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Why maximum likelihood estimation (MLE)?

• MLE is for example used to estimate the parameters of discrete 
choice models
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• For each individual n, every alternative i has an associated utility:

exogenous attributes

random error term

parameters to be estimated
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Why maximum likelihood estimation (MLE)?

• Assumptions: I.)  linear in parameters
II.) we can draw from error terms



• For each individual n, every alternative i has an associated utility:

• Behavioral assumption: the individual chooses the alternative with 
the highest utility
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deterministic part

v

stochastic part

Why maximum likelihood estimation (MLE)?



• Data: observed choices 𝑦!" (= 1 if ind. n chose alternative i, else = 0)
• Find parameters 𝛽# such that the likelihood of this outcome is 

maximized
• Log-Likelihood function: 

where
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Why maximum likelihood estimation (MLE)?



Why simulated MLE?

• DCMs model choices realistically [1], but in general lead to non-convex
probabilities [2] 

No global optimality certificates, danger of local optima
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[1] Bierlaire: Discrete choice models (1998)
[2] Pacheco: Integrating advanced discrete choice models in mixed integer linear optimization (2021)
[3] Train: Discrete choice methods with simulation (2009)

Non-convex solver ≈ Blackbox

• Simulation mitigates this by giving a linear approximation [3] and allows 
DCMs to be easily integrated in optimization models [2]



Why simulated MLE?

• How: 

§ Simulate R scenarios, utilities become deterministic:

§ Let 𝜔!"$ be the choice variables

§ Approximated probabilities: 

Draw from distribution

Meritxell Pacheco: A general framework for the integration of complex choice models into mixed integer optimization (2020)
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Why a mixed integer linear program (MILP)?

• Allow inclusion of integer variables in estimation procedure
ØModel advanced DCMs, e. g. latent variables / classes
ØAdditional features, e. g. automatic / assisted specification

• Vast literature on efficient modeling & performance
• Gives control over optimization process: information on bounds, 

optimality gaps, user-generated cuts, etc. 



Simulated MLE as an MILP

• Objective: max Log-Likellihood 

max sim. Log-Likelihood

max 

Lurkin, Fernandez and Bierlaire: A MILP formulation for the maximum likelihood estimation of continuous and discrete 
parameters in choice models (2018)
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• Constraints: 
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Simulated MLE as an MILP



Why decomposition?

• Problem: Simulation increases problem size by solving many scenarios
only small instances can be solved in reasonable time [1]

• To solve large MILPs efficiently we consider decomposition methods
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[1] Pacheco: Integrating advanced discrete choice models in mixed integer linear optimization (2021)

MILP DCM+ MILP

MILPMILPMILPMILP
MILP
MILP
MILP
MILP
MILP
MILP

=
Simulation Decomposition



The Benders decomposition

candidate
solution 𝛽

optimality cuts
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Compute candidate solution
for parameters 𝛽

Master Problem (LP)

Sub-Problem (LP)

Totally unimodular 
when 𝛽 is fixed.

=> Solve dual



The Benders decomposition

• For a fixed        the rest of the MILP becomes a Knapsack-problem
=> totally unimodular:

§ Utilities become fixed  

§ Now: 

for the alternative 𝑖∗
with highest utility
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The Benders decomposition

• Typically:
§ The variable to be fixed is integer, so that the subproblems are linear
§ Thus MP is an integer program (bottleneck!)

• But in our case:
§ The variable to be fixed is continous, but thanks to TU-ness the 

subproblems are (technically) still linear!
§ Thus SP is a linear program

From solving an MILP to iteratively solving LP’s!
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• Difficulty:

Simply adding the constraint                         does not work in our case
because of the non-linearity of the problem
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The Benders decomposition



• Constraints: 
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Non-linear!

Goal: linear in 𝜷𝒌

The Benders decomposition



• We design a quasi-linearization:

19

!

The Benders decomposition



• Dataset: RP data on mode choice, Netherlands, 1987
• Simple binary logit model:

choice between two modes – car and rail

• Compare decomposition vs. undecomposed MILP
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Application to a mode choice problem
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• First conjecture: gaps are caused by log-linearization in MSLE
• Remedy: apply decomposition to continuous pricing problem (CPP)
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Almost equivalent problem structure, no log-linearization

Application to a mode choice problem



• Continuous pricing problem:
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Application to a continouos pricing problem
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Application to a continouos pricing problem



Large number of draws (MSLE)
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Ideas for future work

• Improving Benders:
ØPiece-wise linearization
ØConvex-quadratic formulation

• Column generation methods
• Combined column generation + Benders approach
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