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Why maximum likelihood estimation (MLE)?

• MLE is for example used to estimate the parameters of discrete 
choice models
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• For each individual n, every alternative i has an associated utility:

exogenous attributes

random error term

parameters to be estimated
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Why maximum likelihood estimation (MLE)?

• Assumptions: I.)  linear in parameters
II.) we can draw from error terms



• For each individual n, every alternative i has an associated utility:

• Behavioral assumption: the individual chooses the alternative with 
the highest utility
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deterministic part

v

stochastic part

Why maximum likelihood estimation (MLE)?



• Data: observed choices !!" (= 1 if ind. n chose alternative i, else = 0)
• Find parameters "# such that the likelihood of this outcome is 

maximized

• Log-Likelihood function: 

where
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Why maximum likelihood estimation (MLE)?



Why simulated MLE?

• DCMs model choices realistically [1], but in general lead to non-convex
probabilities [2] 

No global optimality certificates, danger of local optima
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[1] Bierlaire: Discrete choice models (1998)
[2] Pacheco: Integrating advanced discrete choice models in mixed integer linear optimization (2021)
[3] Train: Discrete choice methods with simulation (2009)

Non-convex solver ≈ Blackbox

• Simulation mitigates this by giving a linear approximation [3] and allows 
DCMs to be easily integrated in optimization programs [2]



Why simulated MLE?

• How: 

§ Simulate R scenarios, utilities become deterministic:

§ Let $!"$ be the choice variables

§ Approximated probabilities: 

Draw from distribution

Meritxell Pacheco: A general framework for the integration of complex choice models into mixed integer optimization (2020)
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Why a mixed integer linear program (MILP)?

• Allow inclusion of integer variables in estimation procedure
ØModel advanced DCMs, e. g. latent variables / classes
ØAdditional features, e. g. automatic / assisted specification

• Vast literature on efficient modeling & performance
• Gives control over optimization process: information on bounds, 

optimality gaps, user-generated cuts, etc. 



Simulated MLE as an MILP

• Objective: max Log-Likellihood 

max sim. Log-Likelihood

max 

Lurkin, Fernandez and Bierlaire: A MILP formulation for the maximum likelihood estimation of continuous and discrete 
parameters in choice models (2018)

11



• Constraints: 
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Simulated MLE as an MILP



Why decomposition?

• Problem: Simulation increases problem size by solving many scenarios
only small instances can be solved in reasonable time [1]

• To solve large MILPs efficiently we consider decomposition methods

13[1] Pacheco: Integrating advanced discrete choice models in mixed integer linear optimization (2021)

MILP DCM+ MILP

MILPMILPMILPMILPMILP
MILP
MILP
MILP
MILP
MILP

=
Simulation Decomposition



The Benders decomposition

candidate
solution "

optimality cuts
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Compute candidate solution
for parameters %

-> Lower bound on objective

Master Problem (LP)

Sub-Problem (LP)
-> Upper bound on objective

Linear when
% is fixed.

=> Can solve dual



The Benders decomposition

• For a fixed        the rest of the MILP becomes a Knapsack-problem
=> totally unimodular:

§ Utilities become fixed  

§ Now: 

for the alternative %∗
with highest utility
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• Start with initial guess for the variable to be fixed

- add constraints:

• Subproblems:

RHS of primal  =  objective of dual  = 

- solve dual, get optimal values for 

. . . 

- relax integral domains: 
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The Benders decomposition



• Solve master problem:

s.t.

objective value of primal / dual Replace fixed variable value by 
actual MP variable

Benders cut
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The Benders decomposition



The Benders decomposition

• Typically:

§ The variable to be fixed is integer, so that the subproblems are linear
§ Thus MP is an integer program (bottleneck!)

• But in our case:

§ The variable to be fixed is continous, but thanks to TU-ness the 
subproblems are (technically) still linear!

§ Thus SP is a linear program!

From solving an MILP to iteratively solving LP’s!
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• Difficulty:

Simply adding the constraint                         does not work in our case
because of the non-linearity of the problem
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The Benders decomposition



• Constraints: 
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Goal: linear in &'

The Benders decomposition

k

Non-linear!



• Constraints: 
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The Benders decomposition



• Constraints: 
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The Benders decomposition

Disconnected!



• Constraints: 
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The Benders decomposition



• Constraints: 
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The Benders decomposition



• Constraints: 
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The Benders decomposition



• Constraints: 
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The Benders decomposition

piece-wise linear approximations

Does not preserve total unimodularity



• Constraints: 
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The Benders decomposition

Convex?



• We design a quasi-linearization:
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The Benders decomposition



• Dataset: RP data on mode choice, Netherlands, 1987
• Simple binary logit model:

choice between two modes – car and rail

• Compare decomposition vs. undecomposed MILP
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Application to a mode choice problem
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• First conjecture: gaps are caused by log-linearization in MSLE
• Remedy: apply decomposition to continuous pricing problem (CPP)
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Almost equivalent problem structure, no log-linearization

Application to a mode choice problem



• Continuous pricing problem:
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Application to a continouos pricing problem
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Application to a continouos pricing problem



Large number of draws (MSLE)
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Ideas for future work

• Improving Benders:
Ø Find a better way to linearize the product (?)

Ø Find a convex-quadratic formulation (?)

• Investigate column generation 
• Combined column generation + Benders approach
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