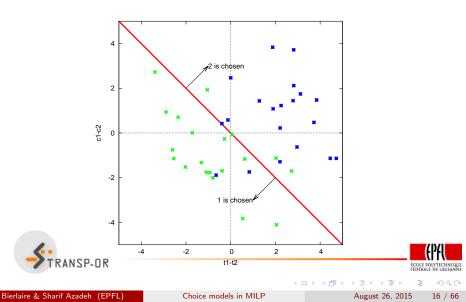
3

ECOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Example



Example



Assumptions

Decision-maker

- perfect discriminating capability
- full rationality
- permanent consistency

Analyst

- knowledge of all attributes
- perfect knowledge of \gtrsim (or $U_n(\cdot)$)
- no measurement error

Must deal with uncertainty

- Random utility models
- For each individual *n* and alternative *i*

$$U_{in} = V_{in} + \varepsilon_{in}$$

and

$$P(i|\mathcal{C}_n) = P[U_{in} = \max_{j \in \mathcal{C}_n} U_{jn}] = P(U_{in} \ge U_{jn} \forall j \in \mathcal{C}_n)$$

Logit model

Utility

$$U_{in} = V_{in} + \varepsilon_{in}$$

Choice probability
$$P_n(i|\mathcal{C}_n) = \frac{y_{in}e^{V_{in}}}{\sum_{j\in\mathcal{C}}y_{jn}e^{V_{jn}}}.$$

- Decision-maker n
- Alternative $i \in C_n$

Variables: $x_{in} = (z_{in}, s_n)$

Attributes of alternative *i*: *z*_{in}

- Cost / price
- Travel time
- Waiting time
- Level of comfort
- Number of transfers
- Late/early arrival
- etc.

Characteristics of decision-maker n: s_n

- Income
- Age
- Sex
- Trip purpose
- Car ownership
- Education
- Profession

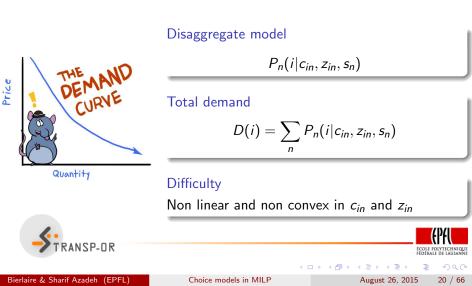
• etc.

STRANSP-OR

A 🖓

ÉCOLE POLYTECHNIQUI

Demand curve



Outline

Demand and supply Measuring satisfaction

Linear representation of demand

- A simple example
- A linear formulation

Example: one theater
Example: two theaters
Dealing with capacities
Example: two theaters
Conclusion

(2) (3)

A simple example

Data

- \mathcal{C} : set of movies
- Population of N individuals
- Utility function:

 $U_{in} = \beta_{in} p_{in} + f(z_{in}) + \varepsilon_{in}$

Decision variables

- What movies to propose? *y_i*
- What price? pin

Demand model

Logit model

Probability that *n* chooses movie *i*:

$$P(i|y, p_n, z_n) = \frac{y_i e^{\beta_{in} p_{in} + f(z_{in})}}{\sum_j y_j e^{\beta_{jn} p_{jn} + f(z_{jn})}}$$

Total revenue:

$$\sum_{i \in C} y_i \sum_{n=1}^{N} p_{in} P(i|y, p_n, z_n)$$

Non linear and non convex in the decision variables

The main idea

The main idea

Linearization

Hopeless to linearize the logit formula (we tried...)

First principles

Each customer solves an optimization problem

Solution

Use the utility and not the probability

A linear formulation

Utility function

$$U_{in} = V_{in} + \varepsilon_{in} = \sum_{k} \beta_k x_{ink} + f(z_{in}) + \varepsilon_{in}.$$

Simulation

- Assume a distribution for ε_{in}
- E.g. logit: i.i.d. extreme value
- Draw R realizations ξ_{inr} , $r = 1, \dots, R$
- The choice problem becomes deterministic

- ∢ /⊐ >

(2) (3)

FEDERALE DE LAUSANNE

Scenarios

Draws

- Draw R realizations ξ_{inr} , $r = 1, \ldots, R$
- We obtain R scenarios

$$U_{inr} = \sum_{k} \beta_k x_{ink} + f(z_{in}) + \xi_{inr}.$$

- For each scenario r, we can identify the largest utility.
- It corresponds to the chosen alternative.

Comparing utilities

Variables

$$\mu_{ijnr} = \begin{cases} 1 & \text{if } U_{inr} \ge U_{jnr}, \\ 0 & \text{if } U_{inr} < U_{jnr}. \end{cases}$$

Constraints

$$(\mu_{ijnr}-1)M_{nr} \leq U_{inr}-U_{jnr} \leq \mu_{ijnr}M_{nr}, \forall i, j, n, r.$$

where

$$|U_{inr} - U_{jnr}| \le M_{nr}, \forall i, j,$$

Comparing utilities

Constraints: $\mu_{ijnr} = 1$

$$0 \leq U_{inr} - U_{jnr} \leq M_{nr}, \forall i, j, n, r.$$

 $U_{jnr} \leq U_{inr}, \forall i, j, n, r.$

Constraints: $\mu_{ijnr} = 0$

$$-M_{nr} \leq U_{inr} - U_{jnr} \leq 0, \forall i, j, n, r.$$

 $U_{inr} \geq U_{jnr}, \forall i, j, n, r.$

Accounting for availabilities

Motivation

- If $y_i = 0$, alternative *i* is not available.
- Its utility should not be involved in any constraint.

New variables: two alternatives are both available

$$\eta_{ij} = y_i y_j$$

Linearization:

$$egin{aligned} y_i + y_j &\leq 1 + \eta_{ij}, \ \eta_{ij} &\leq y_i, \ \eta_{ij} &\leq y_j. \end{aligned}$$

IKANSE-UK

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Bierlaire & Sharif Azadeh (EPFL)

August 26, 2015 30 / 66

Comparing utilities of available alternatives

Constraints

$$M_{nr}\eta_{ij} - 2M_{nr} \leq U_{inr} - U_{jnr} - M_{nr}\mu_{ijnr} \leq (1 - \eta_{ij})M_{nr}, \forall i, j, n, r.$$

 $\eta_{ij} = 1$ and $\mu_{ijnr} = 1$

$$0 \leq U_{inr} - U_{jnr} \leq M_{nr}, \forall i, j, n, r.$$

 $\eta_{ij} = 1$ and $\mu_{ijnr} = 0$

$$-M_{nr} \leq U_{inr} - U_{jnr} \leq 0, \forall i, j, n, r.$$

Comparing utilities of available alternatives

Constraints

$$M_{nr}\eta_{ij} - 2M_{nr} \le U_{inr} - U_{jnr} - M_{nr}\mu_{ijnr} \le (1 - \eta_{ij})M_{nr}, \forall i, j, n, r.$$

 $\eta_{ij} = 0$ and $\mu_{ijnr} = 1$

$$-M_{nr} \leq U_{inr} - U_{jnr} \leq 2M_{nr}, \forall i, j, n, r,$$

 $\eta_{ij} = 0$ and $\mu_{ijnr} = 0$

$$-2M_{nr} \leq U_{inr} - U_{jnr} \leq M_{nr}, \forall i, j, n, r,$$

Comparing utilities of available alternatives

Valid inequalities

$$\mu_{ijnr} \leq y_i, \qquad \forall i, j, n, r, \\ \mu_{ijnr} + \mu_{jinr} \leq 1, \qquad \forall i, j, n, r.$$

The choice

Variables

$$w_{inr} = \begin{cases} 1 & \text{if } n \text{ chooses } i \text{ in scenario } r, \\ 0 & \text{otherwise} \end{cases}$$

Maximum utility

$$w_{inr} \leq \mu_{ijnr}, \forall i, j, n, r.$$

Availability

$$w_{inr} \leq y_i, \forall i, n, r$$

The choice

One choice

$$\sum_{i\in\mathcal{C}}w_{inr}=1,\forall n,r.$$

(日) (同) (三) (三)

Bierlaire & Sharif Azadeh (EPFL)

Choice models in MILP

August 26, 2015 35 / 66

3

Demand and revenues

Demand

$$D_i = \frac{1}{R} \sum_{n=1}^n \sum_{r=1}^R w_{inr}.$$

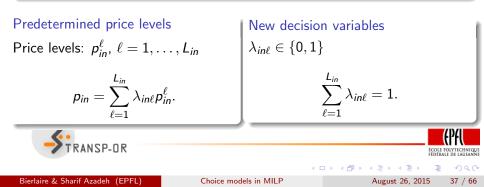
Revenues

$$R_i = \frac{1}{R} \sum_{n=1}^{N} p_{in} \sum_{r=1}^{R} w_{inr}.$$

Revenues

Non linear specification

$$R_i = \frac{1}{R} \sum_{n=1}^{N} p_{in} \sum_{r=1}^{R} w_{inr}.$$



Revenues

Non linear function

$$R_i = \frac{1}{R} \sum_{n=1}^{N} \sum_{\ell=1}^{L_{in}} \lambda_{in\ell} p_{in}^{\ell} \sum_{r=1}^{R} w_{inr}.$$

Linearization

$$\alpha_{inr\ell} = \lambda_{in\ell} w_{inr}$$

Linear specification of revenues

$$R_i = \frac{1}{R} \sum_{n=1}^{N} \sum_{r=1}^{R} \sum_{\ell=1}^{L_{in}} \alpha_{inr\ell} p_{in}^{\ell},$$

$$\begin{split} \lambda_{in\ell} + w_{inr} &\leq 1 + \alpha_{inr\ell}, \forall i, n, r, \ell, \\ \alpha_{inr\ell} &\leq \lambda_{in\ell}, \forall i, n, r, \ell, \\ \alpha_{inr\ell} &\leq w_{inr}, \forall i, n, r, \ell. \end{split}$$

Back to the example: pricing

Data

- Two alternatives: my theater (m) and the competition (c)
- We assume an homogeneous population of *N* individuals

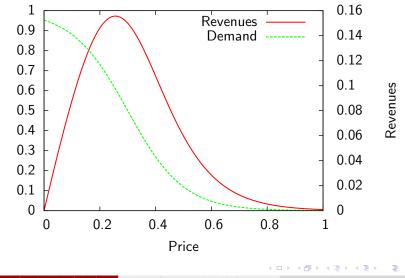
$$U_c = 0 + \varepsilon_c$$
$$U_m = \beta_c p_m + \varepsilon_m$$

• $\beta_c < 0$ • Logit model: ε_m i.i.d. EV

> OLE POLYTECHNIQUE DÉRALE DE LAUSANNE

Example: one theater

Demand and revenues



Demand

Optimization (with GLPK)

Data

- *N* = 1
- *R* = 100
- $U_m = -10p_m + 3$
- Prices: 0.10, 0.20, 0.30, 0.40, 0.50

Results

- Optimum price: 0.3
- Demand: 56%
- Revenues: 0.168

Example: one theater

Heterogeneous population

Two groups in the population

$$U_{in} = -\beta_n p_i + c_n$$

Young fans: 2/3 $\beta_1 = -10$, $c_1 = 3$

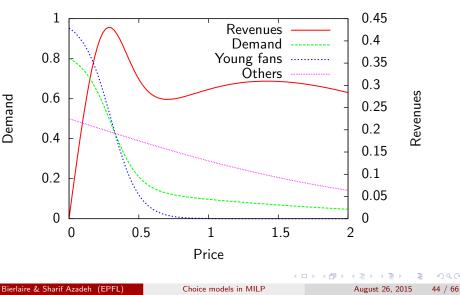
Others:
$$1/3$$

 $\beta_1 = -0.9$, $c_1 = 0$

E 5 4 E

ÉCOLE POLYTECHNIQUE

Demand and revenues



Demand

Optimization

Data

- *N* = 3
- *R* = 100
- $U_{m1} = -10p_m + 3$
- $U_{m2} = -0.9 p_m$
- Prices: 0.3, 0.7, 1.1, 1.5, 1.9

Results

- Optimum price: 0.3
- Customer 1 (fan): 60% [theory: 50 %]
- Customer 2 (fan) : 49% [theory: 50 %]
- Customer 3 (other) : 45% [theory: 43 %]

- Demand: 1.54 (51%)
- Revenues: 0.48

・ロト ・聞ト ・ヨト ・ヨト

Bierlaire & Sharif Azadeh (EPFL)

Choice models in MILP

August 26, 2015 46 / 66

Theater *m*

- Expensive
- Star Wars Episode VII

Heterogeneous demand

- Two third of the population is young (price sensitive)
- One third of the population is old (less price sensitive)

Bierlaire & Sharif Azadeh (EPFL)

Theater *k*

Cheap

Tinker Tailor Soldier Spy

Data

- Theaters m and k
- *N* = 6
- *R* = 10

•
$$U_{mn} = -10p_m + (4), n = 1, 2, 4, 5$$

•
$$U_{mn} = -0.9p_m, n = 3,6$$

•
$$U_{kn} = -10p_k + (0), n = 1, 2, 4, 5$$

•
$$U_{kn} = -0.9p_k$$
, $n = 3, 6$

- Prices m: 1.0, 1.2, 1.4, 1.6, 1.8
- Prices k: half price

Theater *m*

- Optimum price *m*: 1.6
- 4 young customers: 0
- 2 old customers: 0.5
- Demand: 0.5 (8.3%)
- Revenues: 0.8

Theater k

- Optimum price m: 0.5
- Young customers: 0.8
- Old customers: 1.5
- Demand: 2.3 (38%)

Revenues: 1.15

Theater k

Cheap

Star Wars Episode VIII

Two theaters, same type of films

Theater *m*

- Expensive
- Star Wars Episode VII

Heterogeneous demand

- Two third of the population is young (price sensitive)
- One third of the population is old (less price sensitive)

- ×

Two theaters, same type of films

Data

- Theaters *m* and *k*
- *N* = 6
- *R* = 10
- $U_{mn} = -10p_m + (4),$ n = 1, 2, 4, 5

•
$$U_{mn} = -0.9p_m, n = 3, 6$$

• $U_{kn} = -10p_k + (4),$ n = 1, 2, 4, 5

•
$$U_{kn} = -0.9p_k$$
, $n = 3, 6$

- Prices *m*: 1.0, 1.2, 1.4, 1.6, 1.8
- Prices k: half price

Theater *m*

- Optimum price m: 1.8
- Young customers: 0
- Old customers: 1.9
- Demand: 1.9 (31.7%)
- Revenues: 3.42

Theater k

Closed

- 34

イロト 人間ト イヨト イヨト

Outline

Demand and supply

Measuring satisfaction

- Linear representation of demand
 - A simple example
 - A linear formulation

Example: one theater
 Example: two theaters
 Dealing with capacities
 Example: two theaters
 Conclusion

51 / 66

August 26, 2015

< 67 ▶

Dealing with capacities

- Demand may exceed supply
- Not every choice can be accommodated
- Difficulty: who has access?
- Assumption: priority list is exogenous

August 26, 2015 52 / 66

Priority list

Application dependent

- First in, first out
- Frequent travelers
- Subscribers
- ...

In this framework

The list of customers must be sorted

Dealing with capacities

Variables

- *y_{in}*: decision of the operator
- y_{inr}: availability

Constraints

$$\sum_{n=1}^{N} w_{inr} \leq c_i$$

 $y_{inr} \leq y_{in}$
 $y_{i(n+1)r} \leq y_{inr}$

Bierlaire & Sharif Azadeh (EPFL)

Choice models in MILP

August 26, 2015 54 / 66

-

▲ 同 ▶ → 三 ▶

Constraints

$$c_i(1-y_{inr}) \leq \sum_{m=1}^{n-1} w_{imr} + (1-y_{in})c_{\max}$$

$$y_{in} = 1, \ y_{inr} = 1$$

$$0 \le \sum_{m=1}^{n-1} w_{imr}$$

$$y_{in} = 1, \ y_{inr} = 0$$

$$c_i \le \sum_{m=1}^{n-1} w_{imr}$$

 $y_{in} = 0, y_{inr} = 0$

$$c_i \leq \sum_{m=1}^{n-1} w_{imr} + c_{\max}$$

3

<ロ> (日) (日) (日) (日) (日)

Constraints

-1

$$\sum_{m=1}^{n-1} w_{imr} + (1 - y_{in})c_{\max} \le (c_i - 1)y_{inr} + \max(n, c_{\max})(1 - y_{inr})$$

$$y_{in} = 1, \ y_{inr} = 1$$

$$1 + \sum_{m=1}^{n-1} w_{imr} \le c_i$$

$$y_{in} = 1, \ y_{inr} = 0$$

$$\sum_{m=1}^{n-1} w_{imr} \le \max(n, c_{max})$$

 $y_{in} = 0, y_{inr} = 0$

$$\sum_{m=1}^{n-1} w_{imr} + c_{\max} \leq \max(n, c_{\max})$$

Bierlaire & Sharif Azadeh (EPFL)

3

<ロ> (日) (日) (日) (日) (日)

Data

- Theaters m and k
- Capacity: 2
- *N* = 6
- *R* = 5
- $U_{mn} = -10p_m + 4$, n = 1, 2, 4, 5
- $U_{mn} = -0.9p_m, n = 3, 6$
- $U_{kn} = -10p_k + 0, n = 1, 2, 4, 5$
- $U_{kn} = -0.9p_k$, n = 3, 6
- Prices m: 1.0, 1.2, 1.4, 1.6, 1.8
- Prices k: half price

Theater *m*

- Optimum price m: 1.8
- Demand: 0.2 (3.3%)
- Revenues: 0.36

Theater k

- Optimum price m: 0.5
- Demand: 2 (33.3%)
- Revenues: 1.15

- 31

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example of two scenarios

	Customer	Choice	Capacity <i>m</i>	Capacity k	
	1	0	2	2	
	2	0	2	2	
	3	k	2	1	
	4	0	2	1	
	5	0	2	1	
	6	k	2	0	
-	Customer	Choice	Capacity m	Capacity k	
-	1	0	2	2	
	2	k	2	1	
	3	0	2	1	
	4	k	2	0	
	5	0	2	0	
-STRAN	SP-OR 6	0	2	0	ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
Bierlaire & Sharif Azadeh (EPFL)		Choice models in MILP		August 26, 2015 58 / 66	

Two theaters: all prices divided by 2

Data

- Theaters m and k
- Capacity: 2
- *N* = 6
- *R* = 5
- $U_{mn} = -10p_m + 4$, n = 1, 2, 4, 5
- $U_{mn} = -0.9p_m, n = 3, 6$
- $U_{kn} = -10p_k + 0, \ n = 1, 2, 4, 5$
- $U_{kn} = -0.9p_k$, n = 3, 6
- Prices m: 0.5, 0.6, 0.7, 0.8, 0.9
- Prices k: half price

Theater *m*

- Optimum price m: 0.5
- Demand: 1.4
- Revenues: 0.7

Theater k

- Optimum price m: 0.45
- Demand: 1.6
- Revenues: 0.72

Example of two scenarios

	Customer	Choice	Capacity <i>m</i>	Capacity k	
	1	0	2	2	
	2	0	2	2	
	3	0	2	2	
	4	k	2	1	
	5	k	2	0	
	6	0	2	0	
	Customer	Choice	Capacity <i>m</i>	Capacity k	
	1	k	2	1	
	2	k	2	0	
	3	0	2	0	
	4	т	1	0	
	5	0	1	0	
-STRAN	SP-OR 6	т	0	0	ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
Bierlaire & Sharif Azadeh (EPFL)		Choice models in MILP		Augu	st 26, 2015 60 / 66

Outline

• A simple example

A linear formulation

• Example: one theater

• Example: two theaters

- - Example: two theaters

Conclusion

- 4 同 6 4 日 6 4 日 6

Summary

Demand and supply

- Supply: prices and capacity
- Demand: choice of customers
- Interaction between the two

Discrete choice models

- Rich family of behavioral models
- Strong theoretical foundations
- Great deal of concrete applications
- Capture the heterogeneity of behavior
- Probabilistic models

TRANSP-OR

Optimization

Discrete choice models

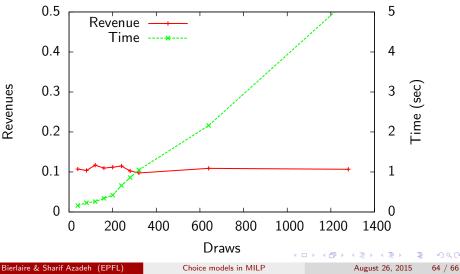
- Non linear and non convex
- Idea: use utility instead of probability
- Rely on simulation to capture stochasticity

Proposed formulation

- Linear in the decision variables
- Large scale
- Fairly general

Number of draws

CPLEX implementation by Shadi



Revenues

Ongoing research

- Decomposition methods
- Scenarios are (almost) independent from each other (except objective function)
- Individuals are also loosely coupled (except for capacity constraints)

Conclusion

Thank you!

Université m 😵 McGill de Montréal

Bierlaire & Sharif Azadeh (EPFL)

Choice models in MILP

August 26, 2015 66 / 66

< ∃ >