

A Benders decomposition for maximum simulated likelihood estimation of advanced discrete choice models

hEART 2022

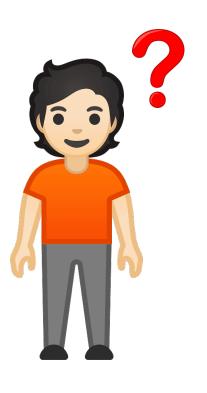
Tom Häring, Claudia Bongiovanni, Michel Bierlaire

TRANSP-OR Laboratory, EPFL

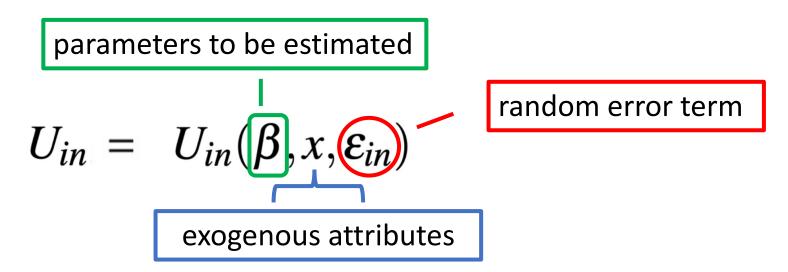
Contents

- 1. Why maximum likelihood estimation (MLE)?
- 2. Why simulated MLE?
- 3. Why a mixed integer linear program (MILP)?
- 4. Simulated MLE as an MILP
- 5. Why decomposition?
- 6. The Benders decomposition
- 7. Results
- 8. Ideas for future work

MLE is for example used to estimate the parameters of discrete choice models



• For each individual n, every alternative i has an associated utility:



• Assumptions:

I.) linear in parameters
 II.) we can draw from error terms

• For each **individual** *n*, every **alternative** *i* has an associated **utility**:

$$U_{in} = \sum_{k} \beta_{k} x_{ink} + \epsilon_{in} = V_{in} + \epsilon_{in}$$
 stochastic part

 Behavioral assumption: the individual chooses the alternative with the highest utility

- Data: **observed choices** y_{in} (= 1 if ind. *n* chose alternative *i*, else = 0)
- Find parameters β_k such that the **likelihood** of this outcome is **maximized**
- Log-Likelihood function:

$$\ln\left(\prod_{n}\prod_{i}P_{n}(i)^{y_{in}}\right) = \sum_{n}\sum_{i}y_{in}\ln P_{n}(i)$$

where

$$P_n(i) = \mathbb{P}(V_{in} + \epsilon_{in}) \ge V_{jn} + \epsilon_{jn} \forall j \in J)$$

Why simulated MLE?

- DCMs model choices **realistically** [1], but in general lead to **non-convex** probabilities [2]
 - ➡ No global optimality certificates, danger of local optima
 - \implies Non-convex solver \approx **Blackbox**
- Simulation mitigates this by giving a linear approximation [3] and allows DCMs to be easily integrated in optimization models [2]

^[1] Bierlaire: Discrete choice models (1998)

^[2] Pacheco: Integrating advanced discrete choice models in mixed integer linear optimization (2021)

^[3] Train: Discrete choice methods with simulation (2009)

Why simulated MLE?

- How:
 - Simulate *R* scenarios, utilities become deterministic:

$$U_{inr} = V_{in} + \epsilon_{inr}$$
 — Draw from distribution

- Let ω_{inr} be the choice variables
- Approximated probabilities:

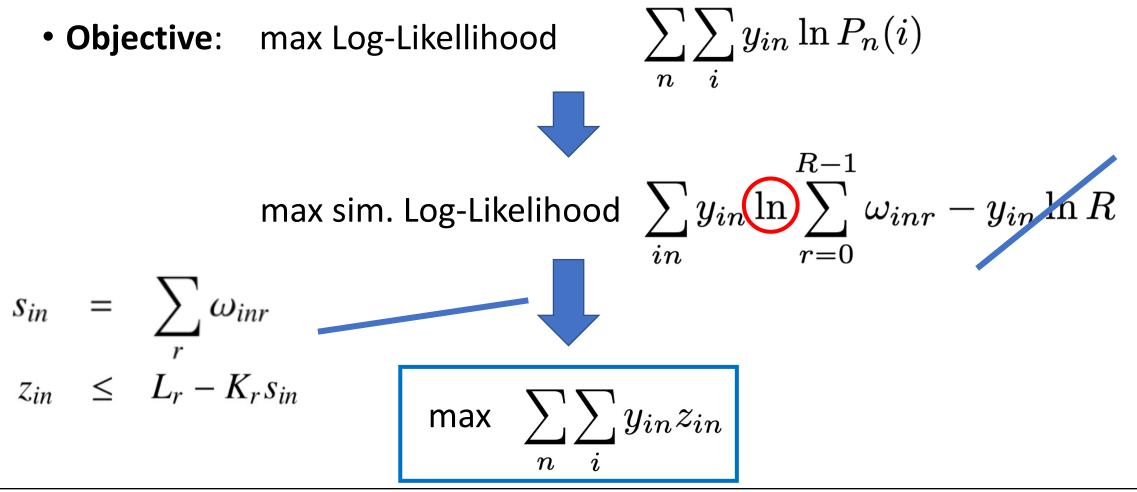
$$\widehat{P}_n(i) = \frac{1}{R} \sum_{r=0}^{R-1} \omega_{inr}$$

Meritxell Pacheco: A general framework for the integration of complex choice models into mixed integer optimization (2020)

Why a mixed integer linear program (MILP)?

- Allow inclusion of integer variables in estimation procedure
 Model advanced DCMs, e. g. latent variables / classes
 Additional features, e. g. automatic / assisted specification
- Vast literature on efficient modeling & performance
- Gives control over optimization process: information on bounds, optimality gaps, user-generated cuts, etc.

Simulated MLE as an MILP



Lurkin, Fernandez and Bierlaire: A MILP formulation for the maximum likelihood estimation of continuous and discrete parameters in choice models (2018)

Simulated MLE as an MILP

• Constraints:

$$\sum_{i} \omega_{inr} = 1 \qquad \forall n, r$$

$$U_{inr} = \sum_{k} \beta_{k} x_{ink} + \epsilon_{inr} \qquad \forall i, n, r$$

$$U_{nr} \geq U_{inr} \qquad \forall i, n, r$$

$$U_{nr} = \sum_{i} U_{inr} \omega_{inr} \qquad \forall n, r$$

$$s_{in} = \sum_{r} \omega_{inr} \qquad \forall i, n$$

$$z_{in} \leq L_{r} - K_{r} s_{in} \qquad \forall i, n$$

$$\omega_{inr} \in \{0, 1\}$$

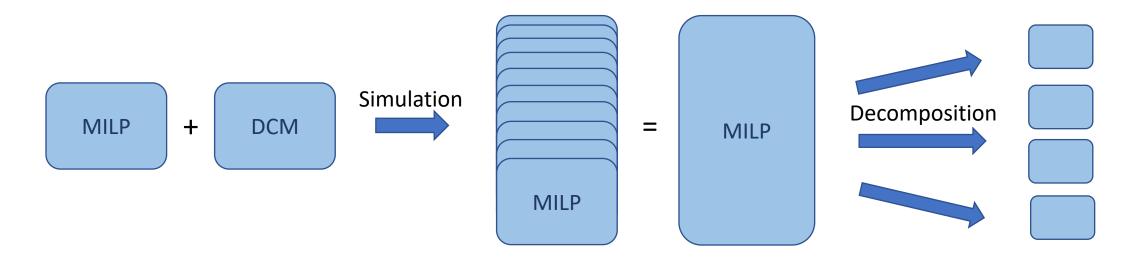
$$\beta, s, z, U, U \in \mathbb{R}$$

Why decomposition?

• Problem: Simulation increases problem size by solving many scenarios

only small instances can be solved in reasonable time [1]

• To solve large MILPs efficiently we consider **decomposition methods**



candidate solution β

Master Problem (LP)

Compute candidate solution for parameters β

Sub-Problem (LP)

Totally unimodular when β is fixed. => Solve dual optimality cuts

• For a fixed β_k the rest of the MILP becomes a Knapsack-problem => totally unimodular:

• Utilities become fixed
$$U_{inr} = \sum_{k} \beta_{k}^{\text{fixed}} x_{ink} + \epsilon_{inr}$$

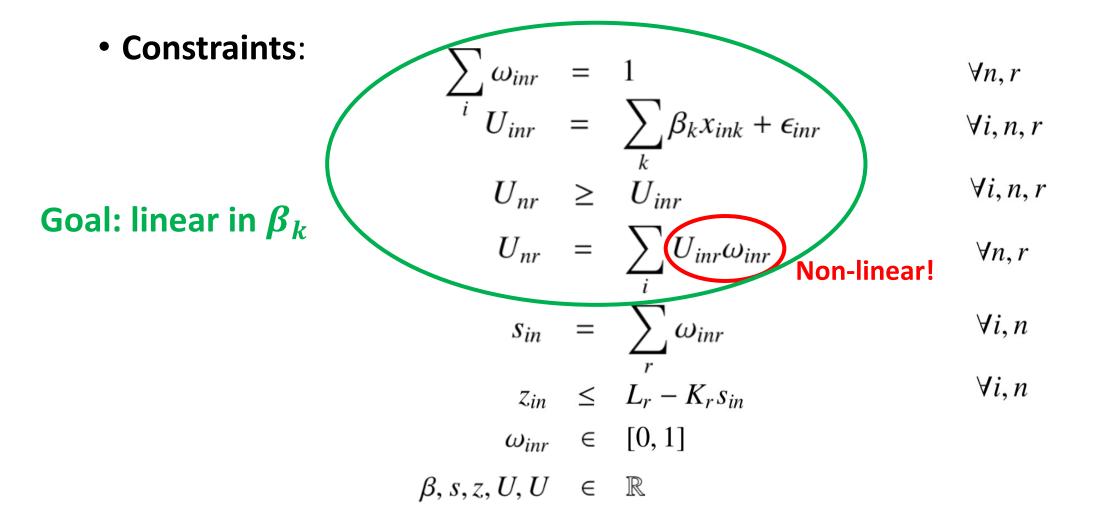
• Now: $U_{nr} = \sum_{i} U_{inr} \omega_{inr}$
 $U_{nr} \ge U_{inr}$
 $\sum_{i} \omega_{inr} = 1$
 $\omega_{inr} \in [0, 1]$
 $\omega_{inr} \in [0, 1]$

- Typically:
 - The variable to be fixed is **integer**, so that the subproblems are linear
 - Thus MP is an integer program (bottleneck!)
- But in our case:
 - The variable to be fixed is continuous, but thanks to TU-ness the subproblems are (technically) still linear!
 - Thus SP is a linear program

From solving an MILP to iteratively solving LP's!

• Difficulty:

Simply adding the constraint $\beta_k = \beta_k^{\text{fixed}}$ does not work in our case because of the **non-linearity** of the problem



• We design a **quasi**-linearization:

$$\chi_{inr} + \omega_{inr} = 1$$

$$\eta_{inrk} \stackrel{!}{=} \beta_k^{\text{fixed}} \omega_{inr} \qquad \longrightarrow \qquad \eta_{inrk} + \beta_k^{\text{fixed}} \chi_{inr} = \beta_k^{\text{fixed}}$$

$$\sum_i \eta_{inrk} = \beta_k$$

Application to a mode choice problem

- Dataset: **RP** data on **mode choice**, Netherlands, 1987
- Simple **binary logit model**:

choice between two modes – car and rail

$$U_{\text{car},n} = \beta_{time} * \text{traveltime}_{\text{car}}$$

$$U_{\text{rail},n} = \beta_{time} * \text{traveltime}_{\text{rail}}$$

Compare decomposition vs. undecomposed MILP

Ν	R	sLL-M	sLL-D	Gap [%]	T-M	T-D
20	50	-12.607	-12.658	-0.40	64.942	10.061
20	100	-12.212	-12.258	-0.38	403.694	9.902
20	200	-12.283	-12.648	-2.97	1117.064	16.939
50	50	-30.848	-31.030	-0.59	286.679	29.780
50	100	-30.461	-31.040	-1.90	1558.604	65.006
50	200	-30.566	-30.692	-0.41	5375.655	98.206
100	50	-65.204	-65.801	-0.92	2820.229	28.781
100	100	-65.784	-67.419	-2.49	4346.067	274.163
100	200	-65.699	-66.018	-0.49	10800+	295.741
200	50	-123.551	-124.027	-0.39	1476.185	120.579
200	100	-124.000	-124.243	-0.20	10800+	327.253
200	200	-124.707	-124.106	0.48	10800+	1262.755

Application to a mode choice problem

- First conjecture: gaps are caused by log-linearization in MSLE
- **Remedy:** apply decomposition to *continuous pricing problem (CPP)*

Almost equivalent problem structure, no log-linearization

Application to a continouos pricing problem

• Continuous pricing problem:

$$\max_{p,\omega,U,H} \sum_{n} \sum_{r} \sum_{i} \frac{1}{R} \theta_{in} p_{i} \omega_{inr}$$
s.t.
$$\sum_{i} \omega_{inr} = 1 \qquad \forall n, r$$

$$H_{nr} = \sum_{i} U_{inr} \omega_{inr} \qquad \forall n, r$$

$$H_{nr} \geq U_{inr} \qquad \forall i, n, r$$

$$U_{inr} = \sum_{k \neq l} \beta_{k} x_{ink} + \beta_{l} p_{i} + \varepsilon_{inr} \qquad \forall i, n, r$$

$$\omega \in \{0, 1\}$$

$$p, U, H \in \mathbb{R}$$

Application to a continouos pricing problem

Ν	R	obj-MILP	obj-D	Gap [%]	P-MILP	P-D	Gap [%]	T-MILP	T-D
20	50	216.407	209.196	3.33	28.475	30.764	-8.04	7	11
20	100	202.642	201.712	0.46	28.302	26.576	6.1	37	21
20	200	200.901	200.185	0.36	30.03	28.721	4.36	205	49
50	50	440.686	437.243	0.78	28.579	29.989	-4.94	55	27
50	100	431.088	426.669	1.03	28.99	27.778	4.18	241	62
50	200	429.605	429.108	0.12	28.574	28.655	-0.28	1022	163
100	50	990.026	988.732	0.13	29.118	28.944	0.6	252	31
100	100	977.606	976.149	0.15	30.099	29.925	0.58	1224	69
100	200	978.589	976.932	0.17	30.106	30.185	-0.26	3039	304
200	50	1906.696	1904.189	0.13	28.977	28.678	1.03	1144	65
200	100	1882.793	1877.641	0.27	29.277	30.052	-2.65	4104	359
200	200	1873.964	1871.614	0.13	29.276	29.343	-0.23	10811	690

Large number of draws (MSLE)

Ν	R	sLL-M	sLL-D	Gap [%]	T-M	T-D
50	20	-29.417	-29.908	1.67	22	6
50	50	-29.294	-31.173	6.41	279	26
50	100	-28.885	-29.42	1.85	1375	42
50	150	-29.973	-30.092	0.4	2852	70
50	200	-30.091	-30.101	0.03	10800	131
50	250	-30.741	-30.775	0.11	10800	156
50	300	-30.837	-30.843	0.02	10800	133
50	400	-30.632	-30.638	0.02	10800	130
50	600	-30.479	-30.51	0.1	10800	289
50	800		-32.035		10800	319
50	1000		-30.523		10800	349

Ideas for future work

• Improving Benders:

Piece-wise linearizationConvex-quadratic formulation

- Column generation methods
- Combined column generation + Benders approach

