The 11th Triennial Symposium on Transportation Analysis

June 19-25, 2022, Mauritius Island

A Benders decomposition for maximum simulated likelihood estimation of advanced discrete choice models

Tom Häring, Claudia Bongiovanni, Michel Bierlaire
TRANSP-OR Laboratory

Contents

1. Why maximum likelihood estimation (MLE)?
2. Why simulated MLE?
3. Why a mixed integer linear program (MILP)?
4. Simulated MLE as an MILP
5. Why decomposition?
6. The Benders decomposition
7. Results
8. Ideas for future work

Why maximum likelihood estimation (MLE)?

- MLE is for example used to estimate the parameters of discrete choice models

hEART 2022

TRISTAN XI

ICMC 2022

Why maximum likelihood estimation (MLE)?

- For each individual \boldsymbol{n}, every alternative \boldsymbol{i} has an associated utility:

- Assumptions:
I.) linear in parameters
II.) we can draw from error terms

Why maximum likelihood estimation (MLE)?

- For each individual \boldsymbol{n}, every alternative \boldsymbol{i} has an associated utility:

$$
U_{i n}=\sum_{k} \beta_{k} x_{i n k}+\epsilon_{i n}=V_{i n}+\epsilon_{\text {deterministic part }}^{\text {dethastic part }}
$$

- Behavioral assumption: the individual chooses the alternative with the highest utility

Why maximum likelihood estimation (MLE)?

- Data: observed choices $y_{\text {in }}(=1$ if ind. n chose alternative i, else $=0$)
- Find parameters β_{k} such that the likelihood of this outcome is maximized
- Log-Likelihood function:

$$
\ln \left(\prod_{n} \prod_{i} P_{n}(i)^{y_{i n}}\right)=\sum_{n} \sum_{i} y_{i n} \ln P_{n}(i)
$$

where

$$
\left.P_{n}(i)=\mathbb{P}\left(V_{i n}+\epsilon_{i n} \geq V_{j n}+\epsilon_{j n}\right) \forall j \in J\right)
$$

Why simulated MLE?

- DCMs model choices realistically [1], but in general lead to non-convex probabilities [2]
\Rightarrow No global optimality certificates, danger of local optima
\Rightarrow Non-convex solver \approx Blackbox
- Simulation mitigates this by giving a linear approximation [3] and allows DCMs to be easily integrated in optimization programs [2]

Why simulated MLE?

- How:
- Simulate R scenarios, utilities become deterministic:

$$
U_{i n r}=V_{i n}+\epsilon_{i n r} \quad \text { Draw from distribution }
$$

- Let $\omega_{i n r}$ be the choice variables
- Approximated probabilities:

$$
\widehat{P}_{n}(i)=\frac{1}{R} \sum_{r=0}^{R-1} \omega_{i n r}
$$

Why a mixed integer linear program (MILP)?

- Allow inclusion of integer variables in estimation procedure
>Model advanced DCMs, e. g. latent variables / classes
>Additional features, e. g. automatic / assisted specification
- Vast literature on efficient modeling \& performance
- Gives control over optimization process: information on bounds, optimality gaps, user-generated cuts, etc.

Simulated MLE as an MILP

- Objective: max Log-Likellihood

$$
\sum_{n} \sum_{\substack{y_{m} \\ \ln \\ P_{n}(i)}}
$$

Simulated MLE as an MILP

- Constraints:

$$
\begin{array}{rlrl}
\sum_{i} \omega_{i n r} & =1 & & \forall n, r \\
U_{i n r} & =\sum_{k} \beta_{k} x_{i n k}+\epsilon_{i n r} & \forall i, n, r \\
U_{n r} & \geq U_{i n r} & \forall i, n, r \\
U_{n r} & =\sum_{i} U_{i n r} \omega_{i n r} & \forall n, r \\
s_{i n} & =\sum_{r} \omega_{i n r} & \forall i, n \\
z_{i n} & \leq L_{r}-K_{r} s_{i n} & \forall i, n
\end{array}
$$

Why decomposition?

- Problem: Simulation increases problem size by solving many scenarios
\Rightarrow only small instances can be solved in reasonable time [1]
- To solve large MILPs efficiently we consider decomposition methods

The Benders decomposition

The Benders decomposition

- For a fixed β_{k} the rest of the MILP becomes a Knapsack-problem => totally unimodular:
- Utilities become fixed $\quad U_{i n r}=\sum_{k} \beta_{k}^{\text {fixed }} x_{i n k}+\epsilon_{i n r}$
- Now: $\quad U_{n r}=\sum_{i} U_{i n r} \omega_{i n r}$

$$
\begin{aligned}
U_{n r} & \geq U_{i n r} \\
\sum_{i} \omega_{i n r} & =1 \\
\omega_{i n r} & \in[0,1]
\end{aligned}
$$

$$
\omega_{i^{*} n r}=1
$$

for the alternative i^{*} with highest utility

The Benders decomposition

- Start with initial guess for the variable to be fixed
- Subproblems:
- relax integral domains: $\omega_{i n r} \in[0,1]$
- add constraints: $\beta_{k}=\beta_{k}^{\text {fixed }} \quad\left(\varphi_{k}^{\beta}\right)$
\Rightarrow RHS of primal $=$ objective of dual $=\ldots+\sum_{k} \varphi_{k}^{\beta} \beta_{k}^{\text {fixed }}$
- solve dual, get optimal values for φ_{k}^{β}

The Benders decomposition

- Solve master problem:

The Benders decomposition

- Typically:
- The variable to be fixed is integer, so that the subproblems are linear
- Thus MP is an integer program (bottleneck!)
- But in our case:
- The variable to be fixed is continous, but thanks to TU-ness the subproblems are (technically) still linear!
- Thus SP is a linear program!

From solving an MILP to iteratively solving LP's!

The Benders decomposition

- Difficulty:

Simply adding the constraint $\beta_{k}=\beta_{k}^{\text {fixed }}$ does not work in our case because of the non-linearity of the problem

The Benders decomposition

The Benders decomposition

- Constraints:

$$
\begin{aligned}
\sum_{i} \omega_{i n r} & =1 \\
U_{i n r} & =\sum_{k} \beta_{k} x_{i n k}+\epsilon_{i n r} \\
U_{n r} & \geq U_{i n r} \\
U_{n r} & =\sum_{i} U_{i n r} \omega_{i n r} \\
\beta_{k} & =\beta_{k}^{\text {fixed }}
\end{aligned}
$$

The Benders decomposition

- Constraints:

$$
\left.\begin{array}{rl}
\sum_{i} \omega_{i n r} & =1 \\
U_{i n r} & =\sum_{k} \beta_{k} x_{i n k}+\epsilon_{i n r} \\
U_{n r} & \geq U_{i n r} \\
U_{n r} & =\sum_{i} U_{i n r}^{\text {fixed }} \omega_{i n r} \\
\beta_{k} & =\beta_{k}^{\text {fixed }}
\end{array}\right\} \text { Disconnected! }
$$

The Benders decomposition

- Constraints:

$$
\begin{aligned}
\sum_{i} \omega_{i n r} & =1 \\
U_{i n r} & =\sum_{k} \beta_{k} x_{i n k}+\epsilon_{i n r} \\
U_{n r} & \geq U_{i n r} \\
U_{n r} & =\sum_{i} \omega_{i n r}\left[\sum_{k} \beta_{k} x_{i n k}+\epsilon_{i n r}\right] \\
\beta_{k} & =\beta_{k}^{\text {fixed }}
\end{aligned}
$$

The Benders decomposition

- Constraints:

$$
\begin{aligned}
\sum_{i} \omega_{i n r} & =1 \\
U_{i n r} & =\sum_{k} \beta_{k} x_{i n k}+\epsilon_{i n r} \\
U_{n r} & \geq U_{i n r} \\
U_{n r} & =\sum_{i}\left[\sum_{k}\left(\omega_{i n r} \beta_{k}\right) x_{i n k}+\omega_{i n r} \epsilon_{i n r}\right] \\
\beta_{k} & =\beta_{k}^{\text {fixed }}
\end{aligned}
$$

The Benders decomposition

- Constraints:

$$
\begin{aligned}
\sum_{i} \omega_{i n r} & =1 \\
U_{i n r} & =\sum_{k} \beta_{k} x_{i n k}+\epsilon_{i n r} \\
U_{n r} & \geq U_{i n r} \\
U_{n r} & =\sum_{i}\left[\sum_{k} \eta_{i n r k} x_{i n k}+\omega_{i n r} \epsilon_{i n r}\right] \\
\eta_{i n r k} & =\beta_{k} \omega_{i n r} \\
\beta_{k} & =\beta_{k}^{\text {fixed }}
\end{aligned}
$$

The Benders decomposition

- Constraints:

$$
\begin{aligned}
\sum_{i} \omega_{i n r} & =1 \\
U_{i n r} & =\sum_{k} \beta_{k} x_{i n k}+\epsilon_{i n r} \\
U_{n r} & \geq U_{i n r} \\
U_{n r} & =\sum_{i}\left[\sum_{k} \eta_{i n r k} x_{i n k}+\omega_{i n r} \epsilon_{i n r}\right] \\
\psi_{i n r k} & =\frac{1}{2}\left(\beta_{k}+\omega_{i n r}\right) \\
\phi_{i n r k} & =\frac{1}{2}\left(\beta_{k}-\omega_{i n r}\right) \\
\eta_{i n r k} & =\psi_{i n r k}^{2}-\phi_{i n r k}^{2} \\
\beta_{k} & =\beta_{k}^{\text {fixed }} \quad \Longrightarrow \text { piece-wise linear approximations }
\end{aligned}
$$

The Benders decomposition

- Constraints:

$$
\begin{aligned}
\sum_{i} \omega_{i n r} & =1 \\
U_{i n r} & =\sum_{k} \beta_{k} x_{i n k}+\epsilon_{i n r} \\
U_{n r} & \geq U_{i n r} \\
U_{n r} & =\sum_{i} U_{i n r} \omega_{i n r} \\
\beta_{k} & =\beta_{k}^{\text {fixed }}
\end{aligned}
$$

The Benders decomposition

- We design a quasi-linearization:

$$
\begin{aligned}
\eta_{\text {inrk }}=\beta_{k} \omega_{\text {inr }} \\
\beta_{k}=\beta_{k}^{\text {fixed }}
\end{aligned} \quad \begin{aligned}
\chi_{i n r}+\omega_{i n r} & =1 \\
\eta_{\text {inrk }}+\beta_{k}^{\text {fixed }} \chi_{i n r} & =\beta_{k}^{\text {fixed }} \\
\sum_{i} \eta_{i n r k} & =\beta_{k}
\end{aligned}
$$

Application to a mode choice problem

- Dataset: RP data on mode choice, Netherlands, 1987
- Simple binary logit model:
choice between two modes - car and rail

$$
\begin{aligned}
& U_{\mathrm{car}, n}=\beta_{\text {time }} * \text { traveltime }_{\mathrm{car}} \\
& U_{\mathrm{rail}, n}=\beta_{\text {time }} * \text { traveltime }_{\mathrm{rail}}
\end{aligned}
$$

- Compare decomposition vs. undecomposed MILP

N	R	sLL-M	sLL-D	Gap [\%]	T-M	T-D
20	50	-12.607	-12.658	-0.40	64.942	10.061
20	100	-12.212	-12.258	-0.38	403.694	9.902
20	200	-12.283	-12.648	-2.97	1117.064	16.939
50	50	-30.848	-31.030	-0.59	286.679	29.780
50	100	-30.461	-31.040	-1.90	1558.604	65.006
50	200	-30.566	-30.692	-0.41	5375.655	98.206
100	50	-65.204	-65.801	-0.92	2820.229	28.781
100	100	-65.784	-67.419	-2.49	4346.067	274.163
100	200	-65.699	-66.018	-0.49	$10800+$	295.741
200	50	-123.551	-124.027	-0.39	1476.185	120.579
200	100	-124.000	-124.243	-0.20	$10800+$	327.253
200	200	-124.707	-124.106	0.48	$10800+$	1262.755

N	R	$\beta-\mathrm{M}$	$\beta-\mathrm{D}$	$\mathrm{Gap}[\%]$	$\mathrm{T}-\mathrm{M}$	$\mathrm{T}-\mathrm{D}$
20	50	-1.048	-0.97	7.44	65	10
20	100	-1.143	-1.11	2.89	404	10
20	200	-1.182	-2.16	-82.74	1117	17
50	50	-1.223	-0.935	23.55	287	30
50	100	-1.223	-1.783	-45.79	1559	65
50	200	-1.223	-1.307	-6.87	5376	98
100	50	-0.889	-0.612	31.16	2820	29
100	100	-0.943	-0.451	52.17	4346	274
100	200	-0.899	-0.85	5.45	10800	296
200	50	-1.39	-1.322	4.89	1476	121
200	100	-1.49	-1.393	6.51	10800	327
200	200	-1.021	-1.377	-34.87	10800	1263

Application to a mode choice problem

- First conjecture: gaps are caused by log-linearization in MSLE
- Remedy: apply decomposition to continuous pricing problem (CPP)

Almost equivalent problem structure, no log-linearization

Application to a continouos pricing problem

- Continuous pricing problem:
$\max _{p, \omega, U, H} \sum_{n} \sum_{r} \sum_{i} \frac{1}{R} \theta_{i n} p_{i} \omega_{i n r}$
s.t.

$$
\begin{aligned}
\sum_{i} \omega_{i n r} & =1 & \forall n, r \\
H_{n r} & =\sum_{i} U_{i n r} \omega_{i n r} & \forall n, r \\
H_{n r} & \geq U_{i n r} & \forall i, n, r \\
U_{i n r} & =\sum_{k \neq l} \beta_{k} x_{i n k}+\beta_{l} p_{i}+\varepsilon_{i n r} & \forall i, n, r \\
\omega & \in\{0,1\} & \\
p, U, H & \in \mathbb{R} &
\end{aligned}
$$

Application to a continouos pricing problem

N	R	obj-MILP	obj-D	Gap [\%]	P-MILP	P-D	Gap [\%]	T-MILP	T-D
20	50	216.407	209.196	3.33	28.475	30.764	-8.04	7	11
20	100	202.642	201.712	0.46	28.302	26.576	6.1	37	21
20	200	200.901	200.185	0.36	30.03	28.721	4.36	205	49
50	50	440.686	437.243	0.78	28.579	29.989	-4.94	55	27
50	100	431.088	426.669	1.03	28.99	27.778	4.18	241	62
50	200	429.605	429.108	0.12	28.574	28.655	-0.28	1022	163
100	50	990.026	988.732	0.13	29.118	28.944	0.6	252	31
100	100	977.606	976.149	0.15	30.099	29.925	0.58	1224	69
100	200	978.589	976.932	0.17	30.106	30.185	-0.26	3039	304
200	50	1906.696	1904.189	0.13	28.977	28.678	1.03	1144	65
200	100	1882.793	1877.641	0.27	29.277	30.052	-2.65	4104	359
200	200	1873.964	1871.614	0.13	29.276	29.343	-0.23	10811	690

Large number of draws (MSLE)

N	R	sLL-M	sLL-D	Gap [\%]	T-M	T-D
50	20	-29.417	-29.908	1.67	22	6
50	50	-29.294	-31.173	6.41	279	26
50	100	-28.885	-29.42	1.85	1375	42
50	150	-29.973	-30.092	0.4	2852	70
50	200	-30.091	-30.101	0.03	10800	131
50	250	-30.741	-30.775	0.11	10800	156
50	300	-30.837	-30.843	0.02	10800	133
50	400	-30.632	-30.638	0.02	10800	130
50	600	-30.479	-30.51	0.1	10800	289
50	800		-32.035		10800	319
50	1000		-30.523		10800	349

Ideas for future work

- Improving Benders:
$>$ Find a better way to linearize the product (?)
$>$ Find a convex-quadratic formulation (?)
- Investigate column generation
- Combined column generation + Benders approach

